Genome-Wide Characterization of DrRALF Genes in Yam (Dioscorea rotundata) Reveals Their Potential Roles in Tuber Expansion and the Gibberellin Response
Abstract
1. Introduction
2. Results
2.1. Genomic Analysis of DrRALFs
2.2. Cis-Acting Element Analyses of Yam DrRALFs
2.3. Expression Patterns of DrRALFs in Different Organisms
2.4. qRT-PCR Revealed the Role of DrRALFs in Tuber Expansion
2.5. Characterization of the Secretory Properties of DrRALFs
2.6. Validation of the Interaction Between DrRALFs and DrDELLA1 Through Yeast One-Hybrid Assay
3. Discussion
3.1. RALF Genes in Yam
3.2. Gene Duplication and Phylogenetic Analysis Reveal Mechanisms of Gene Family Expansion and the Functional Conservation of DrRALFs
3.3. Analysis of Expression Patterns Suggests That DrRALFs Play a Role in Yam Development
3.4. DrRALF6 May Be Involved in Regulating Tuber Expansion in Yam Through the GA Signaling Pathway
4. Materials and Methods
4.1. Identification of RALF Genes in Yam
4.2. Chromosomal Location and Collinearity Analysis of DrRALF Genes
4.3. Properties of DrRALF Proteins
4.4. Phylogenetic Analysis of DrRALF Proteins in Yam
4.5. Promoter Cis-Regulatory Element Analysis
4.6. Gene Expression Analysis
4.7. Quantitative Real-Time PCR (qRT-PCR) Validation
4.8. Verification of the Secretory Function of DrRALFs
4.9. Yeast One-Hybrid Assay
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GA | Gibberellin |
qRT-PCR | Quantitative Real-Time PCR |
RALF | Rapid Alkalinization Factor |
WGD | Whole-Genome Duplication |
PP333 | Paclobutrazol |
References
- Viruel, J.; Segarra-Moragues, J.G.; Raz, L.; Forest, F.; Wilkin, P.; Sanmartín, I.; Catalán, P. Late Cretaceous–Early Eocene Origin of Yams (Dioscorea, Dioscoreaceae) in the Laurasian Palaearctic and Their Subsequent Oligocene–Miocene Diversification. J. Biogeogr. 2015, 43, 750–762. [Google Scholar] [CrossRef]
- Padhan, B.; Panda, D. Potential of Neglected and Underutilized Yams (Dioscorea spp.) for Improving Nutritional Security and Health Benefits. Front. Pharmacol. 2020, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Khol, M.; Ma, F.; Lei, L.; Liu, W.; Liu, X. A Frontier Review of Nutraceutical Chinese Yam. Foods 2024, 13, 1426. [Google Scholar] [CrossRef] [PubMed]
- Vreugdenhil, D.; Sergeeva, L.I. Gibberellins and Tuberization in Potato. Potato Res. 1999, 42, 471–481. [Google Scholar] [CrossRef]
- Bao, S.; Hua, C.; Shen, L.; Yu, H. New Insights into Gibberellin Signaling in Regulating Flowering in Arabidopsis. J. Integr. Plant Biol. 2020, 62, 118–131. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Gong, M.; Qin, F.; Xiao, D.; Zhan, J.; Wang, A.; He, L. Regulatory Mechanism of GA3 on Tuber Growth by DELLA-Dependent Pathway in Yam (Dioscorea opposita). Plant Mol. Biol. 2021, 106, 433–448. [Google Scholar] [CrossRef]
- Zierer, W.; Rüscher, D.; Sonnewald, U.; Sonnewald, S. Tuber and Tuberous Root Development. Annu. Rev. Plant Biol. 2021, 72, 551–580. [Google Scholar] [CrossRef]
- Wei, C.-Y.; Fan, D.-L.; Liu, S.-Y.; Yi, S.-C.; Yu, S.-X.; Zhao, G.-C.; Liu, X.-L.; Tang, W.-W. Tuber Development and Propagation Are Inhibited by GA3 Effects on the DELLA-Dependent Pathway in Purple Nutsedge (Cyperus rotundus). Weed Sci. 2023, 71, 453–461. [Google Scholar] [CrossRef]
- Xu, X.; LammerenAndré, A.M.; Vermeer, E.; Vreugdenhil, D. The Role of Gibberellin, Abscisic Acid, and Sucrose in the Regulation of Potato Tuber Formation in Vitro. Plant Physiol. 1998, 117, 575–584. [Google Scholar] [CrossRef]
- Li, L.; Shao, T.; Yang, H.; Chen, M.; Gao, X.; Long, X.; Shao, H.; Liu, Z.; Rengel, Z. The Endogenous Plant Hormones and Ratios Regulate Sugar and Dry Matter Accumulation in Jerusalem Artichoke in Salt-Soil. Sci. Total Environ. 2016, 578, 40–46. [Google Scholar] [CrossRef]
- Wu, K.; Xu, H.; Gao, X.; Fu, X. New Insights into Gibberellin Signaling in Regulating Plant Growth–Metabolic Coordination. Curr. Opin. Plant Biol. 2021, 63, 102074. [Google Scholar] [CrossRef]
- Daviere, J.M.; Achard, P. Gibberellin signaling in plants. Development 2013, 140, 1147–1151. [Google Scholar] [CrossRef]
- Daviere, J.M.; Patrick, A. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Mol. Plant 2016, 9, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.; Huang, J.; Jiao, R.; Li, M.; Xiao, D.; Zhan, J.; Wang, A.; He, L. DoDELLA1, a DELLA Protein from Dioscorea Opposite, Regulates the Growth and Development in Transgenic Tobacco by Controlling Gibberellin Level. Plant Growth Regul. 2022, 97, 571–583. [Google Scholar] [CrossRef]
- Pearce, G.; Moura, D.S.; Stratmann, J.; Ryan, C.A. RALF, a 5-kDa Ubiquitous Polypeptide in Plants, Arrests Root Growth and Development. Proc. Natl. Acad. Sci. USA 2001, 98, 12843–12847. [Google Scholar] [CrossRef] [PubMed]
- Haruta, M.; Sabat, G.; Stecker, K.; Minkoff, B.B.; Sussman, M.R. A Peptide Hormone and Its Receptor Protein Kinase Regulate Plant Cell Expansion. Science 2014, 343, 408–411. [Google Scholar] [CrossRef]
- Ge, Z.; Bergonci, T.; Zhao, Y.; Zou, Y.; Du, S.; Liu, M.-C.; Luo, X. Arabidopsis Pollen Tube Integrity and Sperm Release Are Regulated by RALF-Mediated Signaling. Science 2017, 358, 1596–1600. [Google Scholar] [CrossRef] [PubMed]
- Stegmann, M.; Monaghan, J.; Smakowska-Luzan, E.; Rovenich, H.; Lehner, A.; Holton, N.; Belkhadir, Y.; Zipfel, C. The Receptor Kinase FER Is a RALF-Regulated Scaffold Controlling Plant Immune Signaling. Science 2017, 355, 287–289. [Google Scholar] [CrossRef]
- Ge, Z.; Zhao, Y.; Liu, M.C.; Zhou, L.Z.; Wang, L.; Zhong, S.; Hou, S.; Jiang, J.; Liu, T.; Huang, Q.; et al. LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. Curr. Biol. 2019, 29, 3256–3265.e3255. [Google Scholar] [CrossRef]
- Moussu, S.; Broyart, C.; Santos-Fernandez, G.; Augustin, S.; Wehrle, S.; Grossniklaus, U.; Santiago, J. Structural Basis for Recognition of RALF Peptides by LRX Proteins during Pollen Tube Growth. Proc. Natl. Acad. Sci. USA 2020, 117, 7494–7503. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, W.; Zayed, O.; Liu, X.; Tang, K.; Nie, W.; Li, Y.; Long, T.; Liu, L. The LRXs-RALFs-FER Module Controls Plant Growth and Salt Stress Responses by Modulating Multiple Plant Hormones. Natl. Sci. Rev. 2020, 8, nwaa149. [Google Scholar] [CrossRef] [PubMed]
- McCubbin, A.G.; Lee, C.; Hetrick, A. Identification of genes showing differential expression between morphs in developing flowers of Primula vulgaris. Sex. Plant Reprod. 2006, 19, 63–72. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, J.; Wang, X. Cloning and Expression Analysis of a Pollen Preferential Rapid Alkalinization Factor Gene, BoRALF1, from Broccoli Flowers. Mol. Biol. Rep. 2010, 37, 3273–3281. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Xiao, X.; Yang, J.; Fan, Y.; Zhu, S.; Zhu, J.; Zhou, B.; Yu, F.; Tang, C. The rubber tree RALF peptide hormone and its receptor protein kinase FER implicates in rubber production. Plant Sci. 2023, 326, 111510. [Google Scholar] [CrossRef]
- Chevalier, E.; Loubert-Hudon, A.; Matton, D.P. ScRALF3, a Secreted RALF-like Peptide Involved in Cell-Cell Communication between the Sporophyte and the Female Gametophyte in a Solanaceous Species. Plant J. 2013, 73, 1019–1033. [Google Scholar] [CrossRef] [PubMed]
- Loubert-Hudon, A.; Mazin, B.D.; Chevalier, É.; Matton, D.P. The ScRALF3 Secreted Peptide Is Involved in Sporophyte to Gametophyte Signaling and Affects Pollen Mitosis I. Plant Biol. 2020, 22, 13–20. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Y. Genome-Wide Identification and Comparative Analysis of RALF Gene Family in Legume and Non-Legume Species. Int. J. Mol. Sci. 2023, 24, 8842. [Google Scholar] [CrossRef]
- Ninkuu, V.; Yan, J.; Fu, Z.; Yang, T.; Zhang, L.; Ren, J.; Li, G.; Zeng, H. Genome-wide Identification, Phylogenomics, and Expression Analysis of Benzoxazinoids Gene Family in Rice (Oryza sativa). Plant Stress 2023, 10, 100214. [Google Scholar] [CrossRef]
- Srivastava, R.; Liu, J.; Guo, H.; Yin, Y.; Howell, S. Regulation and Processing of a Plant Peptide Hormone, AtRALF23, in Arabidopsis. Plant J. 2009, 59, 930–939. [Google Scholar] [CrossRef]
- Mingossi, F.B.; Matos, J.L.; Rizzato, A.P.; Medeiros, A.H.; Falco, M.D.; Silva-Filho, M.C.; Moura, D.C. SacRALF1, a Peptide Signal from the Grass Sugarcane (Saccharum spp.), Is Potentially Involved in the Regulation of Tissue Expansion. Plant Mol. Biol. 2010, 73, 271–281. [Google Scholar] [CrossRef]
- Morato do Canto, A.; Ceciliato, P.H.O.; Ribeiro, B.; Morea, F.A.O.; Garcia, A.A.F.; Silva-Filho, M.C.; Moura, D.S. Biological Activity of Nine Recombinant AtRALF Peptides: Implications for Their Perception and Function in Arabidopsis. Plant Physiol. Biochem. 2014, 75, 45–54. [Google Scholar] [CrossRef]
- Wang, L.; Yang, T.; Lin, Q.; Wang, B.; Li, X.; Luan, S.; Yu, F. Receptor Kinase FERONIA Regulates Flowering Time in Arabidopsis. BMC Plant Biol. 2020, 20, 26. [Google Scholar] [CrossRef]
- Kou, X.; Sun, J.; Wang, P.; Wang, D.; Cao, P.; Lin, J.; Chang, Y.; Zhang, S.; Wu, J. PbrRALF2-Elicited Reactive Oxygen Species Signaling Is Mediated by the PbrCrRLK1L13-PbrMPK18 Module in Pear Pollen Tubes. Hortic. Res. 2021, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, F.; Liu, Y.; Du, C.; Li, X.; Zhu, S.; Wang, X. FERONIA Interacts with ABI2-Type Phosphatases to Facilitate Signaling Cross-Talk between Abscisic Acid and RALF Peptide in Arabidopsis. Proc. Natl. Acad. Sci. USA 2016, 113, E5519–E5527. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, S.; Chen, X.; Xu, Y.; Liang, Y.; Cai, X. RALF22 Promotes Plant Immunity and Amplifies the Pep3 Immune Signal. J. Integr. Plant Biol. 2023, 65, 2519–2534. [Google Scholar] [CrossRef]
- Cao, J.; Shi, F. Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns. Evol. Bioinform. 2012, 8, EBO.S9652. [Google Scholar] [CrossRef]
- Jiang, W.; Li, C.; Li, L.; Li, Y.; Wang, W.; Yu, F.; Yi, F. Genome-Wide Analysis of CqCrRLK1L and CqRALF Gene Families in Chenopodium Quinoa and Their Roles in Salt Stress Response. Front. Plant Sci. 2022, 13, 918594. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y.; Jiang, H.; Shui, Z.; Yang, Z.; Shang, J.; Yang, H.; Sun, X.; Du, J. Genome-Wide Characterization of Soybean RALF Genes and Their Expression Responses to Fusarium Oxysporum. Front. Plant Sci. 2022, 13, 1006028. [Google Scholar] [CrossRef]
- Xue, B.; Liang, Z.; Liu, Y.; Li, D.; Liu, C. Genome-Wide Identification of the RALF Gene Family and Expression Pattern Analysis in Zea mays (L.) under Abiotic Stresses. Plants 2024, 13, 2883. [Google Scholar] [CrossRef]
- Abarca, A.; Franck, C.M.; Zipfel, C. Family-Wide Evaluation of RALF Peptides in Arabidopsis Thaliana. bioRxiv 2020, 187, 996–1010. [Google Scholar] [CrossRef]
- Bicknell, R.A. Understanding Apomixis: Recent Advances and Remaining Conundrums. Plant Cell 2004, 16, S228–S245. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.L.; Wendel, J.F. Polyploidy and Genome Evolution in Plants. Curr. Opin. Plant Biol. 2005, 8, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Kovtun, A.S.; Kasianov, A.S.; Konopkin, A.A.; Shcherbakova, L.A. Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to Fusarium Oxysporum Infection in Tomato Based on Transcriptome Profiling. Int. J. Mol. Sci. 2021, 22, 5741. [Google Scholar] [CrossRef]
- Ginanjar, E.F.; Teh, O.-k.; Fujita, T. Characterisation of Rapid Alkalinisation Factors in Physcomitrium Patens Reveals Functional Conservation in Tip Growth. New Phytol. 2022, 233, 2442–2457. [Google Scholar] [CrossRef] [PubMed]
- Haruta, M.; Constabel, C.P. Rapid Alkalinization Factors in Poplar Cell Cultures. Peptide Isolation, cDNA Cloning, and Differential Expression in Leaves and Methyl Jasmonate-Treated Cells. Plant Physiol. 2003, 131, 814–823. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, W.; Tao, Z.; Pan, X.; Yu, W.; Huang, H. Morphological and Stage-specific Transcriptome Analyses Reveal Distinct Regulatory Programs Underlying Yam (Dioscorea alata L.) Bulbil Growth. J. Exp. Bot. 2019, 71, 1899–1914. [Google Scholar] [CrossRef]
- Matos, J.L.; Fiori, C.S.; Silva-Filho, M.C.; Moura, D.S. A Conserved Dibasic Site Is Essential for Correct Processing of the Peptide Hormone AtRALF1 in Arabidopsis Thaliana. FEBS Lett. 2008, 582, 3343–3347. [Google Scholar] [CrossRef]
- Lu, K.; Wei, L.; Li, X.; Wang, Y.; Wu, J.; Liu, M.; Zhang, C. Whole-Genome Resequencing Reveals Brassica Napus Origin and Genetic Loci Involved in Its Improvement. Nat. Commun. 2019, 10, 1154. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.W. Genome Evolution in Plants and the Origins of Innovation. New Phytol. 2023, 240, 2204–2209. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, Y.; Liu, W.; Shi, X.; Huang, S.; Cao, S.; Long, Q.; Wang, X.; Liu, Z.; Xu, X.; et al. Impacts of Reproductive Systems on Grapevine Genome and Breeding. Nat. Commun. 2025, 16, 2031. [Google Scholar] [CrossRef]
- Lynch, M. The Evolutionary Fate and Consequences of Duplicate Genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef]
- Jaillon, O.; Aury, J.-M.; Noel, B.; Policriti, A.; Clepet, C.; Casagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N. French-Italian Public Consortium for Grapevine Genome Characterization. The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla. Nature 2007, 449, 463–467. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene Duplication and Evolution in Recurring Polyploidization-Diploidization Cycles in Plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Hussain, A.; Mun, B.-G.; Imran, Q.M.; Falak, N.; Lee, S.-U.; Kim, J.Y. Comprehensive Analysis of Plant Rapid Alkalization Factor (RALF) Genes. Plant Physiol. Biochem. 2016, 106, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.; Turner, S.R. A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Front. Plant Sci. 2017, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Trösch, R. Integrity Peptide for Tube Walls. Nat. Plants 2023, 9, 1943. [Google Scholar] [CrossRef]
- Schoenares, S.; Lee, H.K.; Gonneau, M.; Faucher, E.; Levasseur, T.; Akary, E.; Claeijs, N. Rapid Alkalinization Factor 22 Has a Structural and Signalling Role in Root Hair Cell Wall Assembly. Nat. Plants 2024, 10, 494–511. [Google Scholar] [CrossRef]
- Bergonci, T.; Silva-Filho, M.C.; Moura, D.S. Antagonistic Relationship between AtRALF1 and Brassinosteroid Regulates Cell Expansion-Related Genes. Plant Signal. Behav. 2014, 9, e976146. [Google Scholar] [CrossRef]
- Campos, W.F.; Dressano, K.; Ceciliato, P.H.O.; Guerrero-Abad, J.C.; Silva, A.L.; Fiori, C.S.; do Canto, A.M. Arabidopsis Thaliana Rapid Alkalinization Factor 1-Mediated Root Growth Inhibition Is Dependent on Calmodulin-like Protein 38. J. Biol. Chem. 2018, 293, 2159–2171. [Google Scholar] [CrossRef]
- Yuan, X.; Xu, S.; Liang, F.; Jiang, S.; Wang, M.; Ma, J.; Zhang, X.; Cui, B. Comparative Proteomic Analysis of Phalaenopsis Leaves in the Vegetative and Flowering Phase. Acta Physiol. Plant. 2016, 38, 175. [Google Scholar] [CrossRef]
- Germain, H.; Chevalier, E.; Caron, S.; Matton, D.P. Characterization of Five RALF-like Genes from Solanum Chacoense Provides Support for a Developmental Role in Plants. Planta 2004, 220, 447–454. [Google Scholar] [CrossRef]
- Li, Y.; Nie, C.; Cao, J. Isolation and characterization of a novel BcMF14 gene from Brassica campestris ssp. chinensis. Mol. Biol. Rep. 2010, 38, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Negrini, F.; O’Grady, K.; Hyvönen, M.; Folta, K.M.; Baraldi, E. Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS ONE 2020, 15, e0226448. [Google Scholar] [CrossRef]
- Saidi, A.; Hajibarat, Z. Phytohormones: Plant Switchers in Developmental and Growth Stages in Potato. J. Genet. Eng. Biotechnol. 2021, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, Y.; Liu, Y.; Zhang, Q.; Gao, H.; Zhang, F. Comparative Proteomics Illustrates the Molecular Mechanism of Potato (Solanum tuberosum L.) Tuberization Inhibited by Exogenous Gibberellins in Vitro. Physiol. Plant. 2018, 163, 103–123. [Google Scholar] [CrossRef]
- Ito, T.; Okada, K.; Fukazawa, J.; Takahashi, Y. DELLA-Dependent and -Independent Gibberellin Signaling. Plant Signal. Behav. 2018, 13, e1445933. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.; Frank, M.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Muluneh, T.; Satoshi, N.; Hiroki, T.; Benjamen, W.; Hiroki, Y.; Motoki, S.; Kentaro, Y.; Aiko, U.; Kaori, O.; Akira, A.; et al. Genome Sequencing of the Staple Food Crop White Guinea Yam Enables the Development of a Molecular Marker for Sex Determination. BMC Biol. 2017, 15, 86. [Google Scholar] [CrossRef]
- Qiao, Q. Genome-Wide Exploration and Characterization of the RALFs and Analysis of Its Role in Peanut (Arachis hypogaea L.). BMC Plant Biol. 2025, 25, 337. [Google Scholar] [CrossRef]
GeneID | Chr ID | Gene Range | Gene Length (bp) | Num of mRNA | mRNA ID | Num of Exon | mRNA Range | mRNA Length (bp) | Rename |
---|---|---|---|---|---|---|---|---|---|
gene-LOC120260185 | NC_052475.1 | 26172276:26172596 | 321 | 1 | rna-XM_039267626.1 | 1 | 26172276:26172596 | 321 | DrRALF1 |
gene-LOC120261923 | NC_052475.1 | 26020100:26020822 | 723 | 1 | rna-XM_039269945.1 | 1 | 26020100:26020822 | 723 | DrRALF2 |
gene-LOC120260830 | NC_052475.1 | 1661275:1661934 | 660 | 1 | rna-XM_039268398.1 | 1 | 1661275:1661934 | 660 | DrRALF3 |
gene-LOC120263587 | NC_052476.1 | 20662702:20663395 | 694 | 1 | rna-XM_039271549.1 | 1 | 20662702:20663395 | 694 | DrRALF4 |
gene-LOC120265695 | NC_052477.1 | 2075500:2076092 | 593 | 1 | rna-XM_039273644.1 | 1 | 2075500:2076092 | 593 | DrRALF5 |
gene-LOC120249577 | NC_052489.1 | 30005811:30006480 | 670 | 1 | rna-XM_039258130.1 | 1 | 30005811:30006480 | 670 | DrRALF6 |
gene-LOC120254762 | NW_024087005.1 | 33774:34492 | 719 | 1 | rna-XM_039262807.1 | 1 | 33774:34492 | 719 | DrRALF7 |
Sequence ID | Number of Amino Acids | Molecular Weight | Theoretical pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity |
---|---|---|---|---|---|---|
DrRALF1 | 106 | 11,639.64 | 6.55 | 48.34 | 68.02 | 0.029 |
DrRALF2 | 124 | 13,686.3 | 8.18 | 49.1 | 59.11 | −0.596 |
DrRALF3 | 126 | 14,165.94 | 8.4 | 47.68 | 67.38 | −0.316 |
DrRALF4 | 111 | 12,165.91 | 8.63 | 49.55 | 83.69 | −0.078 |
DrRALF5 | 127 | 14,218.17 | 9.02 | 51.96 | 90.79 | −0.398 |
DrRALF6 | 117 | 12,613.46 | 9.58 | 48.61 | 82.74 | −0.056 |
DrRALF7 | 128 | 14,308.57 | 9.83 | 47.7 | 73.98 | −0.359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Q.; Sheng, F.; Qiao, W.; Li, S.; Wang, L.; Xiao, D.; He, L. Genome-Wide Characterization of DrRALF Genes in Yam (Dioscorea rotundata) Reveals Their Potential Roles in Tuber Expansion and the Gibberellin Response. Int. J. Mol. Sci. 2025, 26, 6151. https://doi.org/10.3390/ijms26136151
Qiao Q, Sheng F, Qiao W, Li S, Wang L, Xiao D, He L. Genome-Wide Characterization of DrRALF Genes in Yam (Dioscorea rotundata) Reveals Their Potential Roles in Tuber Expansion and the Gibberellin Response. International Journal of Molecular Sciences. 2025; 26(13):6151. https://doi.org/10.3390/ijms26136151
Chicago/Turabian StyleQiao, Qinghua, Furui Sheng, Wei Qiao, Shanshan Li, Liying Wang, Dong Xiao, and Longfei He. 2025. "Genome-Wide Characterization of DrRALF Genes in Yam (Dioscorea rotundata) Reveals Their Potential Roles in Tuber Expansion and the Gibberellin Response" International Journal of Molecular Sciences 26, no. 13: 6151. https://doi.org/10.3390/ijms26136151
APA StyleQiao, Q., Sheng, F., Qiao, W., Li, S., Wang, L., Xiao, D., & He, L. (2025). Genome-Wide Characterization of DrRALF Genes in Yam (Dioscorea rotundata) Reveals Their Potential Roles in Tuber Expansion and the Gibberellin Response. International Journal of Molecular Sciences, 26(13), 6151. https://doi.org/10.3390/ijms26136151