Soil to Synapse: Molecular Insights into the Neurotoxicity of Common Gardening Chemicals in Alzheimer’s and Parkinson’s Disease
Abstract
1. Introduction
2. Materials and Methods
3. Mode of Action of Some Common Gardening Chemicals in Neurodegeneration
3.1. Paraquat (PQ)
3.1.1. BBB Permeability
3.1.2. Mechanism of Demyelination
3.1.3. Mechanism of Neurodegeneration in AD
3.1.4. Mechanism of Neurodegeneration in PD
3.2. Glyphosate
3.2.1. BBB Permeability
3.2.2. Mechanism of Neurodegeneration in AD
3.2.3. Mechanism of Neurodegeneration in PD
3.2.4. Effect on Hippocampal Long-Term Potentiation (LTP) and Learning
3.3. Agent Orange
3.3.1. BBB Permeability
3.3.2. Mechanism of Neurodegeneration in AD
3.3.3. Mechanism of Neurodegeneration in PD
3.4. Ammonium Chloride
3.4.1. BBB Permeability
3.4.2. Mechanism of Synaptic Dysfunction
3.4.3. Mechanism of Neurodegeneration in AD
3.4.4. Mechanism of Neurodegeneration in PD
4. Effect of Common Gardening Chemicals on Gut–Brain-Axis
5. Regulatory Overview of the Selected Gardening Chemicals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gustavsson, A.; Norton, N.; Fast, T.; Frölich, L.; Georges, J.; Holzapfel, D.; Kirabali, T.; Krolak-Salmon, P.; Rossini, P.M.; Ferretti, M.T. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 2023, 19, 658–670. [Google Scholar] [CrossRef]
- Giménez, L.B. Improving Quality of Life and Autonomy for Parkinson’s Patients: French Neurologists Selected as Finalists for the European Inventor Award 2024; European Patent Office: Munich, Germany, 2024. [Google Scholar]
- Watts, M. Paraquat; Pesticide Action Network Asia and the Pacific: Penang, Malaysia, 2010; p. 44. [Google Scholar]
- Maggi, F.; Tang, F.H.; la Cecilia, D.; McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 2019, 6, 170. [Google Scholar] [CrossRef]
- Maggi, F.; la Cecilia, D.; Tang, F.H.M.; McBratney, A. The global environmental hazard of glyphosate use. Sci. Total Environ. 2020, 717, 137167. [Google Scholar] [CrossRef]
- Scientific, T. Safety Data Shest-Ammonium Chloride; Redox Ltd.: Minto, NSW, Australia, 2022. [Google Scholar]
- Bajgar, J.; Kassa, J.; Fusek, J.; Kuca, K.; Jun, D. Other toxic chemicals as potential chemical warfare agents. In Handbook of Toxicology of Chemical Warfare Agents; Elsevier: Amsterdam, The Netherlands, 2015; pp. 337–345. [Google Scholar]
- Blassingame, H. The Past And Present of Agent Orange. 2021. Available online: https://www.interlochenpublicradio.org/2021-06-28/the-past-and-present-of-agent-orange (accessed on 3 May 2025).
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public. Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef]
- Corasaniti, M.T.; Defilippo, R.; Rodinò, P.; Nappi, G.; Nisticò, G. Evidence that paraquat is able to cross the blood-brain barrier to a different extent in rats of various age. Funct. Neurol. 1991, 6, 385–391. [Google Scholar]
- Fan, R.; Zhang, W.; Jia, L.; Li, L.; Zhao, J.; Zhao, Z.; Peng, S.; Chen, Y.; Yuan, X. Combined Developmental Toxicity of the Pesticides Difenoconazole and Dimethomorph on Embryonic Zebrafish. Toxins 2021, 13, 854. [Google Scholar] [CrossRef]
- Sasikala, S.; Minu Jenifer, M.; Velavan, K.; Sakthivel, M.; Sivasamy, R.; Fenwick Antony, E.R. Predicting the relationship between pesticide genotoxicity and breast cancer risk in South Indian women in in vitro and in vivo experiments. Sci. Rep. 2023, 13, 9712. [Google Scholar] [CrossRef]
- Melanda, V.S.; Galiciolli, M.E.A.; Lima, L.S.; Figueiredo, B.C.; Oliveira, C.S. Impact of Pesticides on Cancer and Congenital Malformation: A Systematic Review. Toxics 2022, 10, 676. [Google Scholar] [CrossRef]
- Panis, C.; Lemos, B. Pesticide exposure and increased breast cancer risk in women population studies. Sci. Total Environ. 2024, 933, 172988. [Google Scholar] [CrossRef]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef]
- Fagundes, T.R.; Kawassaki, A.C.B.; Concato, V.M.; Assolini, J.P.; Silva, T.F.; Gonçalves, M.D.; da Silva Siqueira, E.; Sahd, C.S.; Inoue, F.S.R.; da Silva, T.P.; et al. Impact of Pesticides on Immune-Endocrine Disorders and Its Relationship to Cancer Development. In Handbook of Cancer and Immunology; Rezaei, N., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–30. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Abdelazim, A.M.; Abomughaid, M.M. Oxidative stress: An overview of past research and future insights. All Life 2024, 17, 2316092. [Google Scholar] [CrossRef]
- Braak, H.; Tredici, K.D.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Hawkes, C.H.; Del Tredici, K.; Braak, H. Parkinson’s disease: A dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 2007, 33, 599–614. [Google Scholar] [CrossRef]
- Attems, J.; Walker, L.; Jellinger, K.A. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014, 127, 459–475. [Google Scholar] [CrossRef]
- Borghammer, P.; Van Den Berge, N.; van Laar, T. Brain-First versus Gut-First Parkinson’s Disease: A Hypothesis. J. Park. Dis. 2019, 9, S281–S295. [Google Scholar] [CrossRef]
- Beach, T.G.; White, C.L.; Hladik, C.L.; Sabbagh, M.N.; Connor, D.J.; Shill, H.A.; Sue, L.I.; Sasse, J.; Bachalakuri, J.; Henry-Watson, J. Olfactory bulb α-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol. 2009, 117, 169–174. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Gunnigle, E.; Geissen, V.; Clarke, G.; Nagpal, J.; Cryan, J.F. Pesticide exposure and the microbiota-gut-brain axis. ISME J. 2023, 17, 1153–1166. [Google Scholar] [CrossRef]
- Kulcsarova, K.; Bang, C.; Berg, D.; Schaeffer, E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson’s Disease. J. Park. Dis. 2023, 13, 1079–1106. [Google Scholar] [CrossRef]
- Wasiak, J.; Zielonka, K.; Dądela, B.; Markowski, M.; Śliwa, N.; Majewska, E.M.; Kawalska, E.; Gnitecki, S.; Janczura, S.; Borowski, M. Gut Microbiota and Gut-Brain Axis in Health and Disease A Narrative Review. Qual. Sport 2025, 41, 60102. [Google Scholar] [CrossRef]
- Chen, L.; Yan, H.; Di, S.; Guo, C.; Zhang, H.; Zhang, S.; Gold, A.; Wang, Y.; Hu, M.; Wu, D. Mapping pesticide-induced metabolic alterations in human gut bacteria. Nat. Commun. 2025, 16, 4355. [Google Scholar] [CrossRef]
- Richardson, J.R.; Quan, Y.; Sherer, T.B.; Greenamyre, J.T.; Miller, G.W. Paraquat Neurotoxicity is Distinct from that of MPTP and Rotenone. Toxicol. Sci. 2005, 88, 193–201. [Google Scholar] [CrossRef]
- Di Monte, D.; Sandy, M.S.; Ekström, G.; Smith, M.T. Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity. Biochem. Biophys. Res. Commun. 1986, 137, 303–309. [Google Scholar] [CrossRef]
- Hongoeb, J.; Tantimongcolwat, T.; Ayimbila, F.; Ruankham, W.; Phopin, K. Herbicide-related health risks: Key mechanisms and a guide to mitigation strategies. J. Occup. Med. Toxicol. 2025, 20, 6. [Google Scholar] [CrossRef]
- Sørensen, A.T.; Ledri, M.; Melis, M.; Nikitidou Ledri, L.; Andersson, M.; Kokaia, M. Altered Chloride Homeostasis Decreases the Action Potential Threshold and Increases Hyperexcitability in Hippocampal Neurons. eNeuro 2017, 4. [Google Scholar] [CrossRef]
- Fujii, T.; Yokoyama, E.-i.; Inoue, K.; Sakurai, H. The sites of electron donation of photosystem I to methyl viologen. Biochim. Biophys. Acta (BBA)-Bioenerg. 1990, 1015, 41–48. [Google Scholar] [CrossRef]
- Wang, J.-W.; Yang, X.; Ning, B.-Y.; Yang, Z.-Y.; Luo, L.-H.; Xiao, H.; Ning, Z. The successful treatment of systemic toxic induced paraquat poisoning by skin absorption: Case reports and a literature review. Int. J. Clin. Exp. Pathol. 2019, 12, 3662. [Google Scholar]
- Shi, L.; Yu, G.; Li, Y.; Zhao, L.; Wen, Z.; Tao, Y.; Wang, W.; Jian, X. The toxicokinetics of acute paraquat poisoning in specific patients: A case series. J. Int. Med. Res. 2022, 50, 03000605221122745. [Google Scholar] [CrossRef]
- Sukumar, C.A.; Shanbhag, V.; Shastry, A.B. Paraquat: The Poison Potion. Indian J. Crit. Care Med. 2019, 23, S263–S266. [Google Scholar] [CrossRef]
- Gawarammana, I.B.; Buckley, N.A. Medical management of paraquat ingestion. Br. J. Clin. Pharmacol. 2011, 72, 745–757. [Google Scholar] [CrossRef]
- Bartlett, R.M.; Holden, J.E.; Nickles, R.J.; Murali, D.; Barbee, D.L.; Barnhart, T.E.; Christian, B.T.; DeJesus, O.T. Paraquat is excluded by the blood brain barrier in rhesus macaque: An in vivo pet study. Brain Res. 2009, 1259, 74–79. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Xu, Y.N.; Ren, X.Y.; Zhang, X.F. Inactivation of microglia dampens blood-brain barrier permeability and loss of dopaminergic neurons in paraquat-lesioned mice. Food Chem. Toxicol. 2023, 174, 113692. [Google Scholar] [CrossRef]
- Zhang, X.-f.; Thompson, M.; Xu, Y.-h. Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson’s disease. Lab. Investig. 2016, 96, 496–507. [Google Scholar] [CrossRef]
- Han, S.; Feng, Y.; Guo, M.; Hao, Y.; Sun, J.; Zhao, Y.; Dong, Q.; Zhao, Y.; Cui, M. Role of OCT3 and DRP1 in the Transport of Paraquat in Astrocytes: A Mouse Study. Environ. Health Perspect. 2022, 130, 57004. [Google Scholar] [CrossRef]
- Rappold, P.M.; Cui, M.; Chesser, A.S.; Tibbett, J.; Grima, J.C.; Duan, L.; Sen, N.; Javitch, J.A.; Tieu, K. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc. Natl. Acad. Sci. USA 2011, 108, 20766–20771. [Google Scholar] [CrossRef]
- Papuć, E.; Rejdak, K. The role of myelin damage in Alzheimer’s disease pathology. Arch. Med. Sci. 2020, 16, 341–345. [Google Scholar] [CrossRef]
- Xie, S.; Yang, J.; Huang, S.; Fan, Y.; Xu, T.; He, J.; Guo, J.; Ji, X.; Wang, Z.; Li, P.; et al. Disrupted myelination network in the cingulate cortex of Parkinson’s disease. IET Syst. Biol. 2022, 16, 98–119. [Google Scholar] [CrossRef]
- Silva, R.; Sobral, A.F.; Dinis-Oliveira, R.J.; Barbosa, D.J. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants 2024, 13, 1354. [Google Scholar] [CrossRef]
- Bajo-Grañeras, R.; Sanchez, D.; Gutierrez, G.; González, C.; Do Carmo, S.; Rassart, E.; Ganfornina, M.D. Apolipoprotein D alters the early transcriptional response to oxidative stress in the adult cerebellum. J. Neurochem. 2011, 117, 949–960. [Google Scholar] [CrossRef]
- Hichor, M.; Sampathkumar, N.K.; Montanaro, J.; Borderie, D.; Petit, P.X.; Gorgievski, V.; Tzavara, E.T.; Eid, A.A.; Charbonnier, F.; Grenier, J.; et al. Paraquat Induces Peripheral Myelin Disruption and Locomotor Defects: Crosstalk with LXR and Wnt Pathways. Antioxid. Redox Signal 2017, 27, 168–183. [Google Scholar] [CrossRef]
- Chen, L.; Yoo, S.E.; Na, R.; Liu, Y.; Ran, Q. Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiol. Aging 2012, 33, e415–e426. [Google Scholar] [CrossRef]
- Chen, L.; Na, R.; Boldt, E.; Ran, Q. NLRP3 inflammasome activation by mitochondrial reactive oxygen species plays a key role in long-term cognitive impairment induced by paraquat exposure. Neurobiol. Aging 2015, 36, 2533–2543. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, M.; Wang, X.; Xiong, G.; Wu, C.; Wang, Z.; Zhou, Z.; Chang, X. Modification of Wnt signaling pathway on paraquat-induced inhibition of neural progenitor cell proliferation. Food Chem. Toxicol. 2018, 121, 311–325. [Google Scholar] [CrossRef]
- Yan, M.; Dou, T.; Lv, W.; Wang, X.; Zhao, L.; Chang, X.; Zhou, Z. Integrated analysis of paraquat-induced microRNAs-mRNAs changes in human neural progenitor cells. Toxicol. Vitr. 2017, 44, 196–205. [Google Scholar] [CrossRef]
- Jia, L.; Piña-Crespo, J.; Li, Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol. Brain 2019, 12, 104. [Google Scholar] [CrossRef]
- Li, K.; Cheng, X.; Jiang, J.; Wang, J.; Xie, J.; Hu, X.; Huang, Y.; Song, L.; Liu, M.; Cai, L.; et al. The toxic influence of paraquat on hippocampal neurogenesis in adult mice. Food Chem. Toxicol. 2017, 106, 356–366. [Google Scholar] [CrossRef]
- Griffin, R.J.; Moloney, A.; Kelliher, M.; Johnston, J.A.; Ravid, R.; Dockery, P.; O’Connor, R.; O’Neill, C. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J. Neurochem. 2005, 93, 105–117. [Google Scholar] [CrossRef]
- Ren, J.P.; Zhao, Y.W.; Sun, X.J. Toxic influence of chronic oral administration of paraquat on nigrostriatal dopaminergic neurons in C57BL/6 mice. Chin. Med. J. 2009, 122, 2366–2371. [Google Scholar]
- Liu, T.; Zheng, F.; Liu, L.; Zhou, H.; Shen, T.; Li, Y.; Zhang, W. Paraquat disrupts the blood–brain barrier by increasing IL-6 expression and oxidative stress through the activation of PI3K/AKT signaling pathway. Open Med. 2024, 19, 20241020. [Google Scholar] [CrossRef]
- Berry, C.; La Vecchia, C.; Nicotera, P. Paraquat and Parkinson’s disease. Cell Death Differ. 2010, 17, 1115–1125. [Google Scholar] [CrossRef]
- Niso-Santano, M.; Bravo-San Pedro, J.M.; Gómez-Sánchez, R.; Climent, V.; Soler, G.; Fuentes, J.M.; González-Polo, R.A. ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicol. Sci. 2011, 119, 156–168. [Google Scholar] [CrossRef]
- Manning-Bog, A.B.; McCormack, A.L.; Li, J.; Uversky, V.N.; Fink, A.L.; Di Monte, D.A. The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: Paraquat and α-synuclein. J. Biol. Chem. 2002, 277, 1641–1644. [Google Scholar] [CrossRef]
- Shimizu, K.; Matsubara, K.; Ohtaki, K.; Fujimaru, S.; Saito, O.; Shiono, H. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res. 2003, 976, 243–252. [Google Scholar] [CrossRef]
- Cristovao, A.C.; Choi, D.-H.; Baltazar, G.; Beal, M.F.; Kim, Y.-S. The role of NADPH oxidase 1–derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid. Redox Signal. 2009, 11, 2105–2118. [Google Scholar] [CrossRef]
- Hou, L.; Liu, J.; Sun, F.; Huang, R.; Chang, R.; Ruan, Z.; Wang, Y.; Zhao, J.; Wang, Q. Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase–NLRP3 inflammasome axis-dependent microglial activation. J. Neuroinflamm. 2023, 20, 42. [Google Scholar] [CrossRef]
- Songin, M.; Ossowska, K.; Kuter, K.; Strosznajder, J.B. Original articleAlteration of GSK-3β in the hippocampus and other brain structures after chronic paraquat administration in rats. Folia Neuropathol. 2011, 49, 319–327. [Google Scholar]
- Shimizu, K.; Matsubara, K.; Ohtaki, K.; Shiono, H. Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture. Neurosci. Res. 2003, 46, 523–532. [Google Scholar] [CrossRef]
- Songin, M.; Strosznajder, J.B.; Fitał, M.; Kuter, K.; Kolasiewicz, W.; Nowak, P.; Ossowska, K. Glycogen Synthase Kinase 3β and Its Phosphorylated Form (Y216) in the Paraquat-Induced Model of Parkinsonism. Neurotox. Res. 2011, 19, 162–171. [Google Scholar] [CrossRef]
- Tanner Caroline, M.; Kamel, F.; Ross, G.W.; Hoppin Jane, A.; Goldman Samuel, M.; Korell, M.; Marras, C.; Bhudhikanok Grace, S.; Kasten, M.; Chade Anabel, R.; et al. Rotenone, Paraquat, and Parkinson’s Disease. Environ. Health Perspect. 2011, 119, 866–872. [Google Scholar] [CrossRef]
- Pezzoli, G.; Cereda, E. Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 2013, 80, 2035–2041. [Google Scholar] [CrossRef]
- Tangamornsuksan, W.; Lohitnavy, O.; Sruamsiri, R.; Chaiyakunapruk, N.; Norman Scholfield, C.; Reisfeld, B.; Lohitnavy, M. Paraquat exposure and Parkinson’s disease: A systematic review and meta-analysis. Arch. Environ. Occup. Health 2019, 74, 225–238. [Google Scholar] [CrossRef]
- Vaccari, C.; El Dib, R.; Gomaa, H.; Lopes, L.C.; De Camargo, J.L. Paraquat and Parkinson’s disease: A systematic review and meta-analysis of observational studies. J. Toxicol. Environ. Health Part B 2019, 22, 172–202. [Google Scholar] [CrossRef]
- Weed, D.L. Does paraquat cause Parkinson’s disease? A review of reviews. NeuroToxicology 2021, 86, 180–184. [Google Scholar] [CrossRef]
- Paul, K.C.; Cockburn, M.; Gong, Y.; Bronstein, J.; Ritz, B. Agricultural paraquat dichloride use and Parkinson’s disease in California’s Central Valley. Int. J. Epidemiol. 2024, 53, dyae004. [Google Scholar] [CrossRef]
- Schönbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.V.; Amrhein, N.; Evans, J.N.S.; Kabsch, W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar] [CrossRef]
- de Andréa, M.M.; Peres, T.B.; Luchini, L.C.; Bazarin, S.; Papini, S.; Matallo, M.B.; Savoy, V.L.T. Influence of repeated applications of glyphosate on its persistence and soil bioactivity. Pesqui. Agropecu. Bras. 2003, 38, 1329–1335. [Google Scholar] [CrossRef]
- Baer, K.N. Glyphosate. In Encyclopedia of Toxicology, 2nd ed.; Wexler, P., Ed.; Elsevier: New York, NY, USA, 2005; pp. 455–456. [Google Scholar] [CrossRef]
- Henderson, A.M.; Gervais, J.A.; Luukinen, B.; Buhl, K.; Stone, D.; Cross, A.; Jenkins, J. Glyphosate General Fact Sheet; New Product Introduction (NPI) Center, Ed.; Oregon State University Extension Services: Corvallis, OR, USA, 2010. [Google Scholar]
- Martinez, A.; Al-Ahmad, A.J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol. Lett. 2019, 304, 39–49. [Google Scholar] [CrossRef]
- Xu, J.; Li, G.; Wang, Z.; Si, L.; He, S.; Cai, J.; Huang, J.; Donovan, M.D. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues. Chemosphere 2016, 145, 487–494. [Google Scholar] [CrossRef]
- Winstone, J.K.; Pathak, K.V.; Winslow, W.; Piras, I.S.; White, J.; Sharma, R.; Huentelman, M.J.; Pirrotte, P.; Velazquez, R. Glyphosate infiltrates the brain and increases pro-inflammatory cytokine TNFα: Implications for neurodegenerative disorders. J. Neuroinflamm. 2022, 19, 193. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Pocernich, C.B. The glutamatergic system and Alzheimer’s disease: Therapeutic implications. CNS Drugs 2003, 17, 641–652. [Google Scholar] [CrossRef]
- Kamat, P.K.; Tota, S.; Saxena, G.; Shukla, R.; Nath, C. Okadaic acid (ICV) induced memory impairment in rats: A suitable experimental model to test anti-dementia activity. Brain Res. 2010, 1309, 66–74. [Google Scholar] [CrossRef]
- Cattani, D.; Cesconetto, P.A.; Tavares, M.K.; Parisotto, E.B.; De Oliveira, P.A.; Rieg, C.E.H.; Leite, M.C.; Prediger, R.D.S.; Wendt, N.C.; Razzera, G.; et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology 2017, 387, 67–80. [Google Scholar] [CrossRef]
- Cattani, D.; de Liz Oliveira Cavalli, V.L.; Rieg, C.E.H.; Domingues, J.T.; Dal-Cim, T.; Tasca, C.I.; Silva, F.R.M.B.; Zamoner, A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity. Toxicology 2014, 320, 34–45. [Google Scholar] [CrossRef]
- Limberger, C.; Ferreira, P.C.; Fontella, F.U.; Oliveira, A.C.L.J.; Salles, G.B.; Souza, D.O.; Zimmer, E.R.; de Souza, D.G. Glyphosate-based herbicide alters brain amino acid metabolism without affecting blood-brain barrier integrity: Molecular and cell biology/others. Alzheimers Dement. 2020, 16, e043847. [Google Scholar] [CrossRef]
- Bartholomew, S.K.; Winslow, W.; Sharma, R.; Pathak, K.V.; Tallino, S.; Judd, J.M.; Leon, H.; Turk, J.; Pirrotte, P.; Velazquez, R. Glyphosate exposure exacerbates neuroinflammation and Alzheimer’s disease-like pathology despite a 6-month recovery period in mice. J. Neuroinflamm. 2024, 21, 316. [Google Scholar] [CrossRef]
- Hsiao, C.C.; Yang, A.-M.; Wang, C.; Lin, C.-Y. Association between glyphosate exposure and cognitive function, depression, and neurological diseases in a representative sample of US adults: NHANES 2013–2014 analysis. Environ. Res. 2023, 237, 116860. [Google Scholar] [CrossRef]
- Ren, J.; Yu, Y.; Wang, Y.; Dong, Y.; Shen, X.; Eiser, A. Association Between Urinary Glyphosate Exposure and Cognitive Impairment in Older Adults from NHANES 2013–2014. J. Alzheimers Dis. 2024, 97, 609–620. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, L.; Jing, P.; Bao, Y.; Gu, L.; Chen, Y.; Shi, X.; Wang, H.; Wang, L.; Wang, S. Association of glyphosate exposure with frailty and all-cause mortality in general adults: A population-based cohort study. Ecotoxicol. Environ. Saf. 2025, 294, 118096. [Google Scholar] [CrossRef]
- Pu, Y.; Chang, L.; Qu, Y.; Wang, S.; Tan, Y.; Wang, X.; Zhang, J.; Hashimoto, K. Glyphosate exposure exacerbates the dopaminergic neurotoxicity in the mouse brain after repeated administration of MPTP. Neurosci. Lett. 2020, 730, 135032. [Google Scholar] [CrossRef]
- Costas-Ferreira, C.; Durán, R.; Faro, L.R.F. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 4605. [Google Scholar] [CrossRef]
- Bloem, B.R.; Boonstra, T.A. The inadequacy of current pesticide regulations for protecting brain health: The case of glyphosate and Parkinson’s disease. Lancet Planet. Health 2023, 7, e948–e949. [Google Scholar] [CrossRef]
- Gui, Y.-x.; Fan, X.-n.; Wang, H.-m.; Wang, G.; Chen, S.-d. Glyphosate induced cell death through apoptotic and autophagic mechanisms. Neurotoxicol. Teratol. 2012, 34, 344–349. [Google Scholar] [CrossRef]
- Zheng, Q.; Yin, J.; Zhu, L.; Jiao, L.; Xu, Z. Reversible Parkinsonism induced by acute exposure glyphosate. Park. Relat. Disord. 2018, 50, 121. [Google Scholar] [CrossRef]
- Eriguchi, M.; Iida, K.; Ikeda, S.; Osoegawa, M.; Nishioka, K.; Hattori, N.; Nagayama, H.; Hara, H. Parkinsonism Relating to Intoxication with Glyphosate. Intern. Med. 2019, 58, 1935–1938. [Google Scholar] [CrossRef]
- Ojelade, B.S.; Durowoju, O.S.; Adesoye, P.O.; Gibb, S.W.; Ekosse, G.-I. Review of Glyphosate-Based Herbicide and Aminomethylphosphonic Acid (AMPA): Environmental and Health Impacts. Appl. Sci. 2022, 12, 8789. [Google Scholar] [CrossRef]
- Dong, Z.; Han, H.; Li, H.; Bai, Y.; Wang, W.; Tu, M.; Peng, Y.; Zhou, L.; He, W.; Wu, X.; et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J. Clin. Investig. 2015, 125, 234–247. [Google Scholar] [CrossRef]
- Costa, C.; Sgobio, C.; Siliquini, S.; Tozzi, A.; Tantucci, M.; Ghiglieri, V.; Di Filippo, M.; Pendolino, V.; de Iure, A.; Marti, M.; et al. Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain 2012, 135, 1884–1899. [Google Scholar] [CrossRef]
- Izumi, Y.; O’Dell, K.A.; Zorumski, C.F. The herbicide glyphosate inhibits hippocampal long-term potentiation and learning through activation of pro-inflammatory signaling. Res. Sq. 2023, 13, 18005. [Google Scholar] [CrossRef]
- da Silva, K.N.; Garbin Cappellaro, L.; Ueda, C.N.; Rodrigues, L.; Pertile Remor, A.; de Paula Martins, R.; Latini, A.; Glaser, V. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. J. Toxicol. Environ. Health Part A 2020, 83, 153–167. [Google Scholar] [CrossRef]
- Duque-Díaz, E.; Giraldo, H.H.; Rocha-Muñoz, L.P.; Coveñas, R. Glyphosate, AMPA and glyphosate-based herbicide exposure leads to GFAP, PCNA and caspase-3 increased immunoreactive area on male offspring rat hypothalamus. Eur. J. Histochem. EJH 2022, 66, 3428. [Google Scholar] [CrossRef]
- Izumi, Y.; O’Dell, K.A.; Zorumski, C.F. Glyphosate as a direct or indirect activator of pro-inflammatory signaling and cognitive impairment. Neural Regen. Res. 2024, 19, 2212–2218. [Google Scholar] [CrossRef]
- Tulchinsky, T.H.; Varavikova, E.A. Chapter 9—Environmental and Occupational Health. In The New Public Health, 3rd ed.; Tulchinsky, T.H., Varavikova, E.A., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 471–533. [Google Scholar] [CrossRef]
- Kang, H.K. Dioxin, Health Effects. In Handbook of Hazardous Materials; Corn, M., Ed.; Academic Press: Boston, MA, USA, 1993; pp. 201–211. [Google Scholar] [CrossRef]
- Nhung, N.T.H.; Nguyen, X.T.; Long, V.D.; Wei, Y.; Fujita, T. A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. Toxics 2022, 10, 278. [Google Scholar] [CrossRef]
- Committee to Review the Health Effects in Vietnam Veterans of Exposure to Herbicides. Veterans and Agent Orange: Health Effects of Herbicides Used in Vietnam; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Le Le, T.H. Human health risk assessment of Agent orange/dioxin from contaminated soil in A Luoi district in central Vietnam. J. Vietnam Environ. 2018, 9, 118–122. [Google Scholar] [CrossRef]
- Kim, M.J.; Marchand, P.; Henegar, C.; Antignac, J.P.; Alili, R.; Poitou, C.; Bouillot, J.L.; Basdevant, A.; Le Bizec, B.; Barouki, R.; et al. Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ. Health Perspect. 2011, 119, 377–383. [Google Scholar] [CrossRef]
- Yi, S.-W.; Hong, J.-S.; Ohrr, H.; Yi, J.-J. Agent Orange exposure and disease prevalence in Korean Vietnam veterans: The Korean veterans health study. Environ. Res. 2014, 133, 56–65. [Google Scholar] [CrossRef]
- Medicine, I.O. Veterans and Agent Orange: Update 2008; National Academies Press: Washington, DC, USA, 2009; p. 706. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S.; Kang, S.K.; Choi, W.-J. Risk of Dementia in Korean Vietnam War Veterans. J. Prev. Alzheimers Dis. 2024, 11, 1378–1383. [Google Scholar] [CrossRef]
- Martinez, S.; Yaffe, K.; Li, Y.; Byers, A.L.; Peltz, C.B.; Barnes, D.E. Agent Orange Exposure and Dementia Diagnosis in US Veterans of the Vietnam Era. JAMA Neurol. 2021, 78, 473–477. [Google Scholar] [CrossRef]
- Lee, H.A.; Kyeong, S.; Kim, D.H. Long-term effects of defoliant exposure on brain atrophy progression in humans. Neurotoxicology 2022, 92, 25–32. [Google Scholar] [CrossRef]
- Yang, Y.; Cheon, M.; Kwak, Y.T. Is Parkinson’s Disease with History of Agent Orange Exposure Different from Idiopathic Parkinson’s Disease? Dement. Neurocogn. Disord. 2016, 15, 75–81. [Google Scholar] [CrossRef]
- Lowes, S.; Sykes, D.; Breen, C.M.; Ragone, L.J.; Miller, D.S. Multiple Components of 2,4-Dichlorophenoxyacetic Acid Uptake by Rat Choroid Plexus. J. Pharmacol. Exp. Ther. 2005, 315, 136–143. [Google Scholar] [CrossRef]
- Institute of Medicine Committee to Review the Health Effects in Vietnam Veterans of Exposure to Herbicides. Veterans and Agent Orange: Update 1996; National Academies Press: Washington, DC, USA, 1996. [Google Scholar] [CrossRef]
- Kim, C.S.; Pritchard, J.B. Transport of 2,4,5-trichlorophenoxyacetic acid across the blood-cerebrospinal fluid barrier of the rabbit. J. Pharmacol. Exp. Ther. 1993, 267, 751–757. [Google Scholar] [CrossRef]
- Kim, C.S.; Keizer, R.F.; Pritchard, J.B. 2,4-Dichlorophenoxyacetic acid intoxication increases its accumulation within the brain. Brain Res. 1988, 440, 216–226. [Google Scholar] [CrossRef]
- Sharifi Pasandi, M.; Hosseini Shirazi, F.; Gholami, M.R.; Salehi, H.; Najafzadeh, N.; Mazani, M.; Ghasemi Hamidabadi, H.; Niapour, A. Epi/perineural and Schwann cells as well as perineural sheath integrity are affected following 2,4-D exposure. Neurotox. Res. 2017, 32, 624–638. [Google Scholar] [CrossRef]
- de la Monte, S.M.; Goel, A.; Tong, M.; Delikkaya, B. Agent Orange Causes Metabolic Dysfunction and Molecular Pathology Reminiscent of Alzheimer’s Disease. J. Alzheimers Dis. Rep. 2023, 7, 751–766. [Google Scholar] [CrossRef]
- Xie, H.Q.; Ma, Y.; Fu, H.; Xu, T.; Luo, Y.; Liu, Y.; Chen, Y.; Xu, L.; Xia, Y.; Zhao, B. New perspective on the regulation of acetylcholinesterase via the aryl hydrocarbon receptor. J. Neurochem. 2021, 158, 1254–1262. [Google Scholar] [CrossRef]
- de la Monte, S.M.; Tong, M. Agent Orange Herbicidal Toxin-Initiation of Alzheimer-Type Neurodegeneration. J. Alzheimers Dis. 2024, 97, 1703–1726. [Google Scholar] [CrossRef]
- Yang, Y.; Giau, V.V.; An, S.S.A.; Kim, S. Plasma Oligomeric Beta Amyloid in Alzheimer’s Disease with History of Agent Orange Exposure. Dement. Neurocogn. Disord. 2018, 17, 41–49. [Google Scholar] [CrossRef]
- Williamson, M.A.; Gasiewicz, T.A.; Opanashuk, L.A. Aryl Hydrocarbon Receptor Expression and Activity in Cerebellar Granule Neuroblasts: Implications for Development and Dioxin Neurotoxicity. Toxicol. Sci. 2004, 83, 340–348. [Google Scholar] [CrossRef]
- Sánchez-Martín, F.J.; Fernández-Salguero, P.M.; Merino, J.M. Aryl hydrocarbon receptor-dependent induction of apoptosis by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in cerebellar granule cells from mouse. J. Neurochem. 2011, 118, 153–162. [Google Scholar] [CrossRef]
- Furue, M.; Ishii, Y.; Tsukimori, K.; Tsuji, G. Aryl Hydrocarbon Receptor and Dioxin-Related Health Hazards—Lessons from Yusho. Int. J. Mol. Sci. 2021, 22, 708. [Google Scholar] [CrossRef]
- Xie, H.Q.; Xu, H.M.; Fu, H.L.; Hu, Q.; Tian, W.J.; Pei, X.H.; Zhao, B. AhR-mediated effects of dioxin on neuronal acetylcholinesterase expression in vitro. Environ. Health Perspect. 2013, 121, 613–618. [Google Scholar] [CrossRef]
- Abudahab, S.; Price, E.T.; Dozmorov, M.G.; Deshpande, L.S.; McClay, J.L. The Aryl Hydrocarbon Receptor, Epigenetics and the Aging Process. J. Nutr. Health Aging 2023, 27, 291–300. [Google Scholar] [CrossRef]
- Thao, P.N.; Nishijo, M.; Tai, P.T.; Nghi, T.N.; Yokawa, T.; Hoa, V.T.; Tien, T.V.; Kien, N.X.; Anh, T.H.; Nishino, Y.; et al. Impacts of dioxin exposure on brain connectivity estimated by DTI analysis of MRI images in men residing in contaminated areas of Vietnam. Front. Neurosci. 2024, 18, 1344653. [Google Scholar] [CrossRef]
- Pandics, T.; Major, D.; Fazekas-Pongor, V.; Szarvas, Z.; Peterfi, A.; Mukli, P.; Gulej, R.; Ungvari, A.; Fekete, M.; Tompa, A.; et al. Exposome and unhealthy aging: Environmental drivers from air pollution to occupational exposures. Geroscience 2023, 45, 3381–3408. [Google Scholar] [CrossRef]
- Song, S.; Kim, J.Y.; Lee, Y.; Jeong, H.; Kim, S.; Lee, E.E. Effects of defoliant exposure and medication use on the development of Parkinson’s disease in veterans. Age Ageing 2023, 52, afad192. [Google Scholar] [CrossRef]
- Bortolozzi, A.A.; Evangelista de Duffard, A.M.; Duffard, R.O.; Antonelli, M.C. Effects of 2,4-dichlorophenoxyacetic acid exposure on dopamine D2-like receptors in rat brain. Neurotoxicol. Teratol. 2004, 26, 599–605. [Google Scholar] [CrossRef]
- Buddhala, C.; Loftin, S.K.; Kuley, B.M.; Cairns, N.J.; Campbell, M.C.; Perlmutter, J.S.; Kotzbauer, P.T. Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann. Clin. Transl. Neurol. 2015, 2, 949–959. [Google Scholar] [CrossRef]
- Russ, T.; Enders, L.; Zbiegly, J.M.; Potru, P.S.; Wurm, J.; Spittau, B. 2,4-Dichlorophenoxyacetic Acid Induces Degeneration of mDA Neurons In Vitro. Biomedicines 2023, 11, 2882. [Google Scholar] [CrossRef]
- Bortolozzi, A.A.; Duffard, R.; Evangelista de Duffard, A.M. Asymmetrical development of the monoamine systems in 2, 4-dichlorophenoxyacetic acid treated rats. Neurotoxicology 2003, 24, 149–157. [Google Scholar] [CrossRef]
- Bortolozzi, A.; Duffard, R.; Antonelli, M.; Evangelista de Duffard, A.M. Increased sensitivity in dopamine D(2)-like brain receptors from 2,4-dichlorophenoxyacetic acid (2,4-D)-exposed and amphetamine-challenged rats. Ann. N. Y. Acad. Sci. 2002, 965, 314–323. [Google Scholar] [CrossRef]
- Ueda, R.M.R.; de Souza, V.M.; Magalhães, L.R.; Giuffrida, R.; Nai, G.A. Alteration of object recognition memory after chronic exposure to dichlorophenoxyacetic acid (2, 4-D) in adult rats. Res. Soc. Dev. 2021, 10, e23310111695. [Google Scholar] [CrossRef]
- Oliveira, G.H.; Palermo-Neto, J. Effects of 2,4-dichlorophenoxyacetic acid (2,4-D) on open-field behaviour and neurochemical parameters of rats. Pharmacol. Toxicol. 1993, 73, 79–85. [Google Scholar] [CrossRef]
- de la Monte, S.M.; Goel, A. Agent Orange reviewed: Potential role in peripheral neuropathy and neurodegeneration. J. Mil. Veterans’ Health 2022, 30, 17. [Google Scholar]
- Rosso, S.B.; Di Paolo, O.A.; de Duffard, A.M.E.; Duffard, R. Effects of 2,4-dichlorophenoxyacetic acid on central nervous system of developmental rats. Associated changes in ganglioside pattern. Brain Res. 1997, 769, 163–167. [Google Scholar] [CrossRef]
- Shrestha, S.; Parks, C.G.; Umbach, D.M.; Richards-Barber, M.; Hofmann, J.N.; Chen, H.; Blair, A.; Beane Freeman, L.E.; Sandler, D.P. Pesticide use and incident Parkinson’s disease in a cohort of farmers and their spouses. Environ. Res. 2020, 191, 110186. [Google Scholar] [CrossRef]
- Kamel, F.; Tanner, C.; Umbach, D.; Hoppin, J.; Alavanja, M.; Blair, A.; Comyns, K.; Goldman, S.; Korell, M.; Langston, J. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am. J. Epidemiol. 2007, 165, 364–374. [Google Scholar] [CrossRef]
- Tanner, C.M.; Ross, G.W.; Jewell, S.A.; Hauser, R.A.; Jankovic, J.; Factor, S.A.; Bressman, S.; Deligtisch, A.; Marras, C.; Lyons, K.E.; et al. Occupation and Risk of Parkinsonism: A Multicenter Case-Control Study. Arch. Neurol. 2009, 66, 1106–1113. [Google Scholar] [CrossRef]
- Shilpha, J.; Song, J.; Jeong, B.R. Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity. Agronomy 2023, 13, 1487. [Google Scholar] [CrossRef]
- Padappayil, R.P.; Borger, J. Ammonia toxicity. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- New Jersey Department of Health. Ammonium Chloride: Hazardous Substance Fact Sheet; New Jersey Department of Health: Trenton, NJ, USA, 2016.
- Ott, P.; Larsen, F.S. Blood-brain barrier permeability to ammonia in liver failure: A critical reappraisal. Neurochem. Int. 2004, 44, 185–198. [Google Scholar] [CrossRef]
- Lockwood, A.H.; Finn, R.D.; Campbell, J.A.; Richman, T.B. Factors that affect the uptake of ammonia by the brain: The blood-brain pH gradient. Brain Res. 1980, 181, 259–266. [Google Scholar] [CrossRef]
- Kleidonas, D.; Hilfiger, L.; Lenz, M.; Häussinger, D.; Vlachos, A. Ammonium chloride reduces excitatory synaptic transmission onto CA1 pyramidal neurons of mouse organotypic slice cultures. Front. Cell Neurosci. 2024, 18, 1410275. [Google Scholar] [CrossRef]
- Hertz, L.; Peng, L.; Song, D. Ammonia, like K+, stimulates the Na+, K+, 2 Cl− cotransporter NKCC1 and the Na+, K+-ATPase and interacts with endogenous ouabain in astrocytes. Neurochem. Res. 2015, 40, 241–257. [Google Scholar] [CrossRef]
- Adlimoghaddam, A.; Sabbir, M.G.; Albensi, B.C. Ammonia as a Potential Neurotoxic Factor in Alzheimer’s Disease. Front. Mol. Neurosci. 2016, 9, 57. [Google Scholar] [CrossRef]
- Rose, C. Effect of ammonia on astrocytic glutamate uptake/release mechanisms. J. Neurochem. 2006, 97 (Suppl. S1), 11–15. [Google Scholar] [CrossRef]
- Rose, C.; Kresse, W.; Kettenmann, H. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J. Biol. Chem. 2005, 280, 20937–20944. [Google Scholar] [CrossRef]
- Skowrońska, M.; Albrecht, J. Alterations of blood brain barrier function in hyperammonemia: An overview. Neurotox. Res. 2012, 21, 236–244. [Google Scholar] [CrossRef]
- Marini, J.C.; Broussard, S.R. Hyperammonemia increases sensitivity to LPS. Mol. Genet. Metab. 2006, 88, 131–137. [Google Scholar] [CrossRef]
- Jo, D.; Kim, B.C.; Cho, K.A.; Song, J. The Cerebral Effect of Ammonia in Brain Aging: Blood–Brain Barrier Breakdown, Mitochondrial Dysfunction, and Neuroinflammation. J. Clin. Med. 2021, 10, 2773. [Google Scholar] [CrossRef]
- Cheon, S.Y.; Kim, M.-Y.; Kim, J.; Kim, E.J.; Kam, E.H.; Cho, I.; Koo, B.-N.; Kim, S.Y. Hyperammonemia induces microglial NLRP3 inflammasome activation via mitochondrial oxidative stress in hepatic encephalopathy. Biomed. J. 2023, 46, 100593. [Google Scholar] [CrossRef]
- Lazarenko, R.M.; DelBove, C.E.; Strothman, C.E.; Zhang, Q. Ammonium chloride alters neuronal excitability and synaptic vesicle release. Sci. Rep. 2017, 7, 5061. [Google Scholar] [CrossRef]
- Fan, P.; Lavoie, J.; Lé, N.L.; Szerb, J.C.; Butterworth, R.F. Neurochemical and electrophysiological studies on the inhibitory effect of ammonium ions on synaptic transmission in slices of rat hippocampus: Evidence for a postsynaptic action. Neuroscience 1990, 37, 327–334. [Google Scholar] [CrossRef]
- Dagra, A.; Miller, D.R.; Lin, M.; Gopinath, A.; Shaerzadeh, F.; Harris, S.; Sorrentino, Z.A.; Støier, J.F.; Velasco, S.; Azar, J.; et al. α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability. npj Park. Dis. 2021, 7, 76. [Google Scholar] [CrossRef]
- Venda, L.L.; Cragg, S.J.; Buchman, V.L.; Wade-Martins, R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci. 2010, 33, 559–568. [Google Scholar] [CrossRef]
- Fan, P.; Szerb, J.C. Effects of ammonium ions on synaptic transmission and on responses to quisqualate and N-methyl-D-aspartate in hippocampal CA1 pyramidal neurons in vitro. Brain Res. 1993, 632, 225–231. [Google Scholar] [CrossRef]
- Rama Rao, K.V.; Jayakumar, A.R.; Tong, X.; Alvarez, V.M.; Norenberg, M.D. Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. J. Neuroinflamm. 2010, 7, 66. [Google Scholar] [CrossRef]
- Rama Rao, K.V.; Jayakumar, A.R.; Norenberg, M.D. Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem. Int. 2005, 47, 31–38. [Google Scholar] [CrossRef]
- Komatsu, A.; Iida, I.; Nasu, Y.; Ito, G.; Harada, F.; Kishikawa, S.; Moss, S.J.; Maeda, T.; Terunuma, M. Ammonia induces amyloidogenesis in astrocytes by promoting amyloid precursor protein translocation into the endoplasmic reticulum. J. Biol. Chem. 2022, 298, 101933. [Google Scholar] [CrossRef]
- Busche, M.A.; Eichhoff, G.; Adelsberger, H.; Abramowski, D.; Wiederhold, K.-H.; Haass, C.; Staufenbiel, M.; Konnerth, A.; Garaschuk, O. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 2008, 321, 1686–1689. [Google Scholar] [CrossRef]
- Ismail, F.S.; Faustmann, T.J.; Corvace, F.; Tsvetanova, A.; Moinfar, Z.; Faustmann, P.M. Ammonia induced microglia activation was associated with limited effects on connexin 43 and aquaporin 4 expression in an astrocyte-microglia co-culture model. BMC Neurosci. 2021, 22, 21. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Xu, Y.; Li, H.; Su, J.; Zhong, J.; Kang, J.; Liu, Y.; Sun, L. Lysosome dysfunction enhances oxidative stress-induced apoptosis through ubiquitinated protein accumulation in Hela cells. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2013, 296, 31–39. [Google Scholar] [CrossRef]
- Sala, G.; Arosio, A.; Stefanoni, G.; Melchionda, L.; Riva, C.; Marinig, D.; Brighina, L.; Ferrarese, C. Rotenone upregulates alpha-synuclein and myocyte enhancer factor 2D independently from lysosomal degradation inhibition. BioMed Res. Int. 2013, 2013, 846725. [Google Scholar] [CrossRef]
- Pidoplichko, V.I.; Dani, J.A. Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage. Proc. Natl. Acad. Sci. USA 2006, 103, 11376–11380. [Google Scholar] [CrossRef]
- Yue, T.; Li, B.; Gu, L.; Huang, J.; Verkhratsky, A.; Peng, L. Ammonium induced dysfunction of 5-HT2B receptor in astrocytes. Neurochem. Int. 2019, 129, 104479. [Google Scholar] [CrossRef]
- Kang, M.J.; Gil, S.J.; Koh, H.C. Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice. Toxicol. Lett. 2009, 188, 148–152. [Google Scholar] [CrossRef]
- Ramachandiran, S.; Hansen, J.M.; Jones, D.P.; Richardson, J.R.; Miller, G.W. Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: Oxidation of thioredoxin and caspase-3 activation. Toxicol. Sci. 2007, 95, 163–171. [Google Scholar] [CrossRef]
- Murguiondo-Pérez, R.; Vidal Alcántar-Garibay, Ó.; Weintraub Ben-Zión, E.; Blancarte-Hernández, E.; Tejerina-Marion, E.; Cristina Loza-López, E.; Galindo-Ruiz, M.; Rivera-Monroy, G. The influence of gut brain axis in neurodegenerative diseases: Short review. Rev. Mex. Neurocienc. 2022, 23, 177–182. [Google Scholar] [CrossRef]
- Lehman, P.C.; Cady, N.; Ghimire, S.; Shahi, S.K.; Shrode, R.L.; Lehmler, H.-J.; Mangalam, A.K. Low-dose glyphosate exposure alters gut microbiota composition and modulates gut homeostasis. Environ. Toxicol. Pharmacol. 2023, 100, 104149. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- Shinabarger, D.; Braymer, H. Glyphosate catabolism by Pseudomonas sp. strain PG2982. J. Bacteriol. 1986, 168, 702–707. [Google Scholar] [CrossRef]
- Nie, C.L.; Wang, X.S.; Liu, Y.; Perrett, S.; He, R.Q. Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neurosci. 2007, 8, 9. [Google Scholar] [CrossRef]
- Vitku, J.; Hill, M.; Kolatorova, L.; Kubala Havrdova, E.; Kancheva, R. Steroid Sulfation in Neurodegenerative Diseases. Front. Mol. Biosci. 2022, 9, 839887. [Google Scholar] [CrossRef]
- Heafield, M.T.; Fearn, S.; Steventon, G.B.; Waring, R.H.; Williams, A.C.; Sturman, S.G. Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease. Neurosci. Lett. 1990, 110, 216–220. [Google Scholar] [CrossRef]
- Samsel, A.; Seneff, S. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. Entropy 2013, 15, 1416–1463. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Zhang, B.; Li, G.; Shi, G.; Cai, Q.; Huang, M. Gut dysfunction may be the source of pathological aggregation of alpha-synuclein in the central nervous system through Paraquat exposure in mice. Ecotoxicol. Environ. Saf. 2022, 246, 114152. [Google Scholar] [CrossRef]
- Tu, P.; Gao, B.; Chi, L.; Lai, Y.; Bian, X.; Ru, H.; Lu, K. Subchronic low-dose 2, 4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice. Sci. Rep. 2019, 9, 4363. [Google Scholar] [CrossRef]
- Petriello, M.C.; Hoffman, J.B.; Vsevolozhskaya, O.; Morris, A.J.; Hennig, B. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ. Pollut. 2018, 242, 1022–1032. [Google Scholar] [CrossRef]
- Chen, L. Visual system: An understudied target of aquatic toxicology. Aquat. Toxicol. 2020, 225, 105542. [Google Scholar] [CrossRef]
- Li, Y.; Pan, L.; Zeng, X.; Zhang, R.; Li, X.; Li, J.; Xing, H.; Bao, J. Ammonia exposure causes the imbalance of the gut-brain axis by altering gene networks associated with oxidative metabolism, inflammation and apoptosis. Ecotoxicol. Environ. Saf. 2021, 224, 112668. [Google Scholar] [CrossRef]
- Ajasa, A. 70 countries have banned this pesticide. It’s still for sale in the U.S. The Washington Post, 22 January 2025. [Google Scholar]
- Gewin, V. Is There Enough Evidence of Health Risks for the EPA to Ban Paraquat? Civil Eats: Cotati, CA, USA, 2025; Volume 2025. [Google Scholar]
- Wadman, M. EPA will soon weigh in on weed killer that may cause Parkinson’s disease. Science, 16 January 2025. [Google Scholar]
- Williams, G.M.; Kroes, R.; Munro, I.C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 2000, 31, 117–165. [Google Scholar] [CrossRef]
- IARC. Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2017. [Google Scholar]
- EPA. Withdrawal of the Glyphosate Interim Registration Review Decision; EPA: Washington, DC, USA, 2022.
- Erickson, B.E. Bayer to End Glyphosate Sales to US Consumers; American Chemical Society: Washington, DC, USA, 2021. [Google Scholar]
- Rice, M. Glyphosate Ban. 2025. Available online: https://www.motleyrice.com/news/glysophate-ban (accessed on 12 June 2025).
- EFSA. Glyphosate: No Critical Areas of Concern; Data Gaps Identified. 2023. Available online: https://www.efsa.europa.eu/en/news/glyphosate-no-critical-areas-concern-data-gaps-identified (accessed on 12 June 2025).
- European Commission. Glyphosate: Commission Adopts a Renewal for 10 Years; European Commission: Brussels, Belgium, 2023.
- Hammond, L.E. The Regulatory History of 2,4-D in the United States. 2015 Benefits and Economic Assessment of 2,4-D and The Phenoxy Herbicides in the US. Available online: https://24d.info/wp-content/uploads/2020/08/2_Welfare_Analysis_of_Prohibition_of_24-D_03-10-2018.pdf (accessed on 10 June 2025).
- Environmental Protection Agency. 2,4-D; Pesticide Tolerances; Environmental Protection Agency: Washington, DC, USA, 2017.
- EPA. Ammonium Chloride. 2023. Available online: https://cdxapps.epa.gov/oms-substance-registry-services/substance-details/179416 (accessed on 12 June 2025).
- OSHA. Occupational Safety and Health Administration; OSHA: Washington, DC, USA, 2024.
Chemical | Disease | Study | Dose/Treatment | Effect | Mechanism | Refs. |
---|---|---|---|---|---|---|
Paraquat | AD | APP/PS1 mice | 10 mg/kg; i.p./3 weeks | Cognition impairment, elevated Aβ levels, NLRP3 inflammasome activation | Oxidative stress, Inflammation | [48] |
APP transgenic mice | 10 mg/kg; i.p./4 weeks | Impaired associative learning and memory, and increased Aβ levels | Oxidative stress | [47] | ||
C57BL/6J mice; isolated NPCs | 40 to 120 μM | Wnt/β-catenin signaling pathway inhibition; Reduced cellular β-catenin, p-GSK-3β, and cyclin-D1 and increased Bax/Bcl2 | Oxidative stress | [49] | ||
C57BL/6J Mice | 1.25 mg/kg; i.p./3 weeks | Negatively affected adult hippocampal neurogenesis and cognitive function; Reduced AKT phosphorylation | Oxidative stress, Inflammation | [52] | ||
hNPCs | 100 μM | Downregulated Wnt signaling pathway via miRNA in hNPCs | Oxidative stress, decreased activity of glutamate receptors | [50] | ||
PD | C57BL/6 Mice | 10 mg/mL/oral/4 months | Decreased SOD, GSH-PX; Increased MDA and GSSG; Decreased number of TH positive neurons and expression of DAT | Oxidative stress | [54,169] | |
Human neuroblastoma SK-N-MC cell line | 100–500 μM | Trx1 oxidation; Activation of JNK and caspase 3; Death of the dopaminergic neurons | Oxidative stress, Apoptosis | [170] | ||
C57BL/6 Mice | 10 mg/kg/i.p./once a week/3 consecutive weeks | Increased α-synuclein production and aggregation | Oxidative stress, Inflammation | [58] | ||
C57BL/6 Mice; Rat dopaminergic neural cell line N27 | 10 mg/kg/i.p./once/every 3 days | Increased Nox1 | Oxidative stress | [60] | ||
Wistar rats | 10 mg/kg/2 mL/i.p./once a week/37 weeks | Altered levels of GSK-3β in the midbrain and striatum | Defective signaling pathway | [64] | ||
AD/PD | Sprague Dawley rats; PHBME cells | 30 mg/kg/i.p/twice per 3 weeks; 80 μM | Over-activated PI3K/AKT signaling; Increased IL-6 production; BBB dysfunction | Oxidative stress, Inflammation | [55] | |
C57BL/6J mice; MSC80 cell line | 10–30 mg/kg/i.p./1 week; 100 μM | Demyelination | Oxidative stress, Inflammation | [44,46] | ||
Glyphosate | AD | C57BL/6J mice; APP/PS1 primary cortical neurons | 125–500 mg/kg/oral gavage/14 days | Elevated TNFα and soluble Aβ40–42; Cytotoxicity; Disrupted transcriptome | Inflammation | [77] |
3xTg-AD mice | 50 or 500 mg/kg daily/13 weeks, followed by a 6-month recovery period | Elevated Aβ and tau pathology and worsening spatial cognition after recovery; Increased inflammatory cytokines | Inflammation | [83] | ||
Wistar rats | 0.38% orally during pregnancy and lactation (till 15-day-old); Hippocampal slices | NMDA receptor overstimulation; Mitochondrial dysfunction, Ca2+-mediated neuronal damage; Activation of ERK and CaMKII | Glutamatergic excitotoxicity and oxidative damage | [81] | ||
Wistar rats | 400 mg/kg/oral/single dose | Increased excitatory amino acids | Excitotoxicity | [82] | ||
PD | C57BL/6 mice | 10 mg/kg/14 days | Dopaminergic neurotoxicity in the striatum and SNr | Oxidative damage | [87] | |
Wistar rats | 0.36% at gestational day 5 (GD5) and continually up to postnatal day 15 (PND15) or up to postnatal day 60 (PND60) | NMDA receptor activation, impairment of cholinergic transmission; Astrocyte dysfunction; ERK1/2 overactivation; Decreased NF-κB phosphorylation | Glutamatergic excitotoxicity and oxidative damage | [80] | ||
Neuronal-differentiated PC12 cells | 10–40 mM | Activated autophagy and apoptotic pathways | Apoptotic and autophagic cell death | [90] | ||
AD/PD | Sprague Dawley albino rats; Hippocampal slices | 16.9 mg/kg/i.p.; 1 μM and 100 μM | Inhibited LTP and learning | Inflammation | [96] | |
Agent Orange/Components | AD | Human CNS-derived neuroepithelial cells | 250 μg/mL (2,4-D and 2,4,5-T) | Increased Aβ, tau phosphorylation, and lipid peroxidation; Increased ChAT; Decreased AChE | Oxidative damage, Cytotoxicity | [117] |
Long-Evans rat frontal lobe slice cultures | 250 μg/mL (2,4-D;2,4,5-T, or both) | Cytotoxic injury; Lipid peroxidation, DNA damage; Increased immunoreactivity to activated Caspase 3, GFAP, phosphorylated tau, Aβ, and ChAT | Oxidative damage, Cytotoxicity | [119] | ||
Wistar Rat | 9.28 × 10−3 g per hectare (g.a.i/ha)/oral and nebulize (2,4-D) | Impairment of exploration and recognition memory | Oxidative stress | [134] | ||
Human neuroblastoma SK-N-SH cell line | 0.1–10 nM (Dioxin) | Suppressed neuronal AChE via AhR-mediated transcriptional down-regulation | Cholinergic neurotransmission | [124] | ||
Plasma | Higher plasma Aβ oligomer | Amyloidosis | [120] | |||
PD | Patients with Agent Orange exposure | Clinical profile and FP-CIT PET findings | Lower facial expressions, tremors, and rigidity; Significantly lower caudate/putamen ratios | [111] | ||
C57BL/6 mice | 30 μg TCDD/Kg/i.p. | AhR-mediated induction of CYP1A1; Activation of NF-kB; Selective dopaminergic neuronal damage | Oxidative stress, Inflammation | [121] | ||
Wistar rats | 70 mg/kg/day of 2,4-D from gestation day (GD) 16 to postpartum day 23 | Adverse neuronal changes (in D2 receptors, tyrosine hydroxylase, and dopamine beta-hydroxylase) and behavioral changes | Decreased DA neurotransmission | [129,133] | ||
Wistar rats | 100 and 200 mg/kg/oral of 2,4-D | Behavioral changes and neurochemical parameters | Dopamine dysfunction | [135] | ||
Retrospective cohort study | 1.31 times higher PD risk | [128] | ||||
AHS | 2,4,5-T positively associated with increased PD risk (HR: 1.57, 95%CI: 1.21–2.04) | [138] | ||||
Ammonium Chloride | AD | Cortical astrocytes from a rat | 10 mM | Elevated APP expression; Increased Aβ production | Amyloidogenesis | [162] |
Cultured astrocytes | 5 mM | Mitochondrial permeability transition | Oxidative stress | [161] | ||
Primary rat glial co-cultures of astrocytes | 20 mM | Microglial activation; Cell death | Inflammation | [164] | ||
Rat hippocampal cultures | 5–50 mM | Increased [Ca2+]i | Membrane depolarization | [155] | ||
PD | Human dopaminergic neuroblastoma SH-SY5Y cell line | 10 mM | Increased accumulation of α-synuclein and MEF2D protein | Dysfunctional lysosome-mediated degradation | [166] | |
Mouse midbrain dopamine neurons | 16 mM | ASICs’ gating and desensitization | Neuronal dysfunction | [167] | ||
Male CD-1 mice; Cultured mouse astrocytes | 33 units/kg/i.p./3 days; 3 mM ammonia for 3 days | Increased ADAR2; Loss of 5-HT induced Ca2+ signaling and ERK1/2 phosphorylation | [168] | |||
AD/PD | Entorhino-hippocampal tissue cultures of mice | 5 mM | Decreased spontaneous excitatory synaptic activity | Synaptic transmission dysregulation | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, N.; An, S.S.A. Soil to Synapse: Molecular Insights into the Neurotoxicity of Common Gardening Chemicals in Alzheimer’s and Parkinson’s Disease. Int. J. Mol. Sci. 2025, 26, 6468. https://doi.org/10.3390/ijms26136468
Sharma N, An SSA. Soil to Synapse: Molecular Insights into the Neurotoxicity of Common Gardening Chemicals in Alzheimer’s and Parkinson’s Disease. International Journal of Molecular Sciences. 2025; 26(13):6468. https://doi.org/10.3390/ijms26136468
Chicago/Turabian StyleSharma, Niti, and Seong Soo A. An. 2025. "Soil to Synapse: Molecular Insights into the Neurotoxicity of Common Gardening Chemicals in Alzheimer’s and Parkinson’s Disease" International Journal of Molecular Sciences 26, no. 13: 6468. https://doi.org/10.3390/ijms26136468
APA StyleSharma, N., & An, S. S. A. (2025). Soil to Synapse: Molecular Insights into the Neurotoxicity of Common Gardening Chemicals in Alzheimer’s and Parkinson’s Disease. International Journal of Molecular Sciences, 26(13), 6468. https://doi.org/10.3390/ijms26136468