Tandem Mass Tags Quantitative Proteomics Reveal the Mechanism by Which Paeoniflorin Regulates the PI3K/AKT and BDNF/CREB Signaling Pathways to Inhibit Parkinson’s Disease
Abstract
1. Introduction
2. Results
2.1. Protein Omics Analysis Results
2.1.1. TMT Analysis of the Differentially Expressed Proteins
2.1.2. Gene Ontology Functional Enrichment Analyses of Differentially Significant Expressed Proteins
2.1.3. Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analysis
2.2. In Vitro and In Vivo Experiments Results
2.2.1. PF Inhibited MPP+-Induced PC12 Cell Death
2.2.2. PF Can Activate PI3K/AKT and BDNF/CREB Signaling Pathways
2.2.3. LY294002 Blocks PF’s Neuroprotection via PI3K/AKT and BDNF/CREB Pathway Inhibition
2.2.4. PF Effects upon Behavioral Disadvantages MPTP Induction
2.2.5. Effect of PF on MPTP-Induced Reduction in Tyrosine Hydroxylase Immunoreactivity in the Substantia Nigra
2.2.6. In a Mouse Model of Parkinson’s Disease Paeoniflorin Activates the BDNF/CREB Signaling Pathway
3. Discussion
4. Materials and Methods
4.1. Proteomics Analysis
4.1.1. Total Protein Extraction
4.1.2. Trypsin Digestion
4.1.3. TMT Labeled Quantitative Proteomics
4.1.4. Protein Identification and Quantification
4.1.5. Functional Analysis of Proteins and DEPs
4.2. In Vitro and In Vivo Experiments
4.2.1. Cell Culture and Treatment
4.2.2. Cell Viability
4.2.3. Lactate Dehydrogenase (LDH) Release Rate Assay
4.2.4. Determination of Intracellular Calcium Ion (Ca2+) Concentration
4.2.5. Reactive Oxygen Species (ROS) Level Detection
4.2.6. Apoptosis Rate Detection
4.3. Animals
4.3.1. Statement of Ethics
4.3.2. Animal Behavioral Assessment
4.3.3. Spontaneous Motor Activity Test
4.3.4. Pole Test
4.3.5. Immunohistochemistry
4.4. Western Blot Analysis
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Kulcsarova, K.; Skorvanek, M.; Postuma, R.B.; Berg, D. Defining Parkinson’s Disease: Past and Future. J. Park. Dis. 2024, 14, S257–S271. [Google Scholar] [CrossRef]
- Trevisan, L.; Gaudio, A.; Monfrini, E.; Avanzino, L.; Di Fonzo, A.; Mandich, P. Genetics in Parkinson’s disease, state-of-the-art and future perspectives. Br. Med. Bull. 2024, 149, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Habermann, B. Nursing Research in Parkinson’s Disease From 2006 to 2015: A Systematic Review. Clin. Nurs. Res. 2017, 26, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. BDNF function and intracellular signaling in neurons. Histol. Histopathol. 2010, 25, 237–258. [Google Scholar] [CrossRef]
- Li, R.; Li, J.; Liu, Y.; Li, D.; Chu, L.; Zhang, J.; Luo, X.; Zhang, Y. Serum BDNF levels are involved in the diagnosis and treatment response in patients with PD. J. Affect. Disord. 2023, 327, 31–37. [Google Scholar] [CrossRef]
- Klein, R. Role of neurotrophins in mouse neuronal development. FASEB J. 1994, 8, 738–744. [Google Scholar] [CrossRef]
- Akbari, M.; Gholipour, M.; Hussen, B.M.; Taheri, M.; Eslami, S.; Sayad, A.; Ghafouri-Fard, S. Expression of BDNF-Associated lncRNAs in Parkinson’s disease. Metab. Brain Dis. 2022, 37, 901–909. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, Y.; Botchway, B.O.A.; Zhang, J.; Fan, R.; Zhang, Y.; Liu, X. Curcumin can improve Parkinson’s disease via activating BDNF/PI3k/Akt signaling pathways. Food Chem. Toxicol. 2022, 164, 113091. [Google Scholar] [CrossRef]
- Khidr, H.Y.; Hassan, N.F.; Abdelrahman, S.S.; El-Ansary, M.R.; El-Yamany, M.F.; Rabie, M.A. Formoterol attenuated mitochondrial dysfunction in rotenone-induced Parkinson’s disease in a rat model: Role of PINK-1/PARKIN and PI3K/Akt/CREB/BDNF/TrKB axis. Int. Immunopharmacol. 2023, 125, 111207. [Google Scholar] [CrossRef]
- Kang, S.S.; Wu, Z.; Liu, X.; Edgington-Mitchell, L.; Ye, K. Treating Parkinson’s Disease via Activation of BDNF/TrkB Signaling Pathways and Inhibition of Delta-Secretase. Neurotherapeutics 2022, 19, 1283–1297. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.Q.; Zou, Q.M.; Zhao, X.; Zhang, Y.M.; Qu, Y.G.; Wang, N.B.; Murayama, S.; Qi, Q.; Hashimoto, K.; Lin, S.; et al. Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Discov. 2022, 8, 267. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Chen, H.W.; Li, J.; Wu, Q.J. Efficacy, Chemical Constituents, and Pharmacological Actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Front. Pharmacol. 2020, 11, 1054. [Google Scholar] [CrossRef]
- Liu, X.; Chen, K.; Zhuang, Y.; Huang, Y.; Sui, Y.; Zhang, Y.; Lv, L.; Zhang, G. Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats. Biomed. Pharmacother. 2019, 111, 695–704. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wei, W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol. Ther. 2020, 207, 107452. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, C.; Zhang, J.; Hu, L.; Yu, Z.; Zhang, X.; Wang, Z.; Chen, J.; Wu, M.; Liu, L. Protective effects of paeoniflorin on cardiovascular diseases: A pharmacological and mechanistic overview. Front. Pharmacol. 2023, 14, 1122969. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Zhang, M.; Yu, J.; Jin, S.; Hu, X.; Piao, H. The analgesic effect of paeoniflorin: A focused review. Open Life Sci. 2024, 19, 20220905. [Google Scholar] [CrossRef]
- Jiao, F.; Varghese, K.; Wang, S.; Liu, Y.; Yu, H.; Booz, G.W.; Roman, R.J.; Liu, R.; Fan, F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J. Cardiovasc. Pharmacol. 2021, 77, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Doggrell, S.A. Continuous subcutaneous levodopa-carbidopa for the treatment of advanced Parkinson’s disease: Is it an improvement on other delivery? Expert Opin Drug Deliv. 2023, 20, 1189–1199. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, M.; Chen, S.; Liu, C.; Peng, R.; Li, Y.; Wang, J.; Zhu, S.; Qu, Q.; Zhang, X.; et al. Adjunct rasagiline to treat Parkinson’s disease with motor fluctuations: A randomized, double-blind study in China. Transl. Neurodegener. 2018, 7, 14. [Google Scholar] [CrossRef]
- Wu, S.S.; Frucht, S.J. Treatment of Parkinson’s disease: What’s on the horizon? CNS Drugs 2005, 19, 723–743. [Google Scholar] [CrossRef] [PubMed]
- Roheger, M.; Kalbe, E.; Liepelt-Scarfone, I. Progression of Cognitive Decline in Parkinson’s Disease. J. Park. Dis. 2018, 8, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Opara, J.A.; Malecki, A.; Malecka, E.; Socha, T. Motor assessment in Parkinson’s disease. Ann. Agric. Environ. Med. 2017, 24, 411–415. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Yu, L.; Zhu, J.; Cao, Y.; Gao, X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J. Ethnopharmacol. 2021, 264, 113249. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Chen, H.; Meng, Z.; Meng, S. Roles of traditional Chinese medicine regulating neuroendocrinology on AD treatment. Front. Endocrinol. 2022, 13, 955618. [Google Scholar] [CrossRef]
- Ho, J.Y.; Chang, H.W.; Lin, C.F.; Liu, C.J.; Hsieh, C.F.; Horng, J.T. Characterization of the Anti-Influenza Activity of the Chinese Herbal Plant Paeonia Lactiflora. Viruses 2014, 6, 1861–1875. [Google Scholar] [CrossRef]
- Bi, S.J.; Liu, Y.A.; Lv, T.Y.; Ren, Y.; Liu, K.Y.; Liu, C.Q.; Zhang, Y.L. Preliminary exploration of method for screening efficacy markers compatibility in TCM prescriptions based on Q-markers: Anti-inflammatory activity of Dachaihu decoction as an example. J. Ethnopharmacol. 2023, 312, 116539. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, C.; Fan, Y.; Shi, D.; Jian, W. Total glucosides of paeony (TGP) extracted from Radix Paeoniae Alba exerts neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the cAMP/PKA/CREB signaling pathway. J. Ethnopharmacol. 2019, 245, 112182. [Google Scholar] [CrossRef]
- Li, H.Y.; Liu, D.S.; Li, L.B.; Zhang, Y.B.; Dong, H.Y.; Rong, H.; Zhang, J.Y.; Wang, J.P.; Jin, M.; Luo, N.; et al. Total Glucosides of White Paeony Capsule ameliorates Parkinson’s disease-like behavior in MPTP-induced mice model by regulating LRRK2/alpha-synuclein signaling. J. Ethnopharmacol. 2024, 319 Pt 2, 117319. [Google Scholar] [CrossRef]
- Wu, F.; Li, H.; Zhao, L.; Li, X.; You, J.; Jiang, Q.; Li, S.; Jin, L.; Xu, Y. Protective effects of aqueous extract from Acanthopanax senticosus against corticosterone-induced neurotoxicity in PC12 cells. J. Ethnopharmacol. 2013, 148, 861–868. [Google Scholar] [CrossRef]
- An, H.X.; Jin, Z.F.; Ge, X.F.; Wu, J.; Chen, C.; Zhang, F.M.; Qu, W.; Liu, X.G.; Liu, S.Y. Parathyroid hormone(1-34)-induced apoptosis in neuronal rat PC12 cells: Implications for neurotoxicity. Pathol. Res. Pract. 2010, 206, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Li, D.W.; Sun, J.Y.; Wang, K.; Zhang, S.; Hou, Y.J.; Yang, M.F.; Fu, X.Y.; Zhang, Z.Y.; Mao, L.L.; Yuan, H.; et al. Attenuation of Cisplatin-Induced Neurotoxicity by Cyanidin, a Natural Inhibitor of ROS-Mediated Apoptosis in PC12 Cells. Cell. Mol. Neurobiol. 2015, 35, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Msibi, Z.N.P.; Mabandla, M.V. Oleanolic Acid Mitigates 6-Hydroxydopamine Neurotoxicity by Attenuating Intracellular ROS in PC12 Cells and Striatal Microglial Activation in Rat Brains. Front. Physiol. 2019, 10, 1059. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.; Dargahi, L.; Parsafar, S.; Marvian, A.T.; Aliakbari, F.; Morshedi, D. The primary neuronal cells are more resistant than PC12 cells to α-synuclein toxic aggregates. Neurosci. Lett. 2019, 701, 38–47. [Google Scholar] [CrossRef]
- Strauss, M.T.; Bludau, I.; Zeng, W.F.; Voytik, E.; Ammar, C.; Schessner, J.P.; Ilango, R.; Gill, M.; Meier, F.; Willems, S.; et al. AlphaPept: A modern and open framework for MS-based proteomics. Nat. Commun. 2024, 15, 2168. [Google Scholar] [CrossRef]
- Hong, H.; Chen, X.; Wang, H.; Gu, X.; Yuan, Y.; Zhang, Z. Global profiling of protein lysine lactylation and potential target modified protein analysis in hepatocellular carcinoma. Proteomics 2023, 23, e2200432. [Google Scholar] [CrossRef]
- Bastioli, G.; Arnold, J.C.; Mancini, M.; Mar, A.C.; Gamallo-Lana, B.; Saadipour, K.; Chao, M.V.; Rice, M.E. Voluntary Exercise Boosts Striatal Dopamine Release: Evidence for the Necessary and Sufficient Role of BDNF. J. Neurosci. 2022, 42, 4725–4736. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, L.P.; Liu, W.; Zhu, X.D.; Zhang, X.Y. Altered BDNF levels are associated with cognitive impairment in Parkinson?s disease patients with depression. Park. Relat. Disord. 2022, 103, 122–128. [Google Scholar] [CrossRef]
- Long, H.Z.; Cheng, Y.; Zhou, Z.W.; Luo, H.Y.; Wen, D.D.; Gao, L.C. PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer’s Disease and Parkinson’s Disease. Front. Pharmacol. 2021, 12, 648636. [Google Scholar] [CrossRef]
- Singh, R.; Zahra, W.; Singh, S.S.; Birla, H.; Rathore, A.S.; Keshri, P.K.; Dilnashin, H.; Singh, S.; Singh, S.P. Oleuropein confers neuroprotection against rotenone-induced model of Parkinson’s disease via BDNF/CREB/Akt pathway. Sci. Rep. 2023, 13, 2452. [Google Scholar] [CrossRef]
- Bilge, S.S.; Günaydin, C.; Önger, M.E.; Bozkurt, A.; Avci, B. Neuroprotective action of agmatine in rotenone-induced model of Parkinson’s disease: Role of BDNF/cREB and ERK pathway. Behav. Brain Res. 2020, 392, 112692. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H.; Liu, L.; Xie, A. The Role of Insulin/IGF-1/PI3K/Akt/GSK3β Signaling in Parkinson’s Disease Dementia. Front. Neurosci. 2018, 12, 73. [Google Scholar] [CrossRef]
- Rahmani, M.; Nkwocha, J.; Hawkins, E.; Pei, X.Y.; Parker, R.E.; Kmieciak, M.; Leverson, J.D.; Sampath, D.; Ferreira-Gonzalez, A.; Grant, S. Cotargeting BCL-2 and PI3K Induces BAX-Dependent Mitochondrial Apoptosis in AML Cells. Cancer Res. 2018, 78, 3075–3086. [Google Scholar] [CrossRef] [PubMed]
- Nakano, N.; Matsuda, S.; Ichimura, M.; Minami, A.; Ogino, M.; Murai, T.; Kitagishi, Y. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson’s disease (Review). Int. J. Mol. Med. 2017, 39, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Rane, M.J.; Klein, J.B. Regulation of neutrophil apoptosis by modulation of PKB/Akt activation. Front. Biosci. (Landmark Ed.) 2009, 14, 2400–2412. [Google Scholar] [CrossRef]
- Farid, H.A.; Sayed, R.H.; El-Shamarka, M.E.; Abdel-Salam, O.M.E.; El Sayed, N.S. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson’s disease in rats. Inflammopharmacology 2024, 32, 1421–1437. [Google Scholar] [CrossRef]
- Song, Q.; Peng, S.; Zhu, X. Baicalein Protects against Mpp+/Mptp-Induced Neurotoxicity by Ameliorating Oxidative Stress in SH-SY5Y Cells and Mouse Model of Parkinson’s Disease. Neurotoxicology 2021, 87, 188–194. [Google Scholar] [CrossRef]
- Lin, Z.H.; Liu, Y.; Xue, N.J.; Zheng, R.; Yan, Y.Q.; Wang, Z.X.; Li, Y.L.; Ying, C.Z.; Song, Z.; Tian, J.; et al. Quercetin Protects against MPP+/MPTP-Induced Dopaminergic Neuron Death in Parkinson’s Disease by Inhibiting Ferroptosis. Oxidative Med. Cell. Longev. 2022, 2022, 7769355. [Google Scholar] [CrossRef]
- Wada, M.; Ang, M.J.; Weerasinghe-Mudiyanselage, P.D.E.; Kim, S.H.; Kim, J.C.; Shin, T.; Moon, C. Behavioral characterization in MPTP/p mouse model of Parkinson’s disease. J. Integr. Neurosci. 2021, 20, 307–320. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Hao, L.; Shi, M.; Yu, Z.Y.; Shao, S.M.; Yuan, Y.; Zhang, Z.Q.; Hölscher, C. Neuroprotective Effects of a GLP-2 Analogue in the MPTP Parkinson’s Disease Mouse Model. J. Park. Dis. 2021, 11, 529–543. [Google Scholar] [CrossRef]
- Vora, U.; Vyas, V.K.; Wal, P.; Saxena, B. Effects of eugenol on the behavioral and pathological progression in the MPTP-induced Parkinson’s disease mouse model. Drug Discov. Ther. 2022, 16, 154–163. [Google Scholar] [CrossRef] [PubMed]
Protein Accession | Protein Name | Fold Change |
---|---|---|
P23928 | Alpha-crystallin B chain | 6.655 |
A0A0G2JW88 | Microtubule-associated protein (MAP4) | 6.131 |
O35147 | Bcl2-associated agonist of cell death (BAD) | 4.941 |
D3ZTF6 | Phosphatidylinositol 3-kinase (PI3K) | 3.932 |
Q3HSE5 | RAC-alpha serine/threonine-protein kinase (AKT) | 3.557 |
D3ZQX3 | Mitochondrial ribosomal protein S12 | 3.111 |
Q56A19 | Brain-derived neurotrophic factor (BDNF) | 2.498 |
O35532 | Methylsterol monooxygenase 1 | 2.295 |
G3V9C8 | ATP-binding cassette subfamily B member 1A | 2.289 |
A0A0G2JXS3 | Nucleolar and spindle-associated protein 1 | 2.252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Jin, C.; Zhang, Y.; Xue, H.; Ai, Y.; Wang, J.; Zheng, M.; Shi, D. Tandem Mass Tags Quantitative Proteomics Reveal the Mechanism by Which Paeoniflorin Regulates the PI3K/AKT and BDNF/CREB Signaling Pathways to Inhibit Parkinson’s Disease. Int. J. Mol. Sci. 2025, 26, 6498. https://doi.org/10.3390/ijms26136498
Feng Z, Jin C, Zhang Y, Xue H, Ai Y, Wang J, Zheng M, Shi D. Tandem Mass Tags Quantitative Proteomics Reveal the Mechanism by Which Paeoniflorin Regulates the PI3K/AKT and BDNF/CREB Signaling Pathways to Inhibit Parkinson’s Disease. International Journal of Molecular Sciences. 2025; 26(13):6498. https://doi.org/10.3390/ijms26136498
Chicago/Turabian StyleFeng, Zhen, Chang Jin, Yue Zhang, Huiming Xue, Yongxing Ai, Jing Wang, Meizhu Zheng, and Dongfang Shi. 2025. "Tandem Mass Tags Quantitative Proteomics Reveal the Mechanism by Which Paeoniflorin Regulates the PI3K/AKT and BDNF/CREB Signaling Pathways to Inhibit Parkinson’s Disease" International Journal of Molecular Sciences 26, no. 13: 6498. https://doi.org/10.3390/ijms26136498
APA StyleFeng, Z., Jin, C., Zhang, Y., Xue, H., Ai, Y., Wang, J., Zheng, M., & Shi, D. (2025). Tandem Mass Tags Quantitative Proteomics Reveal the Mechanism by Which Paeoniflorin Regulates the PI3K/AKT and BDNF/CREB Signaling Pathways to Inhibit Parkinson’s Disease. International Journal of Molecular Sciences, 26(13), 6498. https://doi.org/10.3390/ijms26136498