Anti-Inflammatory Effects of Cannabinoids in Therapy of Neurodegenerative Disorders and Inflammatory Diseases of the CNS
Abstract
1. Background
2. Neurodegenerative Disorders and Inflammation
2.1. Alzheimer’s Disease
2.2. Parkinson’s Disease
2.3. Amyotrophic Lateral Sclerosis
2.4. Huntington’s Disease
3. Inflammatory Diseases of the CNS and Neurodegeneration
3.1. Multiple Sclerosis
3.2. HIV-Associated Disease
4. Cannabinoids and the Immune System
5. The Anti-Inflammatory Potential of Cannabinoids in Neurodegenerative Disease Therapy
5.1. Alzheimer’s Disease
5.2. Parkinson’s Disease
5.3. Amyotrophic Lateral Sclerosis
5.4. Huntington’s Disease
5.5. Multiple Sclerosis
5.6. HIV-Associated Disease
6. The Therapeutic Potential of FAAH Inhibitors in CNS Disorders
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2-AG | 2-arachidonylglycerol |
Aβ | amyloid plaques |
AD | Alzheimer’s disease |
AEA | anandamide |
ALS | amyotrphic lateral sclerosis |
AJs | adherens junctions |
BBB | blood–brain barrier |
BDNF | brain-derived neurotrophic factor |
CB | cannabinoid |
CB1 | cannabinoid receptor 1 |
CB2 | cannabinoid receptor 2 |
CBD | cannabidiol |
CBRs | cannabinoid receptors |
CNS | Central Nervous System |
COX | cyclooxygenase |
CSF | cerebrospinal fluid |
CX3-CX3R1 | CX3 motif receptor 1 |
ECB | endocannabinoids |
FAAH | fatty acid amide hydrolase |
FasL | fas lipase |
gp130 | glycoprotein 130 |
GPR55 | G protein-coupled receptor 55 |
HD | Huntington’s disease |
IFNγ | interferon gamma |
IL | interleukin |
IL-1Ra | interleukin—1 receptor antagonist |
JAK/STAT | Janus kinases/signal transducer and activator of transcription |
LPS | lipopolysaccharide |
MAPK | mitogen activated protein kinase |
MHC | major histocompatibility complex |
NFkΒ | nuclear factor kappa Β |
NFTs | neurofibrillary tangles |
NO | nitric oxide |
NSAID | non-steroidal anti-inflammatory drugs |
OPCs | oligodendrocyte progenitor cells |
PD | Parkinson’s disease |
PPARγ | peroxisome proliferator-activated receptor γ |
ROS | reactive oxygen species |
SN | substantia nigra |
SOCS3 | suppressor of cytokine signaling 3 |
SOD | superoxide dismutase |
STAT3 | signal transductor and activator of transcription 3 |
TJs | tight junctions |
TGFβ | transforming growth factor beta |
TNF-α | tumor necrosis factor α |
TRKβ | tyrosine receptor kinase β |
TRPV1 | transient receptor potential cation channel subfamily V member 1 |
VEGF | vascular endothelial growth factor |
References
- Finazzi-Agrò, A.; Maccarrone, M.; Bernardi, G.; Centonze, D. The endocannabinoid system in targeting inflammatory neurodegenerative diseases. Trends Pharmacol. Sci. 2007, 28, 180–187. [Google Scholar] [CrossRef]
- Fowler, C.J. Pharmacological Properties and Therapeutic Possibilities for Drugs Acting Upon Endocannabinoid Receptors. CNS Neurol. Disord. Drug Targets 2005, 4, 685–696. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.; Uivarosan, D.; Makkar, R.; Zengin, G.; Brisc, M.C.; Sehgal, A.; Andronie-Cioara, F.L.; Bungau, S.; Munteanu, M.A.; et al. Current Trends in Neurodegeneration: Cross Talks between Oxidative Stress, Cell Death, and Inflammation. Int. J. Mol. Sci. 2021, 22, 7432. [Google Scholar] [CrossRef]
- Knight, J.; Caseldine, C.; Boykoff, M.T. Forum review. Geogr. J. 2010, 176, 267–269. [Google Scholar] [CrossRef]
- Colombo, E.; Farina, C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016, 37, 608–620. [Google Scholar] [CrossRef]
- Porazzi, P.; Boehm, A.; Xiao, D.; Ciric, B.; Li, X.; Tang, H.-Y.; Ishikawa, L.L.W.; Rasouli, J.; Hwang, D.; Thome, R.; et al. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci. Transl. Med. 2020, 12, aba0599. [Google Scholar] [CrossRef]
- Ludwin, S.; Yaqubi, M.; Antel, J.P.; Healy, L.M. Species differences in immune-mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia 2019, 68, 811–829. [Google Scholar] [CrossRef]
- Pasolli, H.A.; Hess, H.F.; Matthies, D.; Pang, S.; Jackson, J.; Sheu, S.-H.; Liu, Z.; Ioannou, M.S.; Liu, H.; Chang, C.-L.; et al. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell 2019, 177, 1522–1535.e14. [Google Scholar] [CrossRef]
- Latz, E.; McManus, R.M.; Heneka, M.T. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 2018, 19, 610–621. [Google Scholar] [CrossRef]
- Ffrench-Constant, C.; Samudyata; Williams, A.; Guerreiro-Cacais, A.O.; Floriddia, E.M.; Agirre, E.; van Bruggen, D.; Marques, S.; Castelo-Branco, G.; Meijer, M.; et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 2018, 24, 1837–1844. [Google Scholar] [CrossRef]
- Lelios, I.; Croxford, A.L.; Greter, M. Microglia Versus Myeloid Cell Nomenclature during Brain Inflammation. Front. Immunol. 2015, 6, 249. [Google Scholar] [CrossRef]
- Nimmerjahn, A.; Kirchhoff, F.; Helmchen, F. Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science 2005, 308, 1314–1318. [Google Scholar] [CrossRef] [PubMed]
- Hanamsagar, R.; Hanke, M.L.; Kielian, T. Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends Immunol. 2012, 33, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Schmelzer, L.; Guttridge, D.C.; Ladner, K.J.; Godbout, J.P.; Popovich, P.G.; Foust, K.D.; Miranda, C.J.; Kaspar, B.K.; Bevan, A.K.; Haidet-Phillips, A.M.; et al. Microglia Induce Motor Neuron Death via the Classical NF-κB Pathway in Amyotrophic Lateral Sclerosis. Neuron 2014, 81, 1009–1023. [Google Scholar] [CrossRef]
- Van Eldik, L.J.; Smith, C.J.; Kim, S.H. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1β production. Neurobiol. Aging 2004, 25, 431–439. [Google Scholar] [CrossRef]
- Verma, K.; Paliwal, S.; Bisht, A.; Negi, S.; Jain, S.; Sharma, S. The role of fatty acid amide hydrolase enzyme inhibitors in Alzheimer’s disease. Cell Biochem. Funct. 2021, 40, 106–117. [Google Scholar] [CrossRef]
- Cardona, A.E.; Pioro, E.P.; Sasse, M.E.; Kostenko, V.; Cardona, S.M.; Dijkstra, I.M.; Huang, D.; Kidd, G.; Dombrowski, S.; Dutta, R.; et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 2006, 9, 917–924. [Google Scholar] [CrossRef]
- Wu, G.; Ren, S.; Hang, H.; Wang, L. Up-regulation of PPARγ, Nrf2 and HO-1 in microglia activated by thrombin. Brain Hemorrhages 2020, 1, 112–117. [Google Scholar] [CrossRef]
- Sarkar, S. Microglial ion channels: Key players in non-cell autonomous neurodegeneration. Neurobiol. Dis. 2022, 174, 105861. [Google Scholar] [CrossRef]
- Hanisch, U.K.; Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007, 10, 1387–1394. [Google Scholar] [CrossRef]
- Weiner, H.L.; Butovsky, O. Microglial signatures and their role in health and disease. Nat. Rev. Neurosci. 2018, 19, 622–635. [Google Scholar] [CrossRef]
- Gabellini, C.; Piano, I.; Cerri, C.; Puppi, D.; Leigheb, M.; Votta, A.; Colucci, P.; Maya-Vetencourt, J.F.; Lai, M.; Corsi, F.; et al. Anti-inflammatory reprogramming of microglia cells by metabolic modulators to counteract neurodegeneration; a new role for Ranolazine. Sci. Rep. 2023, 13, 20138. [Google Scholar] [CrossRef]
- Olschowka, J.A.; Cherry, J.D.; O’Banion, M.K. Are “Resting” Microglia More “M2”? Front. Immunol. 2014, 5, 594. [Google Scholar] [CrossRef]
- Degos, V.; Chhor, V.; Le Charpentier, T.; Lebon, S.; Oré, M.-V.; Celador, I.L.; Josserand, J.; Sävman, K.; Hagberg, H.; Mallard, C.; et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav. Immun. 2013, 32, 70–85. [Google Scholar] [CrossRef]
- Deierborg, T.; Yang, Y.; Paulus, A.; Jiménez-Ferrer, I.; Swanberg, M.; Bachiller, S.; Boza-Serrano, A. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front. Cell. Neurosci. 2018, 12, 488. [Google Scholar] [CrossRef]
- Gordon, S.; Varin, A. Alternative activation of macrophages: Immune function and cellular biology. Immunobiology 2009, 214, 630–641. [Google Scholar] [CrossRef]
- Cherry, J.D.; Olschowka, J.A.; O’Banion, M.K. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuroinflamm. 2014, 11, 98. [Google Scholar] [CrossRef]
- Gabriely, G.; Gygi, S.P.; Jedrychowski, M.P.; Dake, B.; Chen, Z.; Rothstein, J.D.; Moore, C.S.; Koeglsperger, T.; Weiner, H.L.; Butovsky, O.; et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat. Neurosci. 2013, 17, 131–143. [Google Scholar] [CrossRef]
- Prinz, M.; Staszewski, O.; Sankowski, R.; Masuda, T. Microglia Heterogeneity in the Single-Cell Era. Cell Rep. 2020, 30, 1271–1281. [Google Scholar] [CrossRef]
- Gosselin, D.; Skola, D.; Coufal, N.G.; Holtman, I.R.; Schlachetzki, J.C.M.; Sajti, E.; Jaeger, B.N.; O’Connor, C.; Fitzpatrick, C.; Pasillas, M.P.; et al. An environment-dependent transcriptional network specifies human microglia identity. Science 2017, 356, eaal3222. [Google Scholar] [CrossRef]
- Sortino, M.A.; Gullotta, G.S.; Costantino, G.; Spampinato, S.F. Microglia and the Blood–Brain Barrier: An External Player in Acute and Chronic Neuroinflammatory Conditions. Int. J. Mol. Sci. 2023, 24, 9144. [Google Scholar] [CrossRef]
- Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017, 96, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef]
- Tietz, S.; Engelhardt, B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J. Cell Biol. 2015, 209, 493–506. [Google Scholar] [CrossRef]
- Hagan, K.; Varelas, P.; Zheng, H.A. Endocannabinoid system of the blood-brain B\barrier: Current understandings and therapeutic potentials. Cannabis. Cannabinoid. Res. 2022, 7, 561–568. [Google Scholar] [CrossRef]
- Lu, T.-S.; Avraham, H.K.; Seng, S.; Tachado, S.D.; Koziel, K.; Makriyannis, A.; Avraham, S. Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. J. Immunol. 2008, 181, 6406–6416. [Google Scholar] [CrossRef]
- Amenta, P.S.; Jallo, J.I.; Tuma, R.F.; Hooper, D.C.; Elliott, M.B. Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J. Neuroinflammation 2014, 11, 191. [Google Scholar] [CrossRef]
- Dudek, K.A.; Paton, S.E.J.; Binde, L.B.; Collignon, A.; Dion-Albert, L.; Cadoret, A.; Lebel, M.; Lavoie, O.; Bouchard, J.; Kaufmann, F.N.; et al. Astrocytic cannabinoid receptor 1 promotes resilience by dampening stress-induced blood-brain barrier alterations. Nat. Neurosci. 2025, 28, 766–782. [Google Scholar] [CrossRef]
- Penna, E.; Tarantal, A.F.; Cunningham, C.L.; Saylor, S.; Martínez-Cerdeño, V.; Kreutz, A.; Noctor, S.C. Greater Number of Microglia in Telencephalic Proliferative Zones of Human and Nonhuman Primate Compared with Other Vertebrate Species. Cereb. Cortex Commun. 2021, 2, tgab053. [Google Scholar] [CrossRef]
- Greferath, U.; Jobling, A.I.; Dixon, M.A.; Fletcher, E.L. The Contribution of Microglia to the Development and Maturation of the Visual System. Front. Cell. Neurosci. 2021, 15, 659843. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Kuan, C.-Y.; Mills, W.A.; Jabbour, L.; Bisht, K.; Campos-Salazar, A.B.; Amancherla, S.; Calcuttawala, Z.; Benderoth, J.; Friestad, B.; et al. Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nat. Commun. 2021, 12, 5289. [Google Scholar] [CrossRef]
- Morales, I.; Farías, G.; Navarrete, L.; Maccioni, R.B. The Revitalized Tau Hypothesis on Alzheimer’s Disease. Arch. Med. Res. 2010, 41, 226–231. [Google Scholar] [CrossRef]
- Heneka, M.T.; Klockgether, T.; Sastre, M. Contribution of inflammatory processes to Alzheimer’s disease: Molecular mechanisms. Int. J. Dev. Neurosci. 2006, 24, 167–176. [Google Scholar] [CrossRef]
- Lebeurrier, N.; Cacquevel, M.; Vivien, D.; Cheenne, S. Cytokines in Neuroinflammation and Alzheimers Disease. Curr. Drug Targets 2004, 5, 529–534. [Google Scholar] [CrossRef]
- Akiyama, H. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000, 21, 383–421. [Google Scholar] [CrossRef]
- Marchetti, B.; Abbracchio, M.P. To be or not to be (inflamed)—Is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol. Sci. 2005, 26, 517–525. [Google Scholar] [CrossRef]
- Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; et al. A Unique Microglia Type Associated with Restrict-ing Development of Alzheimer’s Disease. Cell 2017, 169, 1276–1290. [Google Scholar] [CrossRef]
- Zandi, P.P.; Breitner, J.C.; Mayer, L.; Mehta, K.; Anthony, J.C.; Hayden, K.M. Reduced incidence of AD with NSAID but not H2 receptor antagonists. Neurology 2002, 59, 880–886. [Google Scholar] [CrossRef]
- McGeer, P.L.; McGeer, E.G. Inflammation and neurodegeneration in Parkinson’s disease. Park. Relat. Disord. 2004, 10, S3–S7. [Google Scholar] [CrossRef]
- Gao, H.-M.; Zhang, W.; Liu, B.; Hong, J.-S. Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol. Sci. 2003, 24, 395–401. [Google Scholar] [CrossRef]
- Del Dotto, P.; Bonuccelli, U. New pharmacologic horizons in the treatment of Parkinson disease. Neurology 2006, 67, S30–S38. [Google Scholar] [CrossRef]
- Block, M.L.; Hong, J.-S. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog. Neurobiol. 2005, 76, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Nappi, G.; Bazzini, E.; Levandis, G.; Armentero, M.-T.; Blandini, F. Peripheral inflammation and neuroprotection: Systemic pretreatment with complete Freund’s adjuvant reduces 6-hydroxydopamine toxicity in a rodent model of Parkinson’s disease. Neurobiol. Dis. 2006, 24, 492–505. [Google Scholar] [CrossRef]
- Rahim, F.; Rabbani, Z.; Aghayan, H.R.; Tayanloo-Beik, A.; Hamidpour, S.K.; Arjmand, B.; Larijani, B. Organ on a Chip: A Novel in vitro Biomimetic Strategy in Amyotrophic Lateral Sclerosis (ALS) Modeling. Front. Neurol. 2022, 12, 788462. [Google Scholar] [CrossRef]
- Appel, S.H.; Alexianu, M.E.; Kozovska, M. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 2001, 57, 1282–1289. [Google Scholar] [CrossRef]
- Andersen, P.M.; Marklund, S.L.; Oja, S.S.; Koistinaho, J.; Vartiainen, N.E.; Tikka, T.M.; Goldsteins, G. Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 2002, 125, 722–731. [Google Scholar] [CrossRef]
- Qin, W.; Ho, L.; Pasinetti, G.M.; Bianchi, M.; McManus, T.; Pompl, P.N. A therapeutic role for cyclooxygenase-2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. FASEB J. 2003, 17, 725–727. [Google Scholar] [CrossRef]
- Gordon, P.H.; Doorish, C.; Montes, J.; Mosley, R.L.; Diamond, B.; Macarthur, R.B.; Weimer, L.H.; Kauf-mann, P.; Hays, A.P.; Rowland, L.P.; et al. Randomized con-trolled phase II trial of glatiramer acetate in ALS. Neurology 2006, 66, 1117–1119. [Google Scholar] [CrossRef]
- Linker, R.A.; Reick, C.; Saft, C.; Ellrichmann, G. The Role of the Immune System in Huntington’s Disease. J. Immunol. Res. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Di Marzo, V.; Cristino, L.; Bisogno, T. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 2019, 16, 9–29. [Google Scholar] [CrossRef]
- Hashikawa, T.; Aronin, N.; Sapp, E.; Vonsattel, J.P.; Uchiyama, Y.; Tohyama, K.; Kegel, K.B.; Difiglia, M.; Bhide, P.G. Early and Progressive Accumulation of Reactive Microglia in the Huntington Disease Brain. J. Neuropathol. Exp. Neurol. 2001, 60, 161–172. [Google Scholar] [CrossRef]
- Pavese, N.; Gerhard, A.; Tai, Y.F.; Ho, A.K.; Turkheimer, F.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation correlates with severity in Huntington disease: A clinical and PET study. Neurology 2006, 66, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.F.; Pavese, N.; Gerhard, A.; Tabrizi, S.J.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 2007, 130, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Brundin, P.; Magnusson, A.; Lowdell, M.W.; Silvestroni, A.; Woodman, B.; Benn, C.L.; Andre, R.; Lee, R.V.; Khalili-Shirazi, A.; Raibon, E.; et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med. 2008, 205, 1869–1877. [Google Scholar] [CrossRef]
- Andrich, J.; Przuntek, H.; Zange, J.; Lindenberg, K.; Kraus, P.H.; Vorgerd, M.; Schöls, L.; Müller, K.; Landwehrmeyer, B.; Saft, C. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington’s disease. Mov. Disord. 2005, 20, 674–679. [Google Scholar] [CrossRef]
- Kipnis, J.; Schwartz, M. Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. J. Neurol. Sci. 2005, 233, 163–166. [Google Scholar] [CrossRef]
- Selter, R.C.; Hemmer, B. Update on immunopathogenesis and immunotherapy in multiple sclerosis. ImmunoTargets Ther. 2013, 2, 21–30. [Google Scholar] [CrossRef]
- Trapp, B.D.; Rudick, R.; Bö, L.; Mörk, S.; Ransohoff, R.M.; Peterson, J. Axonal Transection in the Lesions of Multiple Sclerosis. N. Engl. J. Med. 1998, 338, 278–285. [Google Scholar] [CrossRef]
- Oksenberg, J.R.; Hauser, S.L. The Neurobiology of Multiple Sclerosis: Genes, Inflammation, and Neurodegeneration. Neuron 2006, 52, 61–76. [Google Scholar] [CrossRef]
- Masuda, T.; Sankowski, R.; Staszewski, O.; Bottcher, C.; Amann, L.; Sagar; Scheiwe, C.; Nessler, S.; Kunz, P.; van Loo, G.; et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell reso-lution. Nature 2019, 566, 388–392. [Google Scholar] [CrossRef]
- Di Tommaso, M.; Konje, J.C.; Pirazzi, V.; Maccarrone, M.; Battista, N.; Fasano, S.; Pierantoni, R.; Cobellis, G.; Meccariello, R. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol. Cell. Endocrinol. 2012, 355, 1–14. [Google Scholar] [CrossRef]
- Di Marzo, V.; Schinelli, S.; Piomelli, D.; Cadas, H.; Cimino, G.; Schwartz, J.-C.; Fontana, A. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994, 372, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Hunyady, L.; Turu, G. Signal transduction of the CB1 cannabinoid receptor. J. Mol. Endocrinol. 2009, 44, 75–85. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef]
- Tanasescu, R.; Constantinescu, C.S. Cannabinoids and the immune system: An overview. Immunobiology 2010, 215, 588–597. [Google Scholar] [CrossRef]
- Parolaro, D.; Massi, P.; Vaccani, A. Cannabinoids, Immune System and Cytokine Network. Curr. Pharm. Des. 2006, 12, 3135–3146. [Google Scholar] [CrossRef]
- Orlando, P.; Pochard, P.; Matias, I.; Pestel, J.; Salzet, M.; Di Marzo, V. Presence and regulation of the endocannabinoid system in human dendritic cells. Eur. J. Biochem. 2002, 269, 3771–3778. [Google Scholar] [CrossRef]
- Carrier, E.J.; Hillard, C.J.; Nithipatikom, K.; Yang, W.; Pfister, S.L.; Kearn, C.S.; Barkmeier, A.J.; Breese, N.M.; Campbell, W.B. Cultured Rat Microglial Cells Synthesize the Endocannabinoid 2-Arachidonylglycerol, Which Increases Proliferation via a CB2 Receptor-Dependent Mechanism. Mol. Pharmacol. 2004, 65, 999–1007. [Google Scholar] [CrossRef]
- Yamamura, T.; Croxford, J.L. Cannabinoids and the immune system: Potential for the treatment of inflammatory diseases? J. Neuroimmunol. 2005, 166, 3–18. [Google Scholar] [CrossRef]
- Tanasescu, R.; Gran, B.; Constantinescu, C.S. The endocannabinoid system: A revolving plate in neuro-immune interaction in health and disease. Amino Acids 2012, 45, 95–112. [Google Scholar] [CrossRef]
- Newton, C.; Nong, L.; Friedman, H.; Perkins, I.; Larsen, K.; Lu, L.; Klein, T.W. The cannabinoid system and immune modulation. J. Leukoc. Biol. 2003, 74, 486–496. [Google Scholar] [CrossRef]
- Denovan-Wright, E.M.; Young, A.P. Synthetic cannabinoids reduce the inflammatory activity of microglia and subsequently improve neuronal survival in vitro. Brain Behav. Immun. 2022, 105, 29–43. [Google Scholar] [CrossRef]
- Almogi-Hazan, O.; Or, R. Cannabis, the Endocannabinoid System and Immunity—The Journey from the Bedside to the Bench and Back. Int. J. Mol. Sci. 2020, 21, 4448. [Google Scholar] [CrossRef]
- Lefebvre, J.S.; Chouinard, F.; Turcotte, C.; Flamand, N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J. Leukoc. Biol. 2015, 97, 1049–1070. [Google Scholar] [CrossRef]
- Stella, N. Endocannabinoid signaling in microglial cells. Neuropharmacology 2009, 56, 244–253. [Google Scholar] [CrossRef]
- Stella, N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 2010, 58, 1017–1030. [Google Scholar] [CrossRef]
- Pandey, R.; Mousawy, K.; Nagarkatti, M.; Nagarkatti, P. Endocannabinoids and immune regulation. Pharmacol. Res. 2009, 60, 85–92. [Google Scholar] [CrossRef]
- Mecha, M.; Guaza, C.; Mestre, L.; Feliú, A.; Carrillo-Salinas, F. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol. Ther. 2016, 166, 40–55. [Google Scholar] [CrossRef]
- Duffy, S.S.; Fiore, N.T.; Moalem-Taylor, G.; Hayes, J.P. The cannabinoid system and microglia in health and disease. Neuropharmacology 2021, 190, 108555. [Google Scholar]
- Dvir-Ginzberg, M.; Lutz, B.; Palmisano, M.; Bilkei-Gorzo, A.; de Almodovar, C.R.; Farhat, E.; Ramunno, C.F. Local cannabinoid receptor type-1 regulates glial cell activity and insulin-like growth factor-1 receptor signaling in the mediobasal hypothalamus. Mech. Ageing Dev. 2024, 220, 111954. [Google Scholar] [CrossRef]
- Fuxe, K.; Lanciego, J.L.; Saura, C.A.; Pulido-Salgado, M.; Labandeira-García, J.L.; Reyes-Resina, I.; Borroto-Escuela, D.; Rodríguez-Pérez, A.I.; Canela, E.I.; Saura, J.; et al. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain Behav. Immun. 2018, 67, 139–151. [Google Scholar] [CrossRef]
- Guaza, C.; Mecha, M.; Rueda-Zubiaurre, A.; de Sola, R.G.; Feliú, A.; Carrillo-Salinas, F.; Ortega-Gutiérrez, S. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav. Immun. 2015, 49, 233–245. [Google Scholar] [CrossRef]
- Hu, S.; Cabral, G.A.; Peterson, P.K.; Sheng, W.S.; Min, X.; Lokensgard, J.R. Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1β-stimulated human astrocytes. Glia 2004, 49, 211–219. [Google Scholar] [CrossRef]
- Sáez, J.C.; Ezan, P.; Froger, N.; Amigou, E.; Giaume, C.; Orellana, J.A.; Cohen-Salmon, M. Cannabinoids prevent the opposite regulation of astroglial connexin43 hemichannels and gap junction channels induced by pro-inflammatory treatments. J. Neurochem. 2009, 111, 1383–1397. [Google Scholar] [CrossRef]
- Marsicano, G.; Pouvreau, S.; Skupio, U.; Gomez-Sotres, P.; Olivera-Pinto, A.; Eraso-Pichot, A. Endocannabinoid signaling in astrocytes. Glia 2022, 71, 44–59. [Google Scholar] [CrossRef]
- Tomczyk, M.; Herman, A.; Tomaszewska-Zaremba, D.; Herman, A.P.; Bochenek, J. Anandamide Influences Interleukin-1β Synthesis and IL-1 System Gene Expressions in the Ovine Hypothalamus during Endo-Toxin-Induced Inflammation. Animals 2021, 11, 484. [Google Scholar] [CrossRef]
- Lutz, B.; Bilkei-Gorzo, A.; Berger, M.; Zimmer, A.; Leidmaa, E.; Nidadavolu, P.; Schürmann, B.; Bindila, L.; Bailey, A.; Effah, F.; et al. Dynamic Changes in the Endocannabinoid System during the Aging Process: Focus on the Middle-Age Crisis. Int. J. Mol. Sci. 2022, 23, 10254. [Google Scholar] [CrossRef]
- Young, A.P.; Denovan-Wright, E.M. The dynamic Role of microglia and the endocannabinoid system in neuroinflammation. Front. Pharmacol. 2022, 12, 806417. [Google Scholar] [CrossRef]
- Leonard, B.E.; Aricioglu, F. Cannabinoids and neuroinflammation: Therapeutic implications. J. Affect. Disord. Rep. 2023, 12, 100463. [Google Scholar] [CrossRef]
- Sadanandan, S.M.; Kreko-Pierce, T.; Khatri, S.N.; Pugh, J.R. Cannabinoid type 2 receptors inhibit GABAA receptor-mediated currents in cerebellar Purkinje cells of juvenile mice. PLoS ONE 2020, 15, e0233020. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Shen, H.; Gao, M.; Ma, Z.; Hempel, B.J.; Bi, G.H.; Gardner, E.L.; Wu, J.; Xi, Z.X. Cannabinoid CB2 receptors are expressed in glutamate neurons in the red nucleus and functionally modulate motor behavior in mice. Neuropharmacology 2021, 15, 108538. [Google Scholar]
- Jîtcă, G.; Ősz, B.E.; Vari, C.E.; Rusz, C.-M.; Tero-Vescan, A.; Pușcaș, A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants 2023, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, S.; Huang, Y.; Ji, X.; Wu, J. Impact of the Cannabinoid System in Alzheimer’s Disease. Curr. Neuropharmacol. 2023, 21, 715–726. [Google Scholar] [CrossRef]
- Blázquez, C.; Ramírez, B.G.; del Pulgar, T.G.; Guzmán, M.; de Ceballos, M.L. Prevention of Alzheimer’s Disease Pathology by Cannabinoids: Neuroprotection Mediated by Blockade of Microglial Activation. J. Neurosci. 2005, 25, 1904–1913. [Google Scholar] [CrossRef]
- Matias, I.; Petrosino, S.; De Filippis, D.; Mazzola, C.; Iuvone, T.; Micale, V.; van der Stelt, M.; Di Marzo, V.; Esposito, G.; Drago, F.; et al. Endocannabinoids and β-amyloid-induced neurotoxicity in vivo: Effect of pharmacological elevation of endocannabinoid levels. Cell. Mol. Life Sci. 2006, 63, 1410–1424. [Google Scholar] [CrossRef]
- Milton, N.G. Anandamide and noladin ether prevent neurotoxicity of the human amyloid-β peptide. Neurosci. Lett. 2002, 332, 127–130. [Google Scholar] [CrossRef]
- Tanila, H.; Alpár, A.; Pasquaré, S.J.; Martín-Moreno, A.M.; Watanabe, M.; Schulte, G.; Mackie, K.; Mulder, J.; Zilberter, M.; Keimpema, E.; et al. Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease. Brain 2011, 134, 1041–1060. [Google Scholar] [CrossRef]
- Benito, C.; Tolón, R.M.; Carrier, E.J.; Hillard, C.J.; Núñez, E.; Rábano, A.; Romero, J. Cannabinoid CB2 Receptors and Fatty Acid Amide Hydrolase Are Selectively Overexpressed in Neuritic Plaque-Associated Glia in Alzheimer’s Disease Brains. J. Neurosci. 2003, 23, 11136–11141. [Google Scholar] [CrossRef]
- Halleskog, C.; Dahlström, J.; Tanila, H.; Färber, K.; Harkany, T.; Mackie, K.; Mulder, J.; Schulte, G.; Puli, L.K.; Hortobágyi, T. WNT signaling in activated microglia is proinflammatory. Glia 2010, 59, 119–131. [Google Scholar] [CrossRef]
- Head, E.; Yasar, S.; Piomelli, D.; Cribbs, D.H.; Vasilevko, V.; Cotman, C.W.; Jung, K.-M.; Astarita, G. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer’s disease. Neurobiol. Aging 2012, 33, 1522–1532. [Google Scholar] [CrossRef]
- Calcagnini, S.; De Marco, F.; Gaetani, S.; Pace, L.; Cassano, T.; Romano, A. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Front. Neurosci. 2017, 11, 30. [Google Scholar] [CrossRef]
- Li, C.; Wang, B.; Li, J.; Shi, J.; Jia, H. CB2 cannabinoid receptor agonist ameliorates novel object recognition but not spatial memory in transgenic APP/PS1 mice. Neurosci. Lett. 2019, 707, 134286. [Google Scholar] [CrossRef] [PubMed]
- Benito, C.; Tolón, R.M.; Castillo, A.I.; Romero, J.; Núñez, E.; Pazos, M.R.; Martínez-Orgado, J.A. The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Res. 2009, 1283, 148–154. [Google Scholar] [CrossRef]
- Maldonado, R.; Juvés, S.; Ferrer, I.; Aso, E. CB2 Cannabinoid Receptor Agonist Ameliorates Alzheimer-Like Phenotype in AβPP/PS1 Mice. J. Alzheimer’s Dis. 2013, 35, 847–858. [Google Scholar] [CrossRef]
- Monteiro, K.L.C.; de Aquino, T.M.; da Silva-Júnior, E.F.; Alcântara, M.G.d.S. Cannabinoid pharmacology and its therapeutic uses in Alzheimer’s disease. Neural Regen. Res. 2021, 16, 990–991. [Google Scholar] [CrossRef]
- Ruthirakuhan, M.; Herrmann, N.; Gallagher, D.; Verhoeff, N.P.L.; Kiss, A.; Black, S.E.; Lanctôt, K.L. Randomized Placebo-Controlled Trial of Nabilone for Agitation in Alzheimer’s Disease. Am. J. Geriatr. Psychiatry 2019, 27, 1161–1173. [Google Scholar] [CrossRef]
- Russo, E.B. Cannabis Therapeutics and the Future of Neurology. Front. Integr. Neurosci. 2018, 12, 51. [Google Scholar] [CrossRef]
- Patel, V.; Park, O.; Bátkai, S.; Haskó, G.; Liaudet, L.; Tanchian, G.; Horváth, B.; Mechoulam, R.; Wink, D.A.; Pacher, P.; et al. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death. Free Radic. Biol. Med. 2011, 50, 1368–1381. [Google Scholar] [CrossRef]
- Hamelink, C.; Hampson, A.; Wink, D.A.; Eskay, R.L.; Eiden, L.E. Comparison of Cannabidiol, Antioxidants, and Diuretics in Reversing Binge Ethanol-Induced Neurotoxicity. J. Pharmacol. Exp. Ther. 2005, 314, 780–788. [Google Scholar] [CrossRef]
- McGeer, P.L.; Itagaki, S.; Boyes, B.E.; McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988, 38, 1285–1291. [Google Scholar] [CrossRef]
- Ouchi, Y.; Yoshikawa, E.; Sekine, Y.; Futatsubashi, M.; Kanno, T.; Ogusu, T.; Torizuka, T. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol. 2005, 57, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, A.; Pavese, N.; Hotton, G.; Turkheimer, F.; Es, M.; Hammers, A.; Eggert, K.; Oertel, W.; Banati, R.B.; Brooks, D.J. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 2006, 21, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Hashizume, Y.; Hishikawa, N.; Sawada, M.; Imamura, K.; Nagatsu, T. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003, 106, 518–526. [Google Scholar] [CrossRef]
- Lipton, J.W.; Collier, T.J.; O McGuire, S.; Ling, Z.D.; Carvey, P.M.; E Sortwell, C. Tumor Necrosis Factor α Is Toxic to Embryonic Mesencephalic Dopamine Neurons. Exp. Neurol. 2001, 169, 219–230. [Google Scholar] [CrossRef]
- Aracil-Fernández, A.; García-Gutiérrez, M.S.; Lanciego, J.L.; Navarrete, F.; Manzanares, J. Cannabinoid CB1 and CB2 Receptors, and Monoacylglycerol Lipase Gene Expression Alterations in the Basal Ganglia of Patients with Parkinson’s Disease. Neurotherapeutics 2018, 15, 459–469. [Google Scholar] [CrossRef]
- Thiolat, M.-L.; Luquin, M.R.; Li, Q.; Bezard, E.; Clavero, P.; Rojo-Bustamante, E.; Abellanas, M.A.; Aymerich, M.S. The expression of cannabinoid type 1 receptor and 2-arachidonoyl glycerol synthesizing/degrading enzymes is altered in basal ganglia during the active phase of levodopa-induced dyskinesia. Neurobiol. Dis. 2018, 118, 64–75. [Google Scholar] [CrossRef]
- Palomo-Garo, C.; Gómez-Gálvez, Y.; García, C.; Fernández-Ruiz, J. Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 64, 200–208. [Google Scholar] [CrossRef]
- Price, D.A.; Martinez, A.A.; Seillier, A.; Koek, W.; Acosta, Y.; Fernandez, E.; Strong, R.; Lutz, B.; Marsicano, G.; Roberts, J.L.; et al. WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur. J. Neurosci. 2009, 29, 2177–2186. [Google Scholar]
- DI Marzo, V. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 2000, 14, 1432–1438. [Google Scholar] [CrossRef]
- Mounsey, R.B.; Mustafa, S.; Robinson, L.; Ross, R.A.; Riedel, G.; Pertwee, R.G.; Teismann, P. Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Exp. Neurol. 2015, 273, 36–44. [Google Scholar] [CrossRef]
- Azimullah, S.; Haque, M.E.; Ojha, S.K.; Javed, H. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson’s Disease. Front. Neurosci. 2016, 10, 321. [Google Scholar] [CrossRef]
- Azimullah, S.; Haque, M.E.; Ojha, S.; Javed, H. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol. Cell. Biochem. 2016, 418, 59–70. [Google Scholar] [CrossRef]
- Molina-Holgado, F.; Fernández-Ruiz, J.; Mechoulam, R.; Ramos, J.A.; Lastres-Becker, I. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson’s disease. Neurobiol. Dis. 2005, 19, 96–107. [Google Scholar] [CrossRef]
- Kim, S.U.; Kim, S.R.; Jin, B.K.; Chung, E.S.; Lee, D.Y.; Oh, U.T. Transient Receptor Potential Vanilloid Subtype 1 Mediates Cell Death of Mesencephalic Dopaminergic Neurons In Vivo and In Vitro. J. Neurosci. 2005, 25, 662–671. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Bisogno, T.; Di Marzo, V. Anandamide: Some like it hot. Trends Pharmacol. Sci. 2001, 22, 346–349. [Google Scholar] [CrossRef]
- Cravatt, B.F.; McKinney, M.K. Structure and function of fatty acid amide hydrolase. Annu. Rev. Biochem. 2005, 74, 411–432. [Google Scholar] [CrossRef]
- McAllister, S.D.; Moore, D.H.; Raman, C.; Rizvi, G.; Patel, S.G.; E Abood, M. Amyotrophic lateral sclerosis: Delayed disease progression in mice by treatment with a cannabinoid. Amyotroph. Lateral Scler. 2004, 5, 33–39. [Google Scholar] [CrossRef]
- Petrosino, S.; Bilsland, L.G.; Greensmith, L.; Pryce, G.; Dick, J.R.T.; Baker, D.; Di Marzo, V. Increasing cannabinoid levels by pharmacological and genetic manipulation delays disease progression in SOD1 mice. FASEB J. 2006, 20, 1003–1005. [Google Scholar] [CrossRef]
- Dragunow, M.; Faull, R.; Glass, M. Loss of cannabinoid receptors in the substantia nigra in huntington’s disease. Neuroscience 1993, 56, 523–527. [Google Scholar] [CrossRef]
- Møller, M.; Sørensen, S.; Stub, C.; Hasholt, L.; Fenger, K.; Hansen, A.; Naver, B. Molecular and behavioral analysis of the r6/1 huntington′s disease transgenic mouse. Neuroscience 2003, 122, 1049–1057. [Google Scholar] [CrossRef]
- Bradshaw, H.; Dowie, M.; Howard, M.; Nicholson, L.; Faull, R.; Hannan, A.; Glass, M. Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease. Neuroscience 2009, 163, 456–465. [Google Scholar] [CrossRef]
- Benito, C.; Julien, B.; Lutz, B.; Fernández-Ruiz, J.; Monory, K.; Börner, C.; Ruiz, C.; Blázquez, C.; Chiarlone, A.; Resel, E.; et al. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain 2010, 134, 119–136. [Google Scholar] [CrossRef]
- Berrendero, F.; Hansen, H.H.; De Miguel, R.; Ramos, J.A.; Pérez-Rosado, A.; Lastres-Becker, I.; Manzanares, J.; Fernández-Ruiz, J. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 2002, 44, 23–35. [Google Scholar] [CrossRef]
- Benito, C.; Julien, B.; Fernández-Ruiz, J.; Resel, E.; Carrasco, C.; Palazuelos, J.; Guzmán, M.; Azcoitia, I.; Galve-Roperh, I.; Romero, J.; et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 2009, 132, 3152–3164. [Google Scholar] [CrossRef]
- Dowie, M.J.; Hoffman, T.; Glass, M.; Faull, R.L.; Grimsey, N.L. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington’s disease brain. J. Chem. Neuroanat. 2014, 59–60, 62–71. [Google Scholar] [CrossRef]
- Denovan-Wright, E.M.; Kelly, M.E.; Laprairie, R.B. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: Implications for Huntington’s disease. Neuropharmacology 2013, 72, 47–57. [Google Scholar] [CrossRef]
- González, S.; Aroyo, I.; Benito, C.; Mechoulam, R.; Brouillet, E.; Pazos, M.R.; Sagredo, O.; Tolón, R.M.; Lastres-Becker, I.; Fernández-Ruiz, J.; et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: Relevance for Huntington’s disease. Glia 2008, 57, 1154–1167. [Google Scholar] [CrossRef]
- Molinari, E.; Dowie, M.J.; Glass, M.; Scotter, E.L. The therapeutic potential of G-protein coupled receptors in Huntington’s disease. Pharmacol. Ther. 2010, 128, 305–323. [Google Scholar] [CrossRef]
- Sinal, C.J.; Kelly, M.E.; Rourke, J.L.; Cairns, E.A.; Kulkarni, P.M.; Denovan-Wright, E.M.; Zrein, A.; Thakur, G.A.; Bagher, A.M.; Laprairie, R.B. Positive allosteric modulation of the type 1 cannabinoid receptor reduces the signs and symptoms of Huntington’s disease in the R6/2 mouse model. Neuropharmacology 2019, 151, 1–12. [Google Scholar] [CrossRef]
- Fernández-Ruiz, J.; Franco, R.; Morales, P.; Jagerovic, N.; Navarro, G.; Rodríguez-Cueto, C. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Front. Neurosci. 2016, 10, 406. [Google Scholar] [CrossRef]
- Musty, R.; Rein, J.; Tillery, W.; Pertwee, R.; Consroe, P. The Perceived Effects of Smoked Cannabis on Patients with Multiple Sclerosis. Eur. Neurol. 1997, 38, 44–48. [Google Scholar] [CrossRef]
- Guaza, C.; Borrell, J.; Molina-Holgado, E.; Vela, J.M.; Arévalo-Martín, Á. Therapeutic Action of Cannabinoids in a Murine Model of Multiple Sclerosis. J. Neurosci. 2003, 23, 2511–2516. [Google Scholar] [CrossRef]
- Lee, T.; Mawrin, C.; Ullrich, O.; Nitsch, R.; Raine, C.S.; Witting, A.; Eljaschewitsch, E.; Hoertnagl, H.; Schneider-Stock, R.; Schmidt, P.M.; et al. The Endocannabinoid Anandamide Protects Neurons during CNS Inflammation by Induction of MKP-1 in Microglial Cells. Neuron 2006, 49, 67–79. [Google Scholar] [CrossRef]
- Correa, F.; Mestre, L.; Valenti, M.; Ortar, G.; Guaza, C.; Di Marzo, V.; Arévalo-Martín, A.; Molina-Holgado, E. Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. J. Neurochem. 2005, 92, 1327–1339. [Google Scholar] [CrossRef]
- Correa, F.; Guaza, C.; Di Marzo, V.; Ortega-Gutiérrez, S.; Molina-Holgado, E.; Arévalo-Martín, Á.; Viso, A.; López-Rodríguez, M.L. Activation of the endocannabinoid system as a therapeutic approach in a murine model of multiple sclerosis. FASEB J. 2005, 19, 1338–1340. [Google Scholar] [CrossRef]
- Mestre, L.; Docagne, F.; Correa, F.; Loría, F.; Hernangómez, M.; Borrell, J.; Guaza, C. A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol. Cell. Neurosci. 2009, 40, 258–266. [Google Scholar] [CrossRef]
- Correa, F.; Guaza, C.; Mestre, L.; Docagne, F.; Clemente, D. The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Theiler’s virus infection. Biochem. Pharmacol. 2006, 72, 869–880. [Google Scholar] [CrossRef]
- Mecha, M.; Borrell, J.; Guaza, C.; Iñigo, P.M.; Correa, F.G.; Hernangómez-Herrero, M.; Mestre, L.; Docagne, F.; Loría, F. Anandamide inhibits Theiler’s virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1receptors. J. Neuroinflammation 2011, 8, 102. [Google Scholar] [CrossRef]
- Guaza, C.; Mecha, M.; Iñigo, P.; Mestre, L.; Feliú, A.; Carrillo-Salinas, F. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: A role for A2A receptors. Neurobiol. Dis. 2013, 59, 141–150. [Google Scholar] [CrossRef]
- Guaza, C.; Molina-Holgado, E.; Arevalo-Martin, A. A CB1/CB2 receptor agonist, WIN 55,212-2, exerts its therapeutic effect in a viral autoimmune model of multiple sclerosis by restoring self-tolerance to myelin. Neuropharmacology 2012, 63, 385–393. [Google Scholar] [CrossRef]
- Juknat, A.; Rimmerman, N.; Kaushansky, N.; Vogel, Z.; Kozela, E.; Ben-Nun, A. Cannabinoids Decrease the Th17 Inflammatory Autoimmune Phenotype. J. Neuroimmune Pharmacol. 2013, 8, 1265–1276. [Google Scholar] [CrossRef]
- Murphy, Á.C.; Lynch, M.A.; Mills, K.H.; Lalor, S.J. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 2010, 24, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Shytle, R.D.; Ehrhart, J.; Obregon, D.; Mori, T.; Hou, H.; Sun, N.; Bai, Y.; Klein, T.; Fernandez, F. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflammation 2005, 2, 29. [Google Scholar] [CrossRef]
- Morales-Montor, J.; Hernández-Cervantes, R.; Méndez-Díaz, M.; Prospéro-García, Ó. Immunoregulatory Role of Cannabinoids during Infectious Disease. Neuroimmunomodulation 2017, 24, 183–199. [Google Scholar] [CrossRef]
- Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021, 27, 954–963. [Google Scholar] [CrossRef]
- Maccarrone, M. Fatty Acid Amide Hydrolase: A Potential Target for Next Generation Therapeutics. Curr. Pharm. Des. 2006, 12, 759–772. [Google Scholar] [CrossRef]
- Kumar, A.; Shyam, H.; Kushwaha, J.; Kumar, S.; Mishra, A.; Jain, M.; Singh, M.K. Role of JAK/STAT in the Neuroinflammation and its Association with Neurological Disorders. Ann. Neurosci. 2021, 28, 191–200. [Google Scholar] [CrossRef]
- Bari, M.; Maccarrone, M.; Fezza, F.; Battista, N.; Gasperi, V. New Insights into Endocannabinoid Degradation and its Therapeutic Potential. Mini-Rev. Med. Chem. 2006, 6, 257–268. [Google Scholar] [CrossRef]
- Brown, Q.B.; Kosten, T.A.; Makriyannis, A.; Karanian, D.A.; Bahr, B.A. Dual Modulation of Endocannabinoid Transport and Fatty Acid Amide Hydrolase Protects against Excitotoxicity. J. Neurosci. 2005, 25, 7813–7820. [Google Scholar] [CrossRef]
- Celorrio, M.; Fernández-Suárez, D.; Rojo-Bustamante, E.; Echeverry-Alzate, V.; Ramírez, M.J.; Hillard, C.J.; López-Moreno, J.A.; Maldonado, R.; Oyarzábal, J.; Franco, R.; et al. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson’s disease. Brain Behav. Immun. 2016, 57, 94–105. [Google Scholar] [CrossRef]
- Bari, M.; Battista, N.; Valenza, M.; Mastrangelo, N.; Malaponti, M.; Catanzaro, G.; Centonze, D.; Finazzi-Agrò, A.; Cattaneo, E.; Maccarrone, M. In vitro and in vivo models of Huntington’s disease show alterations in the endocannabinoid system. FEBS J. 2013, 280, 3376–3388. [Google Scholar] [CrossRef] [PubMed]
- Battista, N.; Bari, M.; Tarditi, A.; Mariotti, C.; Bachoud-Lévi, A.-C.; Zuccato, C.; Finazzi-Agrò, A.; Genitrini, S.; Peschanski, M.; Di Donato, S.; et al. Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington’s disease mutation in peripheral lymphocytes. Neurobiol. Dis. 2007, 27, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Pasquarelli, N.; Engelskirchen, M.; Hanselmann, J.; Endres, S.; Porazik, C.; Bayer, H.; Buck, E.; Karsak, M.; Weydt, P.; Ferger, B.; et al. Evaluation of monoacylglycerol lipase as a therapeutic target in a transgenic mouse model of ALS. Neuropharmacology 2017, 124, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Stella, N.; Cudaback, E.; Straiker, A.; Rickman, B.; Brosnan, C.; Witting, A.; Möller, T.; Chen, L.; Walter, L. Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc. Natl. Acad. Sci. USA 2006, 103, 6362–6367. [Google Scholar] [CrossRef]
- Velayudhan, L.; McGoohan, K.L.; Bhattacharyya, S. Evaluation of THC-Related Neuropsychiatric Symptoms Among Adults Aged 50 Years and Older. A Systematic Review and Metaregression Analysis. AMA Netw Open 2021, 4, e2035913. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszewska-Zaremba, D.; Gajewska, A.; Misztal, T. Anti-Inflammatory Effects of Cannabinoids in Therapy of Neurodegenerative Disorders and Inflammatory Diseases of the CNS. Int. J. Mol. Sci. 2025, 26, 6570. https://doi.org/10.3390/ijms26146570
Tomaszewska-Zaremba D, Gajewska A, Misztal T. Anti-Inflammatory Effects of Cannabinoids in Therapy of Neurodegenerative Disorders and Inflammatory Diseases of the CNS. International Journal of Molecular Sciences. 2025; 26(14):6570. https://doi.org/10.3390/ijms26146570
Chicago/Turabian StyleTomaszewska-Zaremba, Dorota, Alina Gajewska, and Tomasz Misztal. 2025. "Anti-Inflammatory Effects of Cannabinoids in Therapy of Neurodegenerative Disorders and Inflammatory Diseases of the CNS" International Journal of Molecular Sciences 26, no. 14: 6570. https://doi.org/10.3390/ijms26146570
APA StyleTomaszewska-Zaremba, D., Gajewska, A., & Misztal, T. (2025). Anti-Inflammatory Effects of Cannabinoids in Therapy of Neurodegenerative Disorders and Inflammatory Diseases of the CNS. International Journal of Molecular Sciences, 26(14), 6570. https://doi.org/10.3390/ijms26146570