The Roles of E3 Ubiquitin Ligases in Cerebral Ischemia–Reperfusion Injury
Abstract
1. Introduction
2. Classification of E3 Ubiquitin Ligases
2.1. RING Finger Family E3 Ligases
2.1.1. TRIM E3 Ligases
2.1.2. U-Box E3 Ligases
2.2. HECT Family E3 Ligases
2.3. RBR Family E3 Ligases
3. Roles of E3 Ligases in CIRI
3.1. Neuroinflammation
3.2. Mitophagy
3.3. Cell Death
3.3.1. Apoptosis
3.3.2. Necroptosis
3.3.3. Ferroptosis
4. Clinical Prospects
5. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Hu, X.; De Silva, T.M.; Chen, J.; Faraci, F.M. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ. Res. 2017, 120, 449–471. [Google Scholar] [CrossRef]
- Huang, J.; Chen, L.; Yao, Z.; Sun, X.; Tong, X.; Dong, S. The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed. Pharmacother. 2023, 162, 114671. [Google Scholar] [CrossRef]
- Hou, Z.; Brenner, J.S. Developing targeted antioxidant nanomedicines for ischemic penumbra: Novel strategies in treating brain ischemia-reperfusion injury. Redox Biol. 2024, 73, 103185. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Wang, Y.; Zou, W. Exploration on the Mechanism of Ubiquitin Proteasome System in Cerebral Stroke. Front. Aging Neurosci. 2022, 14, 814463. [Google Scholar] [CrossRef]
- Hochrainer, K. Protein modifications with ubiquitin as response to cerebral ischemia-reperfusion injury. Transl. Stroke Res. 2018, 9, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, M.V.; Salazar, I.L.; Curcio, M.; Canzoniero, L.M.T.; Duarte, C.B. Role of the ubiquitin–proteasome system in brain ischemia: Friend or foe? Prog. Neurobiol. 2014, 112, 50–69. [Google Scholar] [CrossRef]
- Kahles, T.; Poon, C.; Qian, L.; Palfini, V.; Srinivasan, S.P.; Swaminathan, S.; Blanco, I.; Rodney-Sandy, R.; Iadecola, C.; Zhou, P.; et al. Elevated post-ischemic ubiquitination results from suppression of deubiquitinase activity and not proteasome inhibition. Cell. Mol. Life Sci. 2021, 78, 2169–2183. [Google Scholar] [CrossRef]
- Qin, X.; Zhu, J.; Lu, H.; Yi, M.; Zhao, Z.; Zhang, W.; Cheng, J. Research progress of deubiquitinating enzymes in cerebral ischemia-reperfusion injury. Front. Aging Neurosci. 2025, 17, 1588920. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of protein stability by post-translational modifications. Nat. Commun. 2023, 14, 201. [Google Scholar] [CrossRef]
- Cappadocia, L.; Lima, C.D. Ubiquitin-like protein conjugation: Structures, chemistry, and mechanism. Chem. Rev. 2018, 118, 889–918. [Google Scholar] [CrossRef]
- Spano, D.; Catara, G. Targeting the Ubiquitin–Proteasome System and Recent Advances in Cancer Therapy. Cells 2023, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Shabek, N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017, 86, 129–157. [Google Scholar] [CrossRef]
- Dale, B.; Cheng, M.; Park, K.-S.; Kaniskan, H.Ü.; Xiong, Y.; Jin, J. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 2021, 21, 638–654. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Luo, Z.-Q. Post-translational regulation of ubiquitin signaling. J. Cell Biol. 2019, 218, 1776–1786. [Google Scholar] [CrossRef]
- Tsai, J.M.; Nowak, R.P.; Ebert, B.L.; Fischer, E.S. Targeted protein degradation: From mechanisms to clinic. Nat. Rev. Mol. Cell Biol. 2024, 25, 740–757. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.; Talakayala, A.; Tiwari, M.; Asinti, S.; Kirti, P.B. A synchronized symphony: Intersecting roles of ubiquitin proteasome system and autophagy in cellular degradation. Plant Physiol. Biochem. 2024, 212, 108700. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, X.; Kang, R.; Tang, D. The Emerging Role of Deubiquitinases in Cell Death. Biomolecules 2022, 12, 1825. [Google Scholar] [CrossRef]
- Streich, F.C.; Lima, C.D. Structural and functional insights to ubiquitin-like protein conjugation. Annu. Rev. Biophys. 2014, 43, 357–379. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Waliullah, A.S.M.; Aramaki, S.; Ping, Y.; Takanashi, Y.; Zhang, C.; Zhai, Q.; Yan, J.; Oyama, S.; et al. A new potential therapeutic target for cancer in ubiquitin-like proteins—UBL3. Int. J. Mol. Sci. 2023, 24, 1231. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, M.; Zhai, F.; Chen, J.; Jin, X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson’s Disease. Pharmaceuticals 2024, 17, 782. [Google Scholar] [CrossRef]
- Zheng, S.; Li, Y.; Song, X.; Wu, M.; Yu, L.; Huang, G.; Liu, T.; Zhang, L.; Shang, M.; Zhu, Q.; et al. OTUD1 ameliorates cerebral ischemic injury through inhibiting inflammation by disrupting K63-linked deubiquitination of RIP2. J. Neuroinflammation 2023, 20, 281. [Google Scholar] [CrossRef]
- Yu, Y.; Xia, Q.; Zhan, G.; Gao, S.; Han, T.; Mao, M.; Li, X.; Wang, Y. TRIM67 alleviates cerebral ischemia–reperfusion injury by protecting neurons and inhibiting neuroinflammation via targeting IκBα for K63-linked polyubiquitination. Cell Biosci. 2023, 13, 99. [Google Scholar] [CrossRef]
- Sherpa, D.; Chrustowicz, J.; Schulman, B.A. How the ends signal the end: Regulation by E3 ubiquitin ligases recognizing protein termini. Mol. Cell 2022, 82, 1424–1438. [Google Scholar] [CrossRef]
- Buetow, L.; Huang, D.T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2016, 17, 626–642. [Google Scholar] [CrossRef] [PubMed]
- Hale, M.; Bashaw, G.J. Emerging roles for E3 ubiquitin ligases in neural development and disease. Front. Cell Dev. Biol. 2025, 13, 1557653. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Chen, J.; Ye, M.; Jin, X. Functional roles of E3 ubiquitin ligases in prostate cancer. J. Mol. Med. 2022, 100, 1125–1144. [Google Scholar] [CrossRef] [PubMed]
- Chabot, E.; Durantel, D.; Lucifora, J. TRIM proteins: A ‘swiss army knife’ of antiviral immunity. PLoS Pathog. 2025, 21, e1013147. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, Z.; Zhu, Y.; Sun, M.; Lin, X. Elucidating the immunomodulatory roles and mechanisms of CUL4B in the immune system: A comprehensive review. Front. Immunol. 2025, 16, 1473817. [Google Scholar] [CrossRef]
- Hwang, I.; Kim, B.-S.; Lee, H.Y.; Cho, S.-W.; Lee, S.E.; Ahn, J.-Y. PA2G4/EBP1 ubiquitination by PRKN/PARKIN promotes mitophagy protecting neuron death in cerebral ischemia. Autophagy 2024, 20, 365–379. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; You, D.; Xiao, Y.; Huang, Z.; Yu, W. Neuroprotective Effect of E3 Ubiquitin Ligase RNF8 Against Ischemic Stroke via HDAC2 Stability Reduction and Reelin-Dependent GSK3β Inhibition. Mol. Neurobiol. 2022, 59, 4776–4790. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, X.; Luo, J.; Wang, J.; Peng, Q.; Zhao, J.; Jiang, N.; Zhao, Y. E3 Ubiquitin Ligase FBXO3 Drives Neuroinflammation to Aggravate Cerebral Ischemia/Reperfusion Injury. Int. J. Mol. Sci. 2022, 23, 13648. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Zhan, G.; Mao, M.; Zhao, Y.; Li, X. TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury. Exp. Mol. Med. 2022, 54, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Tang, Y.-D.; Zhai, J.; Zheng, C. The RING finger protein family in health and disease. Signal Transduct. Target. Ther. 2022, 7, 300. [Google Scholar] [CrossRef] [PubMed]
- Dove, K.K.; Klevit, R.E. RING-Between-RING E3 Ligases: Emerging Themes amid the Variations. J. Mol. Biol. 2017, 429, 3363–3375. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Zhang, T.; Tan, Y.; Dai, X.; Yang, Y.-G.; Zhang, X. Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases. Front. Immunol. 2023, 14, 1125224. [Google Scholar] [CrossRef]
- Zambrano-Carrasco, J.; Zou, J.; Wang, W.; Sun, X.; Li, J.; Su, H. Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development. Cells 2024, 13, 235. [Google Scholar] [CrossRef]
- Lin, C.P.; Komives, E.A. Diversity of structure and function in cullin E3 ligases. Curr. Opin. Struct. Biol. 2024, 88, 102879. [Google Scholar] [CrossRef]
- Harper, J.W.; Schulman, B.A. Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis. Annu. Rev. Biochem. 2021, 90, 403–429. [Google Scholar] [CrossRef]
- Tekcham, D.S.; Chen, D.; Liu, Y.; Ling, T.; Zhang, Y.; Chen, H.; Wang, W.; Otkur, W.; Qi, H.; Xia, T.; et al. F-box proteins and cancer: An update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics 2020, 10, 4150–4167. [Google Scholar] [CrossRef]
- Dai, M.; Chen, S.; Wang, Y.; Fan, J.; Pan, X.; Sang, C.; Liu, Y.; Hu, M.; Ma, L.; Wang, S. F-box proteins at the crossroads of ubiquitination and tumor immunity: Regulatory networks and immunotherapy strategies. Front. Immunol. 2025, 16, 1596344. [Google Scholar] [CrossRef]
- Dang, F.; Nie, L.; Wei, W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ. 2021, 28, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Cruz Walma, D.A.; Chen, Z.; Bullock, A.N.; Yamada, K.M. Ubiquitin ligases: Guardians of mammalian development. Nat. Rev. Mol. Cell Biol. 2022, 23, 350–367. [Google Scholar] [CrossRef] [PubMed]
- Schrock, M.S.; Stromberg, B.R.; Scarberry, L.; Summers, M.K. APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin. Cancer Biol. 2020, 67, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Lin, Z. The involvement of ubiquitination machinery in cell cycle regulation and cancer progression. Int. J. Mol. Sci. 2021, 22, 5754. [Google Scholar] [CrossRef]
- Gai, W.; Peng, Z.; Liu, C.H.; Zhang, L.; Jiang, H. Advances in Cancer Treatment by Targeting the Neddylation Pathway. Front. Cell Dev. Biol. 2021, 9, 653882. [Google Scholar] [CrossRef]
- He, Z.-X.; Yang, W.; Zengyangzong, D.; Gao, G.; Zhang, Q.; Liu, H.-M.; Zhao, W.; Ma, L.-Y. Targeting cullin neddylation for cancer and fibrotic diseases. Theranostics 2023, 13, 5017–5056. [Google Scholar] [CrossRef]
- Zhou, Q.; Zheng, Y.; Sun, Y. Neddylation regulation of mitochondrial structure and functions. Cell Biosci. 2021, 11, 55. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Q.; Li, Z.; Zhao, Y.; Sun, Y. Protein neddylation and its role in health and diseases. Signal Transduct. Target. Ther. 2024, 9, 85. [Google Scholar] [CrossRef]
- Yu, H.; Luo, H.; Chang, L.; Wang, S.; Geng, X.; Kang, L.; Zhong, Y.; Cao, Y.; Wang, R.; Yang, X.; et al. The NEDD8-activating enzyme inhibitor MLN4924 reduces ischemic brain injury in mice. Proc. Natl. Acad. Sci. USA 2022, 119, e2111896119. [Google Scholar] [CrossRef]
- Lu, G.; Wang, L.; Zhou, J.; Liu, W.; Shen, H.-M. A destiny for degradation: Interplay between cullin-RING E3 ligases and autophagy. Trends Cell Biol. 2021, 31, 432–444. [Google Scholar] [CrossRef]
- Lu, K.; Pan, Y.; Huang, Z.; Liang, H.; Ding, Z.; Zhang, B. TRIM proteins in hepatocellular carcinoma. J. Biomed. Sci. 2022, 29, 69. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, N.; Shariq, M.; Surolia, A.; Raj, R.; Khan, M.F.; Kumar, P. Multipronged regulation of autophagy and apoptosis: Emerging role of TRIM proteins. Cell. Mol. Biol. Lett. 2024, 29, 13. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Li, X.; Xu, G.; Tian, X.; Li, Y.; Fang, W. Tripartite Motif Protein Family in Central Nervous System Diseases. Cell. Mol. Neurobiol. 2023, 43, 2567–2589. [Google Scholar] [CrossRef]
- Venuto, S.; Merla, G. E3 ubiquitin ligase TRIM proteins, cell cycle and mitosis. Cells 2019, 8, 510. [Google Scholar] [CrossRef]
- Liu, X.; Lei, Q. TRIM62 knockout protects against cerebral ischemic injury in mice by suppressing NLRP3-regulated neuroinflammation. Biochem. Biophys. Res. Commun. 2020, 529, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhang, Y.-L.; Liu, L.-N. Inhibition of TRIM8 restrains ischaemia-reperfusion-mediated cerebral injury by regulation of NF-κB activation associated inflammation and apoptosis. Exp. Cell Res. 2020, 388, 111818. [Google Scholar] [CrossRef]
- Yao, D.; Zhang, S.; Hu, Z.; Luo, H.; Mao, C.; Fan, Y.; Tang, M.; Liu, F.; Shen, S.; Fan, L.; et al. CHIP ameliorates cerebral ischemia-reperfusion injury by attenuating necroptosis and inflammation. Aging 2021, 13, 25564–25577. [Google Scholar] [CrossRef]
- Hellerschmied, D.; Roessler, M.; Lehner, A.; Gazda, L.; Stejskal, K.; Imre, R.; Mechtler, K.; Dammermann, A.; Clausen, T. UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins. Nat. Commun. 2018, 9, 484. [Google Scholar] [CrossRef]
- Cowan, A.D.; Ciulli, A. Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory. Annu. Rev. Biochem. 2022, 91, 295–319. [Google Scholar] [CrossRef]
- Bernassola, F.; Chillemi, G.; Melino, G. HECT-Type E3 Ubiquitin Ligases in Cancer. Trends Biochem. Sci. 2019, 44, 1057–1075. [Google Scholar] [CrossRef]
- Kim, T.; Chokkalla, A.K.; Vemuganti, R. Deletion of ubiquitin ligase Nedd4l exacerbates ischemic brain damage. J. Cereb. Blood Flow Metab. 2021, 41, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Fu, P.; Wang, M.; Cui, L.; Bao, L.; Wang, X.; Yu, L.; Zhou, C.; Zhu, M.; Wang, F.; et al. DMT1 ubiquitination by Nedd4 protects against ferroptosis after intracerebral hemorrhage. CNS Neurosci. Ther. 2024, 30, e14685. [Google Scholar] [CrossRef]
- Sala-Gaston, J.; Costa-Sastre, L.; Pedrazza, L.; Martinez-Martinez, A.; Ventura, F.; Rosa, J.L. Regulation of MAPK signaling pathways by the large HERC ubiquitin ligases. Int. J. Mol. Sci. 2023, 24, 4906. [Google Scholar] [CrossRef] [PubMed]
- Ambrozkiewicz, M.C.; Kawabe, H. HECT-type E3 ubiquitin ligases in nerve cell development and synapse physiology. FEBS Lett. 2015, 589, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Walden, H.; Rittinger, K. RBR ligase–mediated ubiquitin transfer: A tale with many twists and turns. Nat. Struct. Mol. Biol. 2018, 25, 440–445. [Google Scholar] [CrossRef]
- Wu, M.; Lu, G.; Lao, Y.; Zhang, H.; Zheng, D.; Zheng, Z.; Yi, J.; Xiang, Q.; Wang, L.; Tan, H.; et al. Garciesculenxanthone B induces PINK1-Parkin-mediated mitophagy and prevents ischemia-reperfusion brain injury in mice. Acta Pharmacol. Sin. 2021, 42, 199–208. [Google Scholar] [CrossRef]
- Lan, R.; Wu, J.-T.; Wu, T.; Ma, Y.-Z.; Wang, B.-Q.; Zheng, H.-Z.; Li, Y.-N.; Wang, Y.; Gu, C.-Q.; Zhang, Y. Mitophagy is activated in brain damage induced by cerebral ischemia and reperfusion via the PINK1/Parkin/p62 signalling pathway. Brain Res. Bull. 2018, 142, 63–77. [Google Scholar] [CrossRef]
- Wang, P. RBR E3 ubiquitin ligases in tumorigenesis. Semin. Cancer Biol. 2020, 67, 131–144. [Google Scholar] [CrossRef]
- Safreena, N.; Nair, I.C.; Chandra, G. Therapeutic potential of parkin and its regulation in parkinson’s disease. Biochem. Pharmacol. 2024, 230, 116600. [Google Scholar] [CrossRef]
- Haouari, S.; Vourc’h, P.; Jeanne, M.; Marouillat, S.; Veyrat-Durebex, C.; Lanznaster, D.; Laumonnier, F.; Corcia, P.; Blasco, H.; Andres, C.R. The roles of NEDD4 subfamily of HECT E3 ubiquitin ligases in neurodevelopment and neurodegeneration. Int. J. Mol. Sci. 2022, 23, 3882. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y.-W.A. Unraveling the roles of UBE3A in neurodevelopment and neurodegeneration. Int. J. Mol. Sci. 2025, 26, 2304. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, W.; Yang, Z.; Xing, X. E3 ubiquitin ligase MARCH1 reduces inflammation and pyroptosis in cerebral ischemia-reperfusion injury via PCSK9 downregulation. Mamm. Genome 2024, 35, 346–361. [Google Scholar] [CrossRef]
- Rodriguez, M.S.; Egaña, I.; Lopitz-Otsoa, F.; Aillet, F.; Lopez-Mato, M.P.; Dorronsoro, A.; Lobato-Gil, S.; Sutherland, J.D.; Barrio, R.; Trigueros, C.; et al. The RING ubiquitin E3 RNF114 interacts with A20 and modulates NF-κB activity and T-cell activation. Cell Death Dis. 2014, 5, e1399. [Google Scholar] [CrossRef]
- Wang, C.; Chen, T.; Zhang, J.; Yang, M.; Li, N.; Xu, X.; Cao, X. The E3 ubiquitin ligase Nrdp1 “preferentially” promotes TLR-mediated production of type I interferon. Nat. Immunol. 2009, 10, 744–752. [Google Scholar] [CrossRef]
- Han, C.; Jin, J.; Xu, S.; Liu, H.; Li, N.; Cao, X. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat. Immunol. 2010, 11, 734–742. [Google Scholar] [CrossRef]
- Zemirli, N.; Pourcelot, M.; Dogan, N.; Vazquez, A.; Arnoult, D. The E3 ubiquitin ligase RNF121 is a positive regulator of NF-κB activation. Cell Commun. Signal. 2014, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Xu, Z.; Li, Y.; Wang, S.; Wang, Y.; Ran, Y. RNF 152 positively regulates TLR/IL-1R signaling by enhancing MyD88 oligomerization. EMBO Rep. 2020, 21, e48860. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Yi-Yun, S.; Hai-Yan, Y. Triad3A displays a critical role in suppression of cerebral ischemic/reperfusion (I/R) injury by regulating necroptosis. Biomed. Pharmacother. 2020, 128, 110045. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Wang, K.; Wang, H.; Wu, Q.; Yang, C.; Yu, Y.; Ni, P.; Zhong, Y.; Song, Z.; et al. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood 2021, 138, 689–705. [Google Scholar] [CrossRef]
- Jiao, Q.; Du, X.; Wei, J.; Li, Y.; Jiang, H. Oxidative Stress Regulated Iron Regulatory Protein IRP2 Through FBXL5-Mediated Ubiquitination-Proteasome Way in SH-SY5Y Cells. Front. Neurosci. 2019, 13, 20. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Feng, J.; Xu, X.; Wu, J.; Guo, C. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: Current advances and future directions. Biomed. Pharmacother. 2023, 167, 115538. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.-Q.; Xie, L.-J.; Leng, W.; Xue, R.-W. Trim47 is a critical regulator of cerebral ischemia-reperfusion injury through regulating apoptosis and inflammation. Biochem. Biophys. Res. Commun. 2019, 515, 651–657. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, Z.; Lin, H.; Lei, T.; Zhou, Z.; Huang, W.; Wu, X.; Zuo, L.; Wu, J.; Liu, Y.; et al. TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduct. Target. Ther. 2022, 7, 148. [Google Scholar] [CrossRef] [PubMed]
- Marzano, F.; Guerrini, L.; Pesole, G.; Sbisà, E.; Tullo, A. Emerging Roles of TRIM8 in Health and Disease. Cells 2021, 10, 561. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, Y.; Luo, Z.; Chang, L.-C.; Yoo, J.S.; Yan, H.; Choi, Y.; Xie, X.; Deverman, B.E.; Gradinaru, V.; et al. TRIM9-Mediated Resolution of Neuroinflammation Confers Neuroprotection upon Ischemic Stroke in Mice. Cell Rep. 2019, 27, 549–560. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, J.; Ji, S.; Xu, H.; Zhao, Z.; Zhang, L.; Pang, L.; Zhang, J.; Yang, P.; Ma, H. Knockdown of TRIM32 Protects Hippocampal Neurons from Oxygen–Glucose Deprivation-Induced Injury. Neurochem. Res. 2019, 44, 2182–2189. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Lu, Z.; Zhu, G.; Chen, Y.; Wu, Y. Knockdown of TRIM22 Relieves Oxygen–Glucose Deprivation/Reoxygenation-Induced Apoptosis and Inflammation Through Inhibition of NF-κB/NLRP3 Axis. Cell. Mol. Neurobiol. 2021, 41, 341–351. [Google Scholar] [CrossRef]
- Wei, X. TRIM27 ameliorates ischemic stroke by regulating NLRP3 inflammasome-mediated pyroptosis via the Akt/Nrf2/HO-1 signaling. Exp. Neurol. 2024, 371, 114599. [Google Scholar] [CrossRef]
- Ren, X.; Yu, J.; Guo, L.; Ma, H. TRIM16 protects from OGD/R-induced oxidative stress in cultured hippocampal neurons by enhancing Nrf2/ARE antioxidant signaling via downregulation of Keap1. Exp. Cell Res. 2020, 391, 111988. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Z.; Sun, X.; Ma, N.; Song, L.; Chen, D.; Gao, F. TRIM29 (Tripartite Motif Containing 29) Alleviates NLRC4 (NLR Family CARD Domain Containing Protein 4) Inflammasome Related Cerebral Injury via Promoting Proteasomal Degradation of NLRC4 in Ischemic Stroke. Stroke 2023, 54, 1377–1389. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Yu, Y.-L. The interconnected roles of TRIM21/Ro52 in systemic lupus erythematosus, primary Sjögren’s syndrome, cancers, and cancer metabolism. Cancer Cell Int. 2023, 23, 289. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.Y.; Rahmanto, A.S.; Tan, O.; Norris, M.D.; Haber, M.; Marshall, G.M.; Cheung, B.B. TRIM16 overexpression induces apoptosis through activation of caspase-2 in cancer cells. Apoptosis 2013, 18, 639–651. [Google Scholar] [CrossRef]
- Ma, L.; Yao, N.; Chen, P.; Zhuang, Z. TRIM27 promotes the development of esophagus cancer via regulating PTEN/AKT signaling pathway. Cancer Cell Int. 2019, 19, 283. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Yu, X.; Wang, S.; Wang, X.; Dai, Z.; Li, Y. METTL3 regulates TFRC ubiquitination and ferroptosis through stabilizing NEDD4L mRNA to impact stroke. Cell Biol. Toxicol. 2024, 40, 8. [Google Scholar] [CrossRef]
- Zhong, Y.; Jia, B.; Xie, C.; Hu, L.; Liao, Z.; Liu, W.; Zhang, Y.; Huang, G. Adenylate kinase 4 promotes neuronal energy metabolism and mitophagy in early cerebral ischemia via Parkin/PKM2 pathway. Exp. Neurol. 2024, 377, 114798. [Google Scholar] [CrossRef]
- Li, T.; Qin, J.-J.; Yang, X.; Ji, Y.-X.; Guo, F.; Cheng, W.-L.; Wu, X.; Gong, F.-H.; Hong, Y.; Zhu, X.-Y.; et al. The Ubiquitin E3 Ligase TRAF6 Exacerbates Ischemic Stroke by Ubiquitinating and Activating Rac1. J. Neurosci. 2017, 37, 12123–12140. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Tian, X.; Zhang, J.; Wang, Z.; Chen, G. Roles of TRAF6 in Central Nervous System. Curr. Neuropharmacol. 2018, 16, 1306–1313. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Tian, J.; Peng, Z.-M.; Liu, B.; Peng, Y.-W.; Zhang, X.-J.; Hu, Z.-Y.; Luo, X.-J.; Peng, J. Caspofungin Suppresses Brain Cell Necroptosis in Ischemic Stroke Rats via Up-Regulation of Pellino3. Cardiovasc. Drugs Ther. 2023, 37, 9–23. [Google Scholar] [CrossRef]
- Jurcau, A.; Simion, A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int. J. Mol. Sci. 2021, 23, 14. [Google Scholar] [CrossRef]
- Xu, X.; Gao, W.; Li, L.; Hao, J.; Yang, B.; Wang, T.; Li, L.; Bai, X.; Li, F.; Ren, H.; et al. Annexin A1 protects against cerebral ischemia–reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J. Neuroinflammation 2021, 18, 119. [Google Scholar] [CrossRef]
- Xu, D.; Kong, T.; Shao, Z.; Liu, M.; Zhang, R.; Zhang, S.; Kong, Q.; Chen, J.; Cheng, B.; Wang, C. Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury. Biochim. Biophys. Acta BBA—Mol. Basis Dis. 2021, 1867, 166230. [Google Scholar] [CrossRef] [PubMed]
- Przykaza, Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front. Immunol. 2021, 12, 782569. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
- Zhou, W.; Lin, D.; Zhong, Z.; Ye, Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front. Cell Dev. Biol. 2020, 8, 586487. [Google Scholar] [CrossRef]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef] [PubMed]
- Afonina, I.S.; Zhong, Z.; Karin, M.; Beyaert, R. Limiting inflammation—The negative regulation of NF-κB and the NLRP3 inflammasome. Nat. Immunol. 2017, 18, 861–869. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, S.; Zhang, C.; Kong, A.-N.T. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic. Biol. Med. 2015, 88, 337–349. [Google Scholar] [CrossRef]
- Jaiswal, A.K. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 2004, 36, 1199–1207. [Google Scholar] [CrossRef]
- Shen, L.; Gan, Q.; Yang, Y.; Reis, C.; Zhang, Z.; Xu, S.; Zhang, T.; Sun, C. Mitophagy in Cerebral Ischemia and Ischemia/Reperfusion Injury. Front. Aging Neurosci. 2021, 13, 687246. [Google Scholar] [CrossRef]
- Lou, G.; Palikaras, K.; Lautrup, S.; Scheibye-Knudsen, M.; Tavernarakis, N.; Fang, E.F. Mitophagy and Neuroprotection. Trends Mol. Med. 2020, 26, 8–20. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, L.; Li, D. Mitophagy in neurological disorders. J. Neuroinflammation 2021, 18, 297. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, J.; Zhou, X.; Lu, Y.; Ge, Y.; Zhang, X. Targeting neuronal mitophagy in ischemic stroke: An update. Burns Trauma 2023, 11, tkad018. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.M.J.; Moreira, P.I.; Ambrósio, A.F.; Alves, C.H. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol. Commun. 2020, 8, 189. [Google Scholar] [CrossRef]
- Hwang, I.; Ko, H.R.; Ahn, J.-Y. The roles of multifunctional protein ErbB3 binding protein 1 (EBP1) isoforms from development to disease. Exp. Mol. Med. 2020, 52, 1039–1047. [Google Scholar] [CrossRef]
- Ko, H.R.; Hwang, I.; Jin, E.-J.; Yun, T.; Ryu, D.; Kang, J.-S.; Park, K.W.; Shin, J.-H.; Cho, S.-W.; Lee, K.-H.; et al. Roles of ErbB3-binding protein 1 (EBP1) in embryonic development and gene-silencing control. Proc. Natl. Acad. Sci. USA 2019, 116, 24852–24860. [Google Scholar] [CrossRef]
- Dhanesha, N.; Patel, R.B.; Doddapattar, P.; Ghatge, M.; Flora, G.D.; Jain, M.; Thedens, D.; Olalde, H.; Kumskova, M.; Leira, E.C.; et al. PKM2 promotes neutrophil activation and cerebral thromboinflammation: Therapeutic implications for ischemic stroke. Blood 2022, 139, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Sulkshane, P.; Ram, J.; Thakur, A.; Reis, N.; Kleifeld, O.; Glickman, M.H. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol. 2021, 45, 102047. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, Y.; Zhang, X.; Chen, Y.; Wu, X.; Wu, J.; Shen, Z.; Jiang, L.; Wang, L.; Yang, W.; et al. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 2017, 13, 1754–1766. [Google Scholar] [CrossRef]
- Wu, F. Tissue-type plasminogen activator mediates neuronal detection and adaptation to metabolic stress. J. Cereb. Blood Flow Metab. 2013, 33, 1761–1769. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, E.; Yao, X.; Zhang, X.; Wang, Q.; Wang, Y.; Liu, J.; Fan, W.; Yi, K.; Kang, C.; et al. FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol. 2021, 38, 101792. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Z.; Feng, C.; Lin, C.; Yang, H.; Tan, L.; Ding, X.; Xu, L.; Li, G.; Pan, T.; et al. PHLDA1 contributes to hypoxic ischemic brain injury in neonatal rats via inhibiting FUNDC1-mediated mitophagy. Acta Pharmacol. Sin. 2024, 45, 1809–1820. [Google Scholar] [CrossRef]
- Mao, Z.; Tian, L.; Liu, J.; Wu, Q.; Wang, N.; Wang, G.; Wang, Y.; Seto, S. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. Phytomedicine 2022, 101, 154111. [Google Scholar] [CrossRef]
- Yu, X.; Luo, Y.; Yang, L.; Chen, P.; Duan, X. P-hydroxybenzyl alcohol ameliorates neuronal cerebral ischemia-reperfusion injury by activating mitochondrial autophagy through SIRT1. Mol. Med. Rep. 2023, 27, 68. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Xie, J.; He, J.; Li, D.; Wei, D.; Li, Y.; Li, X.; Fang, W.; Wei, G.; Lai, K. Active fraction of Polyrhachis vicina (Roger) alleviated cerebral ischemia/reperfusion injury by targeting SIRT3-mediated mitophagy and angiogenesis. Phytomedicine 2023, 121, 155104. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zheng, Y.; Liu, M.; Li, Y.; Ma, S.; Tang, W.; Yan, W.; Cao, M.; Zheng, W.; Jiang, L.; et al. BNIP3L/NIX degradation leads to mitophagy deficiency in ischemic brains. Autophagy 2021, 17, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Q.; Zhang, S.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 2022, 42, 259–305. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, M.; Wang, Y.; Wang, Q.; Wu, J. Cell Death Mechanisms in Cerebral Ischemia–Reperfusion Injury. Neurochem. Res. 2022, 47, 3525–3542. [Google Scholar] [CrossRef] [PubMed]
- Newton, K.; Strasser, A.; Kayagaki, N.; Dixit, V.M. Cell death. Cell 2024, 187, 235–256. [Google Scholar] [CrossRef]
- Ketelut-Carneiro, N.; Fitzgerald, K.A. Apoptosis, Pyroptosis, and Necroptosis—Oh My! The Many Ways a Cell Can Die. J. Mol. Biol. 2022, 434, 167378. [Google Scholar] [CrossRef]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef]
- Lee, S.S.; Fu, N.Y.; Sukumaran, S.K.; Wan, K.F.; Wan, Q.; Yu, V.C. TRIM39 is a MOAP-1-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process. Exp. Cell Res. 2009, 315, 1313–1325. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, C.; Wang, Y.; Xiang, J.; Chen, L.; Yuan, J.; Chen, C.; Tian, H. Ferritinophagy and Ferroptosis in Cerebral Ischemia Reperfusion Injury. Neurochem. Res. 2024, 49, 1965–1979. [Google Scholar] [CrossRef]
- Zhou, L.; Han, S.; Guo, J.; Qiu, T.; Zhou, J.; Shen, L. Ferroptosis—A New Dawn in the Treatment of Organ Ischemia–Reperfusion Injury. Cells 2022, 11, 3653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Q.; Meng, H.; Duan, H.; Liu, X.; Wu, J.; Gao, F.; Wang, S.; Tan, R.; Yuan, J. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 12. [Google Scholar] [CrossRef]
- Lu, L.; Jifu, C.; Xia, J.; Wang, J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed. Pharmacother. 2024, 175, 116753. [Google Scholar] [CrossRef]
- Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019, 23, 101107. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, X.; Xiong, X.; Zhu, H.; Chen, R.; Zhang, S.; Chen, G.; Jian, Z. Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants 2022, 11, 2377. [Google Scholar] [CrossRef]
- Rotblat, B.; Southwell, A.L.; Ehrnhoefer, D.E.; Skotte, N.H.; Metzler, M.; Franciosi, S.; Leprivier, G.; Somasekharan, S.P.; Barokas, A.; Deng, Y.; et al. HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. Proc. Natl. Acad. Sci. USA 2014, 111, 3032–3037. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, Y.; Wang, Y.; Zhu, R.; Li, H.; Liu, Y.; Shen, N. The E3 ligase TRIM26 suppresses ferroptosis through catalyzing K63-linked ubiquitination of GPX4 in glioma. Cell Death Dis. 2023, 14, 695. [Google Scholar] [CrossRef]
- Liu, X.; Yan, C.; Chang, C.; Meng, F.; Shen, W.; Wang, S.; Zhang, Y. FOXA2 Suppression by TRIM36 Exerts Anti-Tumor Role in Colorectal Cancer Via Inducing NRF2/GPX4-Regulated Ferroptosis. Adv. Sci. 2023, 10, 2304521. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, H.; Yao, J.; Jin, W.; Pan, H.; Pan, Z.; Xie, D.; Xie, D. TRIM59 promotes steatosis and ferroptosis in non-alcoholic fatty liver disease via enhancing GPX4 ubiquitination. Hum. Cell 2022, 36, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, B.; Xu, A.; Shen, J.; Li, K.; Hao, K.; Hao, R.; Yang, W.; Jiang, W.; Zheng, Y.; et al. TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biol. 2022, 56, 102451. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Jia, M.; Xiao, L.; Wang, Z.; Yao, R.; Zhang, Y.; Gao, L. TRIM-containing 44 aggravates cardiac hypertrophy via TLR4/NOX4-induced ferroptosis. J. Mol. Med. 2023, 101, 685–697. [Google Scholar] [CrossRef]
- Wang, J.; Fang, Y.; Fan, R.A.; Kirk, C.J. Proteasome inhibitors and their pharmacokinetics, pharmacodynamics, and metabolism. Int. J. Mol. Sci. 2021, 22, 11595. [Google Scholar] [CrossRef]
- Williams, A.J.; Berti, R.; Dave, J.R.; Elliot, P.J.; Adams, J.; Tortella, F.C. Delayed treatment of ischemia/reperfusion brain injury: Extended therapeutic window with the proteosome inhibitor MLN519. Stroke 2004, 35, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.-M.; Redon, C.E.; Thakur, B.L.; Bahta, M.K.; Aladjem, M.I. Regulation of cell cycle drivers by cullin-RING ubiquitin ligases. Exp. Mol. Med. 2020, 52, 1637–1651. [Google Scholar] [CrossRef]
- Shah Zaib Saleem, R.; Schwalm, M.P.; Knapp, S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg. Med. Chem. 2024, 105, 117718. [Google Scholar] [CrossRef]
Family | CIRI | E3 Ligase | Molecular Mechanisms | References |
---|---|---|---|---|
RING family | Neuroinflammation | RNF41/RNF56/RNF114 | Negatively regulating the NF-κB pathway | [73,74,75] |
RNF121 | Positively regulating the NF-κB pathway | [76] | ||
RNF152 | Positively regulating the TLR/IL-1R signaling pathway | [77] | ||
Necroptosis | RNF216 | Suppressing necroptosis through interaction with MLKL | [78] | |
Ferroptosis | RNF217 | Ubiquitinating FBN to trigger ferroptosis | [79] | |
FBOX/FBXL5 | Ubiquitinating IRP2 to maintain iron homeostasis | [80] | ||
FBOX10 | Maintaining mitochondrial function and protecting neurons from damage by degrading ubiquitinated ASCL4 | [81] | ||
TRIM family | Neuroinflammation | TRIM45/TRIM47 | Positively regulating the NF-κB pathway | [32,82,83] |
TRIM 8 | In the cytoplasm, positively regulating the NF-κB pathway. In the nucleus, negatively regulating the NF-κB pathway | [84] | ||
TRIM9 | Negatively regulating the NF-κB pathway | [85] | ||
TRIM62 knockout | Repressing the NLRP3 inflammasome to restrain neuroinflammation | [55] | ||
TRIM32 knockout | Activating the NRF2 signaling pathway to inhibit oxidative damage | [86] | ||
TRIM22 knockout | Repressing the NF-κB/NLRP3 axis to restrain neuroinflammation | [87] | ||
TRIM27 overexpression | Activating the Akt/NRF2/HO-1 pathway to restrain neuroinflammation | [88] | ||
TRIM16 overexpression | Downregulating Keap1 to enhance NRF2/ARE antioxidant signaling | [89] | ||
TRIM29 | Repressing the NLRP3 inflammasome to restrain neuroinflammation | [90] | ||
Apoptosis | TRIM21 | Inducing apoptosis by targeting the antiapoptotic protein BCL2 through p53 | [91] | |
TRIM69 | Inducing the expression of Bax to promote apoptosis | [56] | ||
TRIM16 | Inducing apoptosis by directly binding to caspase-2 and modulating its activity | [92] | ||
TRIM27 | Positively regulating TNF-induced apoptosis | [93] | ||
TRIM45 knockout | Inhibiting apoptosis via reversing the overexpression of cleaved caspase-3, caspase-9, and PARP | [33] | ||
HECT family | Ferroptosis | NEDD4L | Ubiquitinating TFRC to inhibit neuronal damage and ferroptosis | [61,94] |
NEDD4-2 | Ubiquitinating DMT1 to effectively mitigate high levels of iron metal toxicity | [62] | ||
RBR family | Mitophagy | Parkin | AK4/Parkin/PKM axis prevents cerebral ischemia damage by regulating mitophagy | [95] |
Other E3 ligases | Neuroinflammation | TRAF6 | Activating RAC1 to promote neuroinflammatory and neuro-oxidative signaling, exacerbating neuronal death | [96,97] |
Necroptosis | CHIP | Negatively regulating necroptosis by increasing the degradation of RIPK1 and RIPK3 | [57] | |
Pellino3 | Preventing the formation of death-induced signaling complexes by targeting RIPK1 | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yu, X.; Liu, Q.; Fang, Z.; Wang, H. The Roles of E3 Ubiquitin Ligases in Cerebral Ischemia–Reperfusion Injury. Int. J. Mol. Sci. 2025, 26, 6723. https://doi.org/10.3390/ijms26146723
Li M, Yu X, Liu Q, Fang Z, Wang H. The Roles of E3 Ubiquitin Ligases in Cerebral Ischemia–Reperfusion Injury. International Journal of Molecular Sciences. 2025; 26(14):6723. https://doi.org/10.3390/ijms26146723
Chicago/Turabian StyleLi, Man, Xiaoxiao Yu, Qiang Liu, Zhi Fang, and Haijun Wang. 2025. "The Roles of E3 Ubiquitin Ligases in Cerebral Ischemia–Reperfusion Injury" International Journal of Molecular Sciences 26, no. 14: 6723. https://doi.org/10.3390/ijms26146723
APA StyleLi, M., Yu, X., Liu, Q., Fang, Z., & Wang, H. (2025). The Roles of E3 Ubiquitin Ligases in Cerebral Ischemia–Reperfusion Injury. International Journal of Molecular Sciences, 26(14), 6723. https://doi.org/10.3390/ijms26146723