Novel Compounds Featuring a Thiophene Carboxamide Scaffold: Synthesis, Characterization and Antiproliferative Evaluation
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Evaluation of the Cytotoxic Effect
2.2.2. Evaluation of Cell Morphology
2.2.3. Effects of MB-D1, MB-D2, and MB-D4 Derivatives on Caspase-3/-7 Production
2.2.4. Effects if MB-D1, MB-D2, and MB-D4 Derivatives on Mitochondrial Membrane Potential
2.2.5. Effects of MB-D1, MB-D2, and MB-D4 Derivatives on ROS Production
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of MB-D1
3.1.2. Synthesis of MB-D2
3.1.3. Synthesis of MB-D3
3.1.4. Synthesis of MB-D4
3.2. Biology
3.2.1. Cell Culture
3.2.2. Cell Viability Assessment
3.2.3. Cell Morphology Assessment
3.2.4. Caspase-3/7 Assay
3.2.5. JC-1 Assay
3.2.6. H2DCDFA Assay
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, R.; Verma, P. Therapeutic Importance of Synthetic Thiophene. Chem. Cent. J. 2018, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015, 20, 16852–16891. [Google Scholar] [CrossRef] [PubMed]
- Archna; Pathania, S.; Chawla, P.A. Thiophene-Based Derivatives as Anticancer Agents: An Overview on Decade’s Work. Bioorg. Chem. 2020, 101, 104026. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Chaib, S.; López-Domínguez, J.A.; Lalinde-Gutiérrez, M.; Prats, N.; Marin, I.; Boix, O.; García-Garijo, A.; Meyer, K.; Muñoz, M.I.; Aguilera, M.; et al. The Efficacy of Chemotherapy Is Limited by Intratumoral Senescent Cells Expressing PD-L2. Nat. Cancer 2024, 5, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Yahya, E.B.; Alqadhi, A.M. Recent Trends in Cancer Therapy: A Review on the Current State of Gene Delivery. Life Sci. 2021, 269, 119087. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Kumar, D.; Jaiswal, S.; Goel, K.K.; Rawat, P.; Srivastava, V.; Dhiman, S.; Jadhav, H.R.; Dwivedi, A.R. Medicinal Chemistry-Based Perspectives on Thiophene and Its Derivatives: Exploring Structural Insights to Discover Plausible Druggable Leads. RSC Med. Chem. 2025, 16, 481–510. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Kumar, S. Biological Diversity of Thiophene: A Review. J. Adv. Sci. Res. 2012, 3, 3–10. [Google Scholar]
- Yılmaz, C.; Othman Pirdawid, A.; Fidan Babat, C.; Konuş, M.; Çetin, D.; Kıvrak, A.; Algso, M.A.S.; Arslan, Ş.; Mutlu, D.; Otur, Ç.; et al. A Thiophene Derivative, 2-Bromo-5-(2-(Methylthio)Phenyl)Thiophene, Has Effective Anticancer Potential with Other Biological Properties. ChemistrySelect 2022, 7, e202200784. [Google Scholar] [CrossRef]
- Bukhari, S.N.A. Synthesis and Evaluation of New Chalcones and Oximes as Anticancer Agents. RSC Adv. 2022, 12, 10307–10320. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, J.; Feng, L.; Zhou, Q.; Xie, Q.; Shen, Y.; Ji, R.; Liu, X.; Wang, Y.; Hu, C. Discovery of Novel Thiophene-3-Carboxamide Derivatives as Potential VEGFR-2 Inhibitors with Anti-Angiogenic Properties. Bioorg. Chem. 2024, 147, 107358. [Google Scholar] [CrossRef] [PubMed]
- Akatsuka, A.; Kojima, N.; Okamura, M.; Dan, S.; Yamori, T. A Novel Thiophene-3-Carboxamide Analog of Annonaceous Acetogenin Exhibits Antitumor Activity via Inhibition of Mitochondrial Complex I. Pharmacol. Res. Perspect. 2016, 4, e00246. [Google Scholar] [CrossRef] [PubMed]
- Gulipalli, K.C.; Bodige, S.; Ravula, P.; Endoori, S.; Vanaja, G.R.; Suresh Babu, G.; Narendra Sharath Chandra, J.N.; Seelam, N. Design, Synthesis, in Silico and in Vitro Evaluation of Thiophene Derivatives: A Potent Tyrosine Phosphatase 1B Inhibitor and Anticancer Activity. Bioorg. Med. Chem. Lett. 2017, 27, 3558–3564. [Google Scholar] [CrossRef] [PubMed]
- Shams, H.Z.; Mohareb, R.M.; Helal, M.H.; Mahmoud, A.E. Novel Synthesis and Antitumor Evaluation of Polyfunctionally Substituted Heterocyclic Compounds Derived from 2-Cyano-N-(3-Cyano-4,5,6,7-Tetrahydrobenzo[b]Thiophen-2-Yl)-Acetamide. Molecules 2010, 16, 52–73. [Google Scholar] [CrossRef] [PubMed]
- Morales-Tenorio, M.; Lasala, F.; Garcia-Rubia, A.; Aledavood, E.; Heung, M.; Olal, C.; Escudero-Pérez, B.; Alonso, C.; Martínez, A.; Muñoz-Fontela, C.; et al. Discovery of Thiophene Derivatives as Potent, Orally Bioavailable, and Blood–Brain Barrier-Permeable Ebola Virus Entry Inhibitors. J. Med. Chem. 2024, 67, 16381–16402. [Google Scholar] [CrossRef] [PubMed]
- Hwu, J.R.; Panja, A.; Jayakumar, S.; Tsay, S.-C.; Tan, K.-T.; Huang, W.-C.; Hu, Y.-C.; Leyssen, P.; Neyts, J. Enterovirus Inhibition by Hinged Aromatic Compounds with Polynuclei. Molecules 2020, 25, 3821. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Verma, P.K. Synthesis of Thiophene Derivatives and Their Anti-Microbial, Antioxidant, Anticorrosion and Anticancer Activity. BMC Chem. 2019, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Swain, R.M.; Sanchez, A.; Gutierrez, D.A.; Varela-Ramirez, A.; Aguilera, R.J. Thiophene Derivative Inflicts Cytotoxicity via an Intrinsic Apoptotic Pathway on Human Acute Lymphoblastic Leukemia Cells. PLoS ONE 2023, 18, e0295441. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Groscurth, P. Morphological Features of Cell Death. News Physiol. Sci. Int. J. Physiol. Prod. Jointly Int. Union Physiol. Sci. Am. Physiol. Soc. 2004, 19, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Wei, S.; Kim, B.-S.; Kim, B.; Bae, S.-J.; Chae, Y.C.; Ryu, D.; Ha, K.-T. Diversity and Complexity of Cell Death: A Historical Review. Exp. Mol. Med. 2023, 55, 1573–1594. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Chaudhry, G.-E.-S. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Voisine, C.; Craig, E.A.; Zufall, N.; von Ahsen, O.; Pfanner, N.; Voos, W. The Protein Import Motor of Mitochondria: Unfolding and Trapping of Preproteins Are Distinct and Separable Functions of Matrix Hsp70. Cell 1999, 97, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Reed, J.C. Mitochondria-Dependent Apoptosis and Cellular PH Regulation. Cell Death Differ. 2000, 7, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Reed, J.C. Mitochondrial Control of Cell Death. Nat. Med. 2000, 6, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Ricci, J.-E.; Gottlieb, R.A.; Green, D.R. Caspase-Mediated Loss of Mitochondrial Function and Generation of Reactive Oxygen Species during Apoptosis. J. Cell Biol. 2003, 160, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Zamzami, N.; Marchetti, P.; Castedo, M.; Zanin, C.; Vayssière, J.L.; Petit, P.X.; Kroemer, G. Reduction in Mitochondrial Potential Constitutes an Early Irreversible Step of Programmed Lymphocyte Death in Vivo. J. Exp. Med. 1995, 181, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Takada, K. Reactive Oxygen Species in Cancer: Current Findings and Future Directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in Cancer: Initiators, Amplifiers or an Achilles’ Heel? Nat. Rev. Cancer 2014, 14, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of Apoptosis Signalling Pathways by Reactive Oxygen Species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed]
- Kowaltowski, A.J.; de Souza-Pinto, N.C.; Castilho, R.F.; Vercesi, A.E. Mitochondria and Reactive Oxygen Species. Free Radic. Biol. Med. 2009, 47, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fang, P.; Mai, J.; Choi, E.T.; Wang, H.; Yang, X. Targeting Mitochondrial Reactive Oxygen Species as Novel Therapy for Inflammatory Diseases and Cancers. J. Hematol. Oncol. 2013, 6, 19. [Google Scholar] [CrossRef] [PubMed]
MB-D1 | MB-D2 | MB-D3 | MB-D4 | |
---|---|---|---|---|
HaCaT | 74.79 | >100 | >100 | >100 |
A375 | 67.57 | 32.36 | >100 | 84.3 |
MCF-7 | >100 | 93.33 | >100 | >100 |
HT-29 | >100 | 65.63 | >100 | >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mara, B.-I.; Mioc, A.; Deveseleanu-Corici, L.-N.; Șoica, C.; Cseh, L. Novel Compounds Featuring a Thiophene Carboxamide Scaffold: Synthesis, Characterization and Antiproliferative Evaluation. Int. J. Mol. Sci. 2025, 26, 6823. https://doi.org/10.3390/ijms26146823
Mara B-I, Mioc A, Deveseleanu-Corici L-N, Șoica C, Cseh L. Novel Compounds Featuring a Thiophene Carboxamide Scaffold: Synthesis, Characterization and Antiproliferative Evaluation. International Journal of Molecular Sciences. 2025; 26(14):6823. https://doi.org/10.3390/ijms26146823
Chicago/Turabian StyleMara, Bogdan-Ionuț, Alexandra Mioc, Livia-Nicoleta Deveseleanu-Corici, Codruța Șoica, and Liliana Cseh. 2025. "Novel Compounds Featuring a Thiophene Carboxamide Scaffold: Synthesis, Characterization and Antiproliferative Evaluation" International Journal of Molecular Sciences 26, no. 14: 6823. https://doi.org/10.3390/ijms26146823
APA StyleMara, B.-I., Mioc, A., Deveseleanu-Corici, L.-N., Șoica, C., & Cseh, L. (2025). Novel Compounds Featuring a Thiophene Carboxamide Scaffold: Synthesis, Characterization and Antiproliferative Evaluation. International Journal of Molecular Sciences, 26(14), 6823. https://doi.org/10.3390/ijms26146823