Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance
Abstract
1. Introduction
2. Genomics of Metastatic Cancer
3. Metabolic Plasticity in Cancer Metastasis
4. Metastatic Cancer and Drug Resistance
5. Immunity and Chemoresistance in Metastatic Cancer
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gerstberger, S.; Jiang, Q.; Ganesh, K. Metastasis. Cell 2023, 186, 1564–1579. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yang, K.; Xuan, Z.; Li, J.; Liu, Y.; Zhao, Y.; Zheng, Z.; Bai, Y.; Shi, Z.; Shao, C.; et al. BCKDK Regulates Breast Cancer Cell Adhesion and Tumor Metastasis by Inhibiting TRIM21 Ubiquitinate Talin1. Cell Death Dis. 2023, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- Krieg, S.; Fernandes, S.I.; Kolliopoulos, C.; Liu, M.; Fendt, S.M. Metabolic Signaling in Cancer Metastasis. Cancer Discov. 2024, 14, 934–952. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, P.; Zhang, Z.; Wang, Z.; Zhou, K.; Song, M.; Ji, Y.; Zang, F.; Lou, L.; Rao, K.; et al. Integrated Multi-Omics Profiling to Dissect the Spatiotemporal Evolution of Metastatic Hepatocellular Carcinoma. Cancer Cell 2024, 42, 135–156.e17. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhang, X.; Ou, Y.; Zou, L.; Zhang, D.; Yang, Q.; Qin, Y.; Du, X.; Li, W.; Yuan, Z.; et al. Anoikis Resistance—Protagonists of Breast Cancer Cells Survive and Metastasize after ECM Detachment. Cell Commun. Signal. 2023, 21, 190. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.; Fong, C.; Luthra, A.; Smith, S.A.; DiNatale, R.G.; Nandakumar, S.; Walch, H.; Chatila, W.K.; Madupuri, R.; Kundra, R.; et al. Genomic Characterization of Metastatic Patterns from Prospective Clinical Sequencing of 25,000 Patients. Cell 2022, 185, 563–575.e11. [Google Scholar] [CrossRef] [PubMed]
- Cañellas-Socias, A.; Sancho, E.; Batlle, E. Mechanisms of Metastatic Colorectal Cancer. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 609–625. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Dai, F.; Feng, L.; Zou, H.; Feng, L.; Xu, M. Communication Between Epithelial-Mesenchymal Plasticity and Cancer Stem Cells: New Insights into Cancer Progression. Front. Oncol. 2021, 11, 617597. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Li, T.; Feng, Z.; Liu, C.; Shao, Y.; Zhu, M.; Gong, C.; Wang, B.; Cao, J.; Wang, L.; et al. Characterizations of Cancer Gene Mutations in Chinese Metastatic Breast Cancer Patients. Front. Oncol. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Freitag, C.E.; Mei, P.; Wei, L.; Parwani, A.V.; Li, Z. Genetic Alterations and Their Association with Clinicopathologic Characteristics in Advanced Breast Carcinomas: Focusing on Clinically Actionable Genetic Alterations. Hum. Pathol. 2020, 102, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Zhang, B.; Ahrenfeldt, J.; Joseph, J.V.; Riedel, M.; Gao, Z.; Thomsen, S.K.; Christensen, D.S.; Bak, R.O.; Hager, H.; et al. CRISPR/Cas9 Model of Prostate Cancer Identifies Kmt2c Deficiency as a Metastatic Driver by Odam/Cabs1 Gene Cluster Expression. Nat. Commun. 2024, 15, 2088. [Google Scholar] [CrossRef] [PubMed]
- Filipe, E.C.; Velayuthar, S.; Philp, A.; Nobis, M.; Latham, S.L.; Parker, A.L.; Murphy, K.J.; Wyllie, K.; Major, G.S.; Contreras, O.; et al. Tumor Biomechanics Alters Metastatic Dissemination of Triple Negative Breast Cancer via Rewiring Fatty Acid Metabolism. Adv. Sci. 2024, 11, e2307963. [Google Scholar] [CrossRef] [PubMed]
- Güleç Taşkıran, A.E.; Karaoğlu, D.A.; Eylem, C.C.; Ermiş, Ç.; Güderer, İ.; Nemutlu, E.; Demirkol Canlı, S.; Banerjee, S. Glutamine Withdrawal Leads to the Preferential Activation of Lipid Metabolism in Metastatic Colorectal Cancer. Transl. Oncol. 2024, 48, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wan, X.; Yang, L.; Qin, Y.; Chen, S.; Liu, Y.; Sun, Y.; Qiu, Y.; Huang, L.; Qin, Q.; et al. RGCC-Mediated PLK1 Activity Drives Breast Cancer Lung Metastasis by Phosphorylating AMPKα2 to Activate Oxidative Phosphorylation and Fatty Acid Oxidation. J. Exp. Clin. Cancer Res. 2023, 42, 342. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Jiang, J.; Zhou, L.; Huang, Z.; Nice, E.C.; Huang, C.; Fu, L. Mitochondrial Adaptation in Cancer Drug Resistance: Prevalence, Mechanisms, and Management. J. Hematol. Oncol. 2022, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, W.; Cao, X.; Gu, H.; Huang, J.; Wu, C.; Wang, L.; Sha, X.; Shen, B.; Wang, T.; et al. Exosomal CD44 Transmits Lymph Node Metastatic Capacity Between Gastric Cancer Cells via YAP-CPT1A-Mediated FAO Reprogramming. Front. Oncol. 2022, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, P.; Liu, W.; Liu, G.; Zhang, J.; Yan, M.; Duan, Y.; Yang, N. A Positive Feedback Loop between ZEB2 and ACSL4 Regulates Lipid Metabolism to Promote Breast Cancer Metastasis. Elife 2023, 12, 1–25. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Tao, Q.; Wu, Y.; Liu, Z.; Zeng, C.; Chen, Y. Identification of Glutamine Metabolism-Related Gene Signature to Predict Colorectal Cancer Prognosis. J. Cancer 2024, 15, 3199–3214. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; He, J.; Zhang, H.; Wang, H.; Tetz, G.; Maguire, C.A.; Wang, Y.; Onuma, A.; Genkin, D.; Tetz, V.; et al. AAV-Mediated Gene Transfer of DNase I in the Liver of Mice with Colorectal Cancer Reduces Liver Metastasis and Restores Local Innate and Adaptive Immune Response. Mol. Oncol. 2020, 14, 2920–2935. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.; Massagué, J. Targeting Metastatic Cancer. Nat. Med. 2021, 27, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, X. Characteristics and Significance of the Pre-Metastatic Niche. Cancer Cell 2016, 30, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Brodt, P. Role of the Microenvironment in Liver Metastasis: From Pre- to Prometastatic Niches. Clin. Cancer Res. 2016, 22, 5971–5982. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Li, Q.; Shi, J.; Wei, J.; Li, P.; Chang, C.H.; Shultz, L.D.; Ren, G. Lung Fibroblasts Facilitate Pre-Metastatic Niche Formation by Remodeling the Local Immune Microenvironment. Immunity 2022, 55, 1483–1500.e9. [Google Scholar] [CrossRef] [PubMed]
- Wortzel, I.; Dror, S.; Kenific, C.M.; Lyden, D. Exosome-Mediated Metastasis: Communication from a Distance. Dev. Cell 2019, 49, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Priestley, P.; Baber, J.; Lolkema, M.P.; Steeghs, N.; de Bruijn, E.; Shale, C.; Duyvesteyn, K.; Haidari, S.; van Hoeck, A.; Onstenk, W.; et al. Pan-Cancer Whole-Genome Analyses of Metastatic Solid Tumours. Nature 2019, 575, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Fang, Z.; Tang, S.; Cheng, R.; Li, Y.; Ren, S.; Su, C.; Min, W.; Guo, X.; Zhu, W.; et al. Mutational Landscape and Evolutionary Pattern of Liver and Brain Metastasis in Lung Adenocarcinoma. J. Thorac. Oncol. 2021, 16, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Vizoso, M.; Ferreira, H.J.; Lopez-Serra, P.; Carmona, F.J.; Martínez-Cardús, A.; Girotti, M.R.; Villanueva, A.; Guil, S.; Moutinho, C.; Liz, J.; et al. Epigenetic Activation of a Cryptic TBC1D16 Transcript Enhances Melanoma Progression by Targeting EGFR. Nat. Med. 2015, 21, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, Y.D.; Yu, G.Y.; Cui, J.R.; Lou, Z.; Zhang, H.; Huang, Y.; Bai, C.G.; Deng, L.L.; Liu, P.; et al. Integrated Omics of Metastatic Colorectal Cancer. Cancer Cell 2020, 38, 734–747.e9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, X.T.; Yu, H.Q.; Fang, L.; Wu, D.; Luo, Y.D.; Zhang, Y.J.; Xie, C.M. Elevated FBXL6 Expression in Hepatocytes Activates VRK2-Transketolase-ROS-MTOR-Mediated Immune Evasion and Liver Cancer Metastasis in Mice. Exp. Mol. Med. 2023, 55, 2162–2176. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Kocherginsky, M.; Agarwal, N.; Adra, N.; Zhang, J.; Paller, C.J.; Picus, J.; Reichert, Z.R.; Szmulewitz, R.Z.; Tagawa, S.T.; et al. Abiraterone, Olaparib, or Abiraterone + Olaparib in First-Line Metastatic Castration-Resistant Prostate Cancer with DNA Repair Defects (BRCAAway). Clin. Cancer Res. 2024, 30, 4318–4328. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.H.; Sokolova, A.O.; McNatty, A.L.; Cheng, H.H.; Eisenberger, M.A.; Bryce, A.H.; Schweizer, M.T.; Antonarakis, E.S. Differential Response to Olaparib Treatment Among Men with Metastatic Castration-Resistant Prostate Cancer Harboring BRCA1 or BRCA2 Versus ATM Mutations. Eur. Urol. 2019, 76, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Kabbarah, O.; Nogueira, C.; Feng, B.; Nazarian, R.M.; Bosenberg, M.; Wu, M.; Scott, K.L.; Kwong, L.N.; Xiao, Y.; Cordon-Cardo, C.; et al. Integrative Genome Comparison of Primary and Metastatic Melanomas. PLoS ONE 2010, 5, e10770. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Recio, S.; Hinoue, T.; Wheeler, G.L.; Kelly, B.J.; Garrido-Castro, A.C.; Pascual, T.; De Cubas, A.A.; Xia, Y.; Felsheim, B.M.; McClure, M.B.; et al. Multiomics in Primary and Metastatic Breast Tumors from the AURORA US Network Finds Microenvironment and Epigenetic Drivers of Metastasis. Nat. Cancer 2023, 4, 128–147. [Google Scholar] [CrossRef] [PubMed]
- Duquette, M.; Sadow, P.M.; Husain, A.; Sims, J.N.; Antonello, Z.A.; Fischer, A.H.; Song, C.; Castellanos-Rizaldos, E.; Makrigiorgos, G.M.; Kurebayashi, J.; et al. Metastasis-Associated MCL1 and P16 Copy Number Alterations Dictate Resistance to Vemurafenib in a BRAFV600E Patient-Derived Papillary Thyroid Carcinoma Preclinical Model. Oncotarget 2015, 6, 42445–42467. [Google Scholar] [CrossRef] [PubMed]
- Jemaà, M.; Daams, R.; Charfi, S.; Mertens, F.; Huber, S.M.; Massoumi, R. Tetraploidization Increases the Motility and Invasiveness of Cancer Cells. Int. J. Mol. Sci. 2023, 24, 13926. [Google Scholar] [CrossRef] [PubMed]
- Bakhoum, S.F.; Ngo, B.; Laughney, A.M.; Cavallo, J.A.; Murphy, C.J.; Ly, P.; Shah, P.; Sriram, R.K.; Watkins, T.B.K.; Taunk, N.K.; et al. Chromosomal Instability Drives Metastasis through a Cytosolic DNA Response. Nature 2018, 553, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hubisz, M.J.; Earlie, E.M.; Duran, M.A.; Hong, C.; Varela, A.A.; Lettera, E.; Deyell, M.; Tavora, B.; Havel, J.J.; et al. Non-Cell-Autonomous Cancer Progression from Chromosomal Instability. Nature 2023, 620, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, F.; Ng, C.K.Y.; Patsouris, A.; Droin, N.; Piscuoglio, S.; Carbuccia, N.; Soria, J.C.; Dien, A.T.; Adnani, Y.; Kamal, M.; et al. Genomic Characterization of Metastatic Breast Cancers. Nature 2019, 569, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, Z.; Ma, Z.; Curtis, C. Multi-Cancer Analysis of Clonality and the Timing of Systemic Spread in Paired Primary Tumors and Metastases. Nat. Genet. 2020, 52, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg Effect: Essential Part of Metabolic Reprogramming and Central Contributor to Cancer Progression. Int. J. Radiat. Biol. 2019, 95, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Li, A.M.; Ducker, G.S.; Li, Y.; Seoane, J.A.; Xiao, Y.; Melemenidis, S.; Zhou, Y.; Liu, L.; Vanharanta, S.; Graves, E.E.; et al. Metabolic Profiling Reveals a Dependency of Human Metastatic Breast Cancer on Mitochondrial Serine and One-Carbon Unit Metabolism. Mol. Cancer Res. 2020, 18, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Hicks, E.; Layosa, M.A.; Andolino, C.; Truffer, C.; Song, Y.; Heden, T.D.; Donkin, S.S.; Teegarden, D. Gluconeogenesis and Glycogenolysis Required in Metastatic Breast Cancer Cells. Front. Oncol. 2024, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Jiang, H.; Jia, Y.; Liao, Y.; Shao, C.; Zhou, Y.; Li, J.; Liao, Y.; Huang, H.; Pan, Y.; et al. Fatty Acid Oxidation Supports Lymph Node Metastasis of Cervical Cancer via Acetyl-CoA-Mediated Stemness. Adv. Sci. 2024, 11, e2308422. [Google Scholar] [CrossRef] [PubMed]
- Pascual, G.; Domínguez, D.; Elosúa-Bayes, M.; Beckedorff, F.; Laudanna, C.; Bigas, C.; Douillet, D.; Greco, C.; Symeonidi, A.; Hernández, I.; et al. Dietary Palmitic Acid Promotes a Prometastatic Memory via Schwann Cells. Nature 2021, 599, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Ngo, J.; Choi, D.W.; Stanley, I.A.; Stiles, L.; Molina, A.J.A.; Chen, P.; Lako, A.; Sung, I.C.H.; Goswami, R.; Kim, M.; et al. Mitochondrial Morphology Controls Fatty Acid Utilization by Changing CPT1 Sensitivity to Malonyl-CoA. EMBO J. 2023, 42, e111901. [Google Scholar] [CrossRef] [PubMed]
- Ruidas, B.; Choudhury, N.; Chaudhury, S.S.; Sur, T.K.; Bhowmick, S.; Saha, A.; Das, P.; De, P.; Das Mukhopadhyay, C. Precision Targeting of Fat Metabolism in Triple Negative Breast Cancer with a Biotinylated Copolymer. J. Mater. Chem. B 2025, 13, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.F.; Obre, E.; De Melo, F.H.M.; Santos, G.C.; Galina, A.; Jasiulionis, M.G.; Rossignol, R.; Rumjanek, F.D.; Amoê, N.D. Enhanced OXPHOS, Glutaminolysis and β-Oxidation Constitute the Metastatic Phenotype of Melanoma Cells. Biochem. J. 2016, 473, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Qiao, F.; Chen, L.; Lu, C.; Xu, L.; Gao, X. Serum Metabolomic Signatures of Lymph Node Metastasis of Esophageal Squamous Cell Carcinoma. J. Proteome Res. 2014, 13, 4091–4103. [Google Scholar] [CrossRef] [PubMed]
- Aurora, A.B.; Khivansara, V.; Leach, A.; Gill, J.G.; Martin-Sandoval, M.; Yang, C.; Kasitinon, S.Y.; Bezwada, D.; Tasdogan, A.; Gu, W.; et al. Loss of Glucose 6-Phosphate Dehydrogenase Function Increases Oxidative Stress and Glutaminolysis in Metastasizing Melanoma Cells. Proc. Natl. Acad. Sci. USA 2022, 119, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-K.; Jeong, S.-H.; Jang, C.; Bae, H.; Kim, Y.H.; Park, I.; Kim, S.K.; Koh, G.Y. Tumor Metastasis to Lymph Nodes Requires YAP-Dependent Metabolic Adaptation. Science 2019, 363, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Elia, I.; Rossi, M.; Stegen, S.; Broekaert, D.; Doglioni, G.; van Gorsel, M.; Boon, R.; Escalona-Noguero, C.; Torrekens, S.; Verfaillie, C.; et al. Breast Cancer Cells Rely on Environmental Pyruvate to Shape the Metastatic Niche. Nature 2019, 568, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qin, Z.; Mao, Y.; Wang, N.; Zhang, W.; Wang, Y.; Chen, Y.; Jia, L.; Peng, X. Pharmacological Inhibition of MYC to Mitigate Chemoresistance in Preclinical Models of Squamous Cell Carcinoma. Theranostics 2024, 14, 622–639. [Google Scholar] [CrossRef] [PubMed]
- Karki, U.; Thapa, B.; Niroula, S.; Poudel, S.; Stender, M.; Khanal, D. Refractory Lactic Acidosis and Hypoglycemia in a Patient with Metastatic Esophageal Cancer Due to the Warburg Effect. Cureus 2023, 15, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bergers, G.; Fendt, S.M. The Metabolism of Cancer Cells during Metastasis. Nat. Rev. Cancer 2021, 21, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.M.; Carapeto, F.C.L.; Joon, A.Y.; Haydu, L.E.; Chen, H.; Wang, F.; Van Arnam, J.S.; McQuade, J.L.; Wani, K.; Kirkwood, J.M.; et al. Molecular and Immunological Associations of Elevated Serum Lactate Dehydrogenase in Metastatic Melanoma Patients: A Fresh Look at an Old Biomarker. Cancer Med. 2020, 9, 8650–8661. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, S.M.; Mohamed, W.G.; Hassan Seddik, M.A.; Ahmed Ahmed, A.S.; Mahmoud, A.G.; Amer, W.H.; Helmy Nabo, M.M.; Hamed, A.R.; Ahmed, N.S.; Abd-Allah, A.A.R. Safety and Outcome of Treatment of Metastatic Melanoma Using 3-Bromopyruvate: A Concise Literature Review and Case Study. Chin. J. Cancer 2014, 33, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Morine, Y.; Imura, S.; Ikemoto, T.; Saito, Y.; Takasu, C.; Yamada, S.; Shimada, M. HIF-1α Expression in Liver Metastasis but Not Primary Colorectal Cancer Is Associated with Prognosis of Patients with Colorectal Liver Metastasis. World J. Surg. Oncol. 2020, 18, 241. [Google Scholar] [CrossRef] [PubMed]
- Godet, I.; Mamo, M.; Thurnheer, A.; Rosen, D.M.; Gilkes, D.M. Post-Hypoxic Cells Promote Metastatic Recurrence after Chemotherapy Treatment in TNBC. Cancers 2021, 13, 5509. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Fahrmann, J.F.; Lee, H.; Li, Y.J.; Tripathi, S.C.; Yue, C.; Zhang, C.; Lifshitz, V.; Song, J.; Yuan, Y.; et al. JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab. 2018, 27, 136–150.e5. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, P.; Wang, X.; Li, Y.; Yang, J.; Xia, Y.; Wang, S.; Liu, H.; Xu, Z.; Li, Z. MSC-NPRA Loop Drives Fatty Acid Oxidation to Promote Stemness and Chemoresistance of Gastric Cancer. Cancer Lett. 2023, 565, 216235. [Google Scholar] [CrossRef] [PubMed]
- Vesely, M.D.; Zhang, T.; Chen, L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annu. Rev. Immunol. 2022, 40, 45–74. [Google Scholar] [CrossRef] [PubMed]
- Brett, J.O.; Spring, L.M.; Bardia, A.; Wander, S.A. ESR1 Mutation as an Emerging Clinical Biomarker in Metastatic Hormone Receptor-Positive Breast Cancer. Breast Cancer Res. 2021, 23, 85. [Google Scholar] [CrossRef] [PubMed]
- Herzog, S.K.; Fuqua, S.A.W. ESR1 Mutations and Therapeutic Resistance in Metastatic Breast Cancer: Progress and Remaining Challenges. Br. J. Cancer 2022, 126, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Z.; Jeselsohn, R. ESR1 Fusions and Therapeutic Resistance in Metastatic Breast Cancer. Front. Oncol. 2023, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Raheem, F.; Karikalan, S.A.; Batalini, F.; El Masry, A.; Mina, L. Metastatic ER+ Breast Cancer: Mechanisms of Resistance and Future Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 16198. [Google Scholar] [CrossRef] [PubMed]
- Blanc, E.; Goldschneider, D.; Ferrandis, E.; Barrois, M.; Le Roux, G.; Leonce, S.; Douc-Rasy, S.; Bénard, J.; Raguénez, G. MYCN Enhances P-Gp/MDR1 Gene Expression in the Human Metastatic Neuroblastoma IGR-N-91 Model. Am. J. Pathol. 2003, 163, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Ammar, M.; Louati, N.; Frikha, I.; Medhaffar, M.; Ghozzi, H.; Elloumi, M.; Menif, H.; Zeghal, K.; Ben Mahmoud, L. Overexpression of P-glycoprotein and Resistance to Imatinib in Chronic Myeloid Leukemia Patients. J. Clin. Lab. Anal. 2020, 34, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Im, S.-A.; Park, K.; Wen, J.; Lee, K.-H.; Choi, Y.-L.; Lee, W.-C.; Min, A.; Bonato, V.; Park, S.; et al. Longitudinal Multi-Omics Study of Palbociclib Resistance in HR-Positive/HER2-Negative Metastatic Breast Cancer. Genome Med. 2023, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Quiroz Reyes, A.G.; Lozano Sepulveda, S.A.; Martinez-Acuña, N.; Islas, J.F.; Gonzalez, P.D.; Heredia Torres, T.G.; Perez, J.R.; Garza Treviño, E.N. Cancer Stem Cell and Hepatic Stellate Cells in Hepatocellular Carcinoma. Technol. Cancer Res. Treat. 2023, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, Z.; Amaya-Padilla, M.A.; Singomat, T.; Binju, M.; Madjid, B.D.; Yu, Y.; Kaur, P. Ovarian Cancer Stem Cells and Their Role in Drug Resistance. Int. J. Biochem. Cell Biol. 2019, 106, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Lawson, D.A.; Bhakta, N.R.; Kessenbrock, K.; Prummel, K.D.; Yu, Y.; Takai, K.; Zhou, A.; Eyob, H.; Balakrishnan, S.; Wang, C.Y.; et al. Single-Cell Analysis Reveals a Stem-Cell Program in Human Metastatic Breast Cancer Cells. Nature 2015, 526, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.W.; Weinberg, R.A. Linking EMT Programmes to Normal and Neoplastic Epithelial Stem Cells. Nat. Rev. Cancer 2021, 21, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.T.; Goodin, S. Overcoming Drug Resistance in Patients with Metastatic Breast Cancer. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2009, 29, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Anvari, K.; Toussi, M.S.; Kalantari, M.; Naseri, S.; Shahri, M.K.; Ahmadnia, H.; Katebi, M.; Pashaki, A.S.; Dayani, M.; Broumand, M. Expression of Bcl-2 and Bax in Advanced or Metastatic Prostate Carcinoma. Urol. J. 2012, 9, 381–388. [Google Scholar] [PubMed]
- Hashemi, M.; Arani, H.Z.; Orouei, S.; Fallah, S.; Ghorbani, A.; Khaledabadi, M.; Kakavand, A.; Tavakolpournegari, A.; Saebfar, H.; Heidari, H.; et al. EMT Mechanism in Breast Cancer Metastasis and Drug Resistance: Revisiting Molecular Interactions and Biological Functions. Biomed. Pharmacother. 2022, 155, 113774. [Google Scholar] [CrossRef] [PubMed]
- Gherman, A.; Bolundut, D.; Ecea, R.; Balacescu, L.; Curcean, S.; Dina, C.; Balacescu, O.; Cainap, C. Molecular Subtypes, MicroRNAs and Immunotherapy Response in Metastatic Colorectal Cancer. Medicina 2024, 60, 397. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.E.; Guerriero, J.L.; Barroso-Sousa, R.; Li, T.; O’Meara, T.; Giobbie-Hurder, A.; Tayob, N.; Hu, J.; Severgnini, M.; Agudo, J.; et al. Molecular Correlates of Response to Eribulin and Pembrolizumab in Hormone Receptor-Positive Metastatic Breast Cancer. Nat. Commun. 2021, 12, 5563. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ji, Q.; Li, Q. Resistance to Anti-EGFR Therapies in Metastatic Colorectal Cancer: Underlying Mechanisms and Reversal Strategies. J. Exp. Clin. Cancer Res. 2021, 40, 328. [Google Scholar] [CrossRef] [PubMed]
- Bicer, F.; Kure, C.; Ozluk, A.A.; El-Rayes, B.F.; Akce, M. Advances in Immunotherapy for Hepatocellular Carcinoma (HCC). Curr. Oncol. 2023, 30, 9789–9812. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, A.; Grubba, M.; Balihodzic, A.; Szot, O.; Sobocki, B.K.; Perdyan, A. The Role of Regulatory T Cells in Cancer Treatment Resistance. Int. J. Mol. Sci. 2023, 24, 14114. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zheng, C.; Han, J.; Zhu, J.; Liu, S.; Jin, T. PD-1/PD-L1 Axis as a Potential Therapeutic Target for Multiple Sclerosis: A T Cell Perspective. Front. Cell. Neurosci. 2021, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Hellmann, M.D. Acquired Resistance to Immune Checkpoint Inhibitors. Cancer Cell 2020, 37, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Fakih, M.; Wang, C.; Sandhu, J.; Ye, J.; Egelston, C.; Li, X. Immunotherapy Response in Microsatellite Stable Metastatic Colorectal Cancer Is Influenced by Site of Metastases. Eur. J. Cancer 2024, 196, 113437. [Google Scholar] [CrossRef] [PubMed]
- Pulluri, B.; Kumar, A.; Shaheen, M.; Jeter, J.; Sundararajan, S. Tumor Microenvironment Changes Leading to Resistance of Immune Checkpoint Inhibitors in Metastatic Melanoma and Strategies to Overcome Resistance. Pharmacol. Res. 2017, 123, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, L.; Apuri, S.; Eroglu, Z.; Kottschade, L.A.; Forschner, A.; Gutzmer, R.; Schlaak, M.; Heinzerling, L.; Krackhardt, A.M.; Loquai, C.; et al. Ipilimumab Alone or in Combination with Nivolumab after Progression on Anti-PD-1 Therapy in Advanced Melanoma. Eur. J. Cancer 2017, 75, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Pires da Silva, I.; Ahmed, T.; Reijers, I.L.M.; Weppler, A.M.; Betof Warner, A.; Patrinely, J.R.; Serra-Bellver, P.; Allayous, C.; Mangana, J.; Nguyen, K.; et al. Ipilimumab Alone or Ipilimumab plus Anti-PD-1 Therapy in Patients with Metastatic Melanoma Resistant to Anti-PD-(L)1 Monotherapy: A Multicentre, Retrospective, Cohort Study. Lancet Oncol. 2021, 22, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Venkat, A.; Binkley, E.M.; Srivastava, S.; Karthik, N.; Singh, A.D. Immunotherapy-Resistant Vitreoretinal Metastatic Melanoma. Ocul. Oncol. Pathol. 2021, 7, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Zotano, Á.; Belli, S.; Zielinski, C.; Gil-Gil, M.; Fernandez-Serra, A.; Ruiz-Borrego, M.; Gil, E.M.C.; Pascual, J.; Muñoz-Mateu, M.; Bermejo, B.; et al. CCNE1 and PLK1 Mediate Resistance to Palbociclib in HR+/HER2− Metastatic Breast Cancer. Clin. Cancer Res. 2023, 29, 1557–1568. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Liu, Y.; Zhu, Z.; Loi, S.; Colleoni, M.; Loibl, S.; DeMichele, A.; Harbeck, N.; André, F.; Bayar, M.A.; et al. Cyclin E1 Expression and Palbociclib Efficacy in Previously Treated Hormone Receptor–Positive Metastatic Breast Cancer. J. Clin. Oncol. 2019, 37, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Yepes, J.; Kettner, N.M.; Rao, X.; Bishop, C.S.; Bui, T.N.; Wingate, H.F.; Singareeka Raghavendra, A.; Wang, Y.; Wang, J.; Sahin, A.A.; et al. Abemaciclib Is Effective in Palbociclib-Resistant Hormone Receptor-Positive Metastatic Breast Cancers. Cancer Res. 2023, 83, 3264–3283. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhou, R.; Cai, J.; Yang, N.; Wen, Z.; Zhang, Z.; Sun, H.; Huang, G.; Guan, Y.; Huang, N.; et al. Matrix Stiffness Triggers Lipid Metabolic Cross-Talk between Tumor and Stromal Cells to Mediate Bevacizumab Resistance in Colorectal Cancer Liver Metastases. Cancer Res. 2023, 83, 3577–3592. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, X.; Lu, J.; Salfenmoser, M.; Wirsik, N.M.; Schleussner, N.; Imle, A.; Freire Valls, A.; Radhakrishnan, P.; Liang, J.; et al. Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer. Cancer Cell 2020, 37, 800–817.e7. [Google Scholar] [CrossRef] [PubMed]
- Sogawa, C.; Eguchi, T.; Namba, Y.; Okusha, Y.; Aoyama, E.; Ohyama, K.; Okamoto, K. Gel-Free 3d Tumoroids with Stem Cell Properties Modeling Drug Resistance to Cisplatin and Imatinib in Metastatic Colorectal Cancer. Cells 2021, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Liu, D.; Zhang, S. MicroRNA-21 Contributes to the Discrimination of Chemoresistance in Metastatic Gastric Cancer. Cancer Biomark. 2017, 18, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Zangouei, A.S.; Moghbeli, M. MicroRNAs as the Critical Regulators of Cisplatin Resistance in Gastric Tumor Cells. Genes Environ. 2021, 43, 21. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yan, C.; Yu, Z.; He, C.; Li, J.; Li, C.; Yan, M.; Liu, B.; Wu, Y.; Zhu, Z. Downregulation of CDH11 Promotes Metastasis and Resistance to Paclitaxel in Gastric Cancer Cells. J. Cancer 2021, 12, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yan, J.; Liu, Y.; Shi, J.; Wang, H.; Zhou, H.; Zhou, Y.; Zhang, T.; Zhao, L.; Meng, X.; et al. Cancer-Cell-Derived Fumarate Suppresses the Anti-Tumor Capacity of CD8+ T Cells in the Tumor Microenvironment. Cell Metab. 2023, 35, 961–978.e10. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Henrich, I.C.; Quick, L.; Young, R.; Mondal, S.; Oliveira, A.M.; Blobel, G.A.; Chou, M.M. Natural Killer Cell Activation by Ubiquitin-Specific Protease 6 Mediates Tumor Suppression in Ewing Sarcoma. Cancer Res. Commun. 2023, 3, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Gómez Roselló, E.; Quiles Granado, A.M.; Laguillo Sala, G.; Pedraza Gutiérrez, S. Primary Central Nervous System Lymphoma in Immunocompetent Patients: Spectrum of Findings and Differential Characteristics. Radiologia 2018, 60, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, T.W.; Mimpen, I.L.; Traets, J.J.H.; van Hoeck, A.; Zeverijn, L.J.; Geurts, B.S.; de Wit, G.F.; Noë, M.; Hofland, I.; Vos, J.L.; et al. A Pan-Cancer Analysis of the Microbiome in Metastatic Cancer. Cell 2024, 187, 2324–2335.e19. [Google Scholar] [CrossRef] [PubMed]
- Mousset, A.; Lecorgne, E.; Bourget, I.; Lopez, P.; Jenovai, K.; Cherfils-Vicini, J.; Dominici, C.; Rios, G.; Girard-Riboulleau, C.; Liu, B.; et al. Neutrophil Extracellular Traps Formed during Chemotherapy Confer Treatment Resistance via TGF-β Activation. Cancer Cell 2023, 41, 757–775.e10. [Google Scholar] [CrossRef] [PubMed]
- Masucci, M.T.; Minopoli, M.; Del Vecchio, S.; Carriero, M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front. Immunol. 2020, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Demkow, U. Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis. Cancers 2021, 13, 4495. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qu, Y.; Xu, Q.; Jiang, Z.; Wang, H.; Lin, B.; Cao, Z.; Pan, Y.; Li, S.; Hu, Y.; et al. NQO1 Triggers Neutrophil Recruitment and NET Formation to Drive Lung Metastasis of Invasive Breast Cancer. Cancer Res. 2024, 84, 3538–3555. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Zhang, R.; Huang, P.; Chen, M.; Chen, H.; Zeng, X.; Liu, J.; Zhang, J.; Huang, D.; Lao, L. Ferroptotic Neutrophils Induce Immunosuppression and Chemoresistance in Breast Cancer. Cancer Res. 2025, 85, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.Q.; Cai, D.; Zou, Y.; Chen, X.; Jian, Z.; Shi, M.; Lin, Y.; Chen, J. Construction and Validation of Chemoresistance-Associated Tumor- Infiltrating Exhausted-like CD8+ T Cell Signature in Breast Cancer: Cr-TILCD8TSig. Front. Immunol. 2023, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ladanyi, A.; Mukherjee, A.; Kenny, H.A.; Johnson, A.; Mitra, A.K.; Sundaresan, S.; Nieman, K.M.; Pascual, G.; Benitah, S.A.; Montag, A.; et al. Adipocyte-Induced CD36 Expression Drives Ovarian Cancer Progression and Metastasis. Oncogene 2018, 37, 2285–2301. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Qin, H.; Li, Y.; Xiao, A.; Zheng, E.; Zeng, H.; Su, C.; Luo, X.; Lu, Q.; Liao, M.; et al. CD36-Mediated Metabolic Crosstalk between Tumor Cells and Macrophages Affects Liver Metastasis. Nat. Commun. 2022, 13, 5782. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y. CD36 Tango in Cancer: Signaling Pathways and Functions. Theranostics 2019, 9, 4893–4908. [Google Scholar] [CrossRef] [PubMed]
- Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; et al. Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature 2017, 541, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Farge, T.; Nakhle, J.; Lagarde, D.; Cognet, G.; Polley, N.; Castellano, R.; Nicolau, M.L.; Bosc, C.; Sabatier, M.; Sahal, A.; et al. CD36 Drives Metastasis and Relapse in Acute Myeloid Leukemia. Cancer Res. 2023, 83, 2824–2838. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Sato, T.; Endo, R.; Sasaki, S.; Takahashi, N.; Sato, Y.; Hyodo, M.; Hayakawa, Y.; Harashima, H. STING Agonist Loaded Lipid Nanoparticles Overcome Anti-PD-1 Resistance in Melanoma Lung Metastasis via NK Cell Activation. J. Immunother. Cancer 2021, 9, e002852. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.A.; Brito, A.B.C.; Silva, V.S.E.; Messias, I.M.; Braun, A.C.; Ruano, A.P.C.; Buim, M.E.C.; Carraro, D.M.; Chinen, L.T.D. CD47 Expression in Circulating Tumor Cells and Circulating Tumor Microemboli from Non-Small Cell Lung Cancer Patients Is a Poor Prognosis Factor. Int. J. Mol. Sci. 2023, 24, 11958. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Jiang, W.; Kim, B.Y.S.; Zhang, C.C.; Fu, Y.X.; Weissman, I.L. Phagocytosis Checkpoints as New Targets for Cancer Immunotherapy. Nat. Rev. Cancer 2019, 19, 568–586. [Google Scholar] [CrossRef] [PubMed]
- Mackert, J.; Stirling, E.; Kooshki, M.; Zhao, D.; Thomas, A.; Lesser, G.; Triozzi, P.; Soto-Pantoja, D. 270 Anti-CD47 Immunotherapy as a Therapeutic Strategy for the Treatment of Breast Cancer Brain Metastasis. In Proceedings of the Regular and Young Investigator Award Abstracts; BMJ Publishing Group Ltd.: London, UK, 2021; p. A293. [Google Scholar]
- Kim, K.; Marquez-Palencia, M.; Malladi, S. Metastatic Latency, a Veiled Threat. Front. Immunol. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
Drug Family | Metastasis Associated with | Mechanisms Associated with Resistance | Reference | |
---|---|---|---|---|
Endocrine therapy | ||||
Tamoxifen Fulvestrant | Breast cancer | Alterations in the ESR1 gene, including the following:
| [62] | |
Translocation of exons in the ESR1 CCDC170, YAP1, and SOX-9 genes | [63,64] | |||
ICIs | ||||
Anti-PD-1 | Nivolumab | Colorectal cancer | ----------------------- | [83] |
Melanoma | Alteration in PD-L1 expression | [84] | ||
Colorectal cancer | Microsatellite instability status | [76] | ||
Pembrolizumab | Breast cancer | The downregulation of PD-L1, tumor purity, lower levels of immune infiltration, estrogen signaling | [77] | |
Melanoma | Upregulation of genes like TIM3 and CTLA-4 | [85] | ||
Anti-PDL-1 | Atezolizumab | ------------ | BRAF mutation Overactivation of MEK pathway | [86] |
Anti-CTLA-4 | Ipilimumab | Melanoma | The secretion of IL-6, IL-10, and TGF-beta cytokines; high levels of CD4+, CD25+ FoxP3+, and Tregs; high expression of IDO and PDL-1; loss of the PTEN gene, mutations in JAK1 and JAK2; the activa tion of WNT/beta-catenin pathway | [84,87] |
CDK4/6i | ||||
Palbociclib | Breast cancer | Overexpression of the CCNE1 gene | [88] | |
High expression of cyclin E mRNA | [89] | |||
The downregulation of Rb1, up-regulation in the G2-M pathway, the upregulation of STAT3 and EMT by IL6 | [90] | |||
The loss of Rb1, alterations in the AKT1, ERBB2, and FGFR2 genes, amplification of the AURKA and CCNE2 genes | [68] | |||
Abemaciclib | Breast cancer | The high expression of oxidative phosphorylation genes (OXPHOS) Reactive oxygen species (ROS) | [90] | |
Anti-VEGF | ||||
Bevacizumab | Colorectal cancer | Matrix stiffness, fatty acid oxidation, angiogenesis | [91,92] | |
Anti-EGFR | ||||
Cetuximab Panitumumab | Colorectal cancer | Overexpression of the EGRF gene, structural alterations in EGRF, autophagy, metabolic remodeling, microsatellite instability, alteration of the tumor microenvironment, angiogenesis | [78] | |
TKI’s | ||||
Imatinib | Chronic myeloid leukemia | Overexpression of the efflux pumps (P-gp) | [67] | |
Others | ||||
Eribulin | Breast cancer | Tumor heterogeneity, estrogen signaling, lower antigen presentation | [77] | |
Cisplatin | Colorectal cancer | ABCG2 efflux pump, secretion through exosomes | [93] | |
Gastric cancer | The overexpression of miR-21/aberrant expression of miRNAs | [94,95] | ||
Breast cancer | The overexpression of 14,15 EET and USP37, integrin αvβ3 expression | [75] | ||
Epirubicin | Breast cancer | Plasma levels of CCL5 | ||
Paclitaxel | Gastric cancer Lung/Liver | Downregulation of the CDH11 protein and dysregulated alfa-1β protein Hypoxia/the activation of ABC genes/autophagy | [58,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avalos-Navarro, G.; Gallegos-Arreola, M.P.; Reyes-Uribe, E.; Jave Suárez, L.F.; Rivera-Sánchez, G.; Rangel-Villalobos, H.; Madriz-Elisondo, A.L.; Gutiérrez Hurtado, I.A.; Varela-Hernández, J.J.; Ramírez-Patiño, R. Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance. Int. J. Mol. Sci. 2025, 26, 6954. https://doi.org/10.3390/ijms26146954
Avalos-Navarro G, Gallegos-Arreola MP, Reyes-Uribe E, Jave Suárez LF, Rivera-Sánchez G, Rangel-Villalobos H, Madriz-Elisondo AL, Gutiérrez Hurtado IA, Varela-Hernández JJ, Ramírez-Patiño R. Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance. International Journal of Molecular Sciences. 2025; 26(14):6954. https://doi.org/10.3390/ijms26146954
Chicago/Turabian StyleAvalos-Navarro, Guadalupe, Martha Patricia Gallegos-Arreola, Emmanuel Reyes-Uribe, Luis Felipe Jave Suárez, Gildardo Rivera-Sánchez, Héctor Rangel-Villalobos, Ana Luisa Madriz-Elisondo, Itzae Adonai Gutiérrez Hurtado, Juan José Varela-Hernández, and Ramiro Ramírez-Patiño. 2025. "Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance" International Journal of Molecular Sciences 26, no. 14: 6954. https://doi.org/10.3390/ijms26146954
APA StyleAvalos-Navarro, G., Gallegos-Arreola, M. P., Reyes-Uribe, E., Jave Suárez, L. F., Rivera-Sánchez, G., Rangel-Villalobos, H., Madriz-Elisondo, A. L., Gutiérrez Hurtado, I. A., Varela-Hernández, J. J., & Ramírez-Patiño, R. (2025). Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance. International Journal of Molecular Sciences, 26(14), 6954. https://doi.org/10.3390/ijms26146954