CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of Candida Antarctica Lipase B (CALB) Immobilization
2.1.1. Influence of Buffer pH
2.1.2. Influence of Buffer Concentration, Immobilization Time, and Temperature
2.2. Thermal Stability, Storage Stability, and Operational Stability Study of CALB
3. Materials and Methods
3.1. Materials
3.2. Instrumentation and Chromatographic Conditions
3.3. Methods
3.3.1. Preparation of the Octyl-Agarose Support
3.3.2. Immobilization of CALB onto Octyl-Agarose Support
3.3.3. Kinetic Resolution of (R,S)-1-Phenylethanol Catalyzed by CALB
3.3.4. Stability Tests of CALB
- a.
- Without storage—used after immobilization, without a storage procedure;
- b.
- Climatic chamber (65 °C, no light)—storage temperature of 65 °C, without light in the visible spectral range;
- c.
- Climatic chamber (65 °C, Vis 400–800 nm)—storage temperature of 65 °C, light in the visible spectral range;
- d.
- Refrigerator (4 °C, no light)—storage temperature of 4 °C, without light in the visible spectral range.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Satapathy, S.; Kumar, S.; Kurmi, B.; Gupta, G.; Patel, P. Expanding the Role of Chiral Drugs and Chiral Nanomaterials as a Potential Therapeutic Tool. Chirality 2024, 36, e23698. [Google Scholar] [CrossRef] [PubMed]
- Kira, M.; Shiga, Y.; Nakagawa, K.; Matsumoto, A.; Tokita, K.; Terasawa, Y.; Zhang, K.; Tsutao, K.; Nakanishi, T.; Yoshida, S.; et al. Chiral Inversion of Thalidomide During Crystal Growth by Sublimation. Cryst. Growth Des. 2024, 24, 3133–3139. [Google Scholar] [CrossRef]
- Cizmáriková, R.; Cizmárik, J.; Valentová, J.; Habala, L.; Markuliak, M. Chiral Aspects of Local Anesthetics. Molecules 2020, 25, 2738. [Google Scholar] [CrossRef] [PubMed]
- Senkuttuvan, N.; Komarasamy, B.; Krishnamoorthy, R.; Sarkar, S.; Dhanasekaran, S.; Anaikutti, P. The significance of chirality in contemporary drug discovery-a mini review. RSC Adv. 2024, 14, 33429–33448. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, G.; Ganesh, K.; Rajulu, G.; Sambasivam, G.; Shivashankarappa, N. Green Synthesis of Repotrectinib: Impact of Aqueous Micellar Media on Chemoenzymatic Transformations. ChemistrySelect 2024, 9, e202405153. [Google Scholar] [CrossRef]
- Scheibel, D.; Gitsov, I.; Gitsov, I. Enzymes in “Green” Synthetic Chemistry: Laccase and Lipase. Molecules 2024, 29, 989. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Dong, W.; Gao, J.; Liu, Z.; Zhou, R.; Shu, Z.; Duan, M. The Conformational Transitions and Dynamics of Burkholderia cepacia Lipase Regulated by Water-Oil Interfaces. J. Chem. Inf. Model. 2023, 63, 3854–3864. [Google Scholar] [CrossRef] [PubMed]
- Waggett, A.; Pfaendtner, J. Hydrophobic Residues Promote Interfacial Activation of Candida rugosa Lipase: A Study of Rotational Dynamics. Langmuir 2024, 40, 18262–18271. [Google Scholar] [CrossRef] [PubMed]
- Smaine, F.; Merabet-Khelassi, M.; Zeror, S.; Kolodziej, E.; Toffano, M.; Aribi-Zouioueche, L. Fatty and aromatic acids as acyl donors in enzymatic kinetic resolution of phenylethanol and 1-phenylpropan-2-ol. Monatsh. Chem. 2024, 155, 105–113. [Google Scholar] [CrossRef]
- Simić, S.; Zukić, E.; Schmermund, L.; Faber, K.; Winkler, C.; Kroutil, W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem. Rev. 2022, 122, 1052–1126. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, M.; Austli, G.; Lovland, S.; Hansen, M.; Rodseth, M.; Jacobsen, E. Lipase Catalyzed Synthesis of Enantiopure Precursors and Derivatives for β-Blockers Practolol, Pindolol and Carteolol. Catalysts 2021, 11, 503. [Google Scholar] [CrossRef]
- Gupta, S.; Kamble, M.; Yadav, G. Insight into microwave assisted enzyme catalysis in process intensification of reaction and selectivity: Kinetic resolution of (R,S)-flurbiprofen with alcohols. Mol. Catal. 2017, 440, 50–56. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.; Yu, X.; Liang, J.; Zhang, Y.; Jiang, Y.; Su, W. Application of Lipase B from Candida antarctica in the Pharmaceutical Industry. Ind. Eng. Chem. Res. 2023, 62, 15733–15751. [Google Scholar] [CrossRef]
- Cipolatti, E.; Rios, N.; Sousa, J.; Robert, J.; da Silva, A.; Pinto, M.; Simas, A.; Vilarrasa-Garcia, E.; Fernandez-Lafuente, R.; Goncalves, L.; et al. Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. Mol. Catal. 2021, 505, 111529. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Geng, S.; Liu, Y.; Ma, H.; Zheng, J.; Liu, B.; Liang, G. Lipase-catalyzed synthesis mechanism of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food Chem. 2019, 277, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Venegas, M.; Rodríguez-Treviño, A.; Juaristi, E. Dual Mechanoenzymatic Kinetic Resolution of (±)-Ketorolac. ChemCatChem 2020, 12, 1782–1788. [Google Scholar] [CrossRef]
- Zappaterra, F.; Costa, S.; Summa, D.; Semeraro, B.; Cristofori, V.; Trapella, C.; Tamburini, E. Glyceric Prodrug of Ursodeoxycholic Acid (UDCA): Novozym 435-Catalyzed Synthesis of UDCA-Monoglyceride. Molecules 2021, 26, 5966. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Chen, Y.; Ma, K.; Ye, Y.; Zheng, L.; Yang, Y.; Li, Y.; Jin, X. The role of Ursodeoxycholic acid in non-alcoholic steatohepatitis: A systematic review. BMC Gastroenterol 2013, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Dulęba, J.; Siódmiak, T.; Marszałł, M.P. Amano Lipase PS from Burkholderia cepacia—Evaluation of the Effect of Substrates and Reaction Media on the Catalytic Activity. Curr. Org. Chem. 2020, 24, 798–807. [Google Scholar] [CrossRef]
- Dulęba, J.; Siódmiak, T.; Marszałł, M.P. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized Amano PS from Burkholderia cepacia lipase (APS-BCL). Process Biochem. 2022, 120, 126–137. [Google Scholar] [CrossRef]
- Jiang, H.; Medina, E.; Stache, E. Upcycling Poly(vinyl chloride) and Polystyrene Plastics Using Photothermal Conversion. J. Am. Chem. Soc. 2025, 147, 2822–2828. [Google Scholar] [CrossRef] [PubMed]
- Sauer, L.; Pribyl, M. Enzyme synthesis and continuous flow separation of (R)-1-phenylethanol in a modular microfluidic system. Sep. Purif. Technol. 2025, 360, 131041. [Google Scholar] [CrossRef]
- Ferraccioli, R. Progress on the Stereoselective Synthesis of Chiral Molecules Based on Metal-Catalyzed Dynamic Kinetic Resolution of Alcohols with Lipases. Symmetry-Basel 2021, 13, 1744. [Google Scholar] [CrossRef]
- Stradomska, D.; Heba, M.; Czernek, A.; Kuźnik, N.; Gillner, D.; Maresz, K.; Pudło, W.; Jarzębski, A.; Szymańska, K. Lipase Immobilized on MCFs as Biocatalysts for Kinetic and Dynamic Kinetic Resolution of sec-Alcohols. Catalysts 2021, 11, 518. [Google Scholar] [CrossRef]
- Otsu, M.; Suzuki, Y.; Koesoema, A.A.; Hoang, H.N.; Tamura, M.; Matsuda, T. CO2-expanded liquids as solvents to enhance activity of Pseudozyma antarctica lipase B towards ortho-substituted 1-phenylethanols. Tetrahedron Lett. 2020, 61, 152424. [Google Scholar] [CrossRef]
- Gonzalez-Vasquez, A.; Hocine, E.; Urzúa, M.; Rocha-Martin, J.; Fernandez-Lafuente, R. Changes in ficin specificity by different substrate proteins promoted by enzyme immobilization. Enzyme Microb. Technol. 2024, 181, 110517. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; de Luna, F.; Lomonaco, D.; Fernandez-Lafuente, R.; Vieira, R. Improving the performance of lipases in the full hydrolysis of residual coconut oil by immobilization on hydrophobic supports. Ind. Crops Prod. 2024, 222, 120014. [Google Scholar] [CrossRef]
- Guimaraes, J.; Carballares, D.; Rocha-Martin, J.; Alcántara, A.; Tardioli, P.; Fernandez-Lafuente, R. Heterofunctional Methacrylate Beads Bearing Octadecyl and Vinyl Sulfone Groups: Tricks to Obtain an Interfacially Activated Lipase from Thermomyces lanuginosus and Covalently Attached to the Support. Catalysts 2023, 13, 108. [Google Scholar] [CrossRef]
- Rueda, N.; Albuquerque, T.; Bartolome-Cabrero, R.; Fernandez-Lopez, L.; Torres, R.; Ortiz, C.; dos Santos, J.; Barbosa, O.; Fernandez-Lafuente, R. Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules 2016, 21, 646. [Google Scholar] [CrossRef] [PubMed]
- Siódmiak, T.; Dulęba, J.; Haraldsson, G.G.; Siódmiak, J.; Marszałł, M.P. The Studies of Sepharose-Immobilized Lipases: Combining Techniques for the Enhancement of Activity and Thermal Stability. Catalysts 2023, 13, 887. [Google Scholar] [CrossRef]
- Siódmiak, T.; Siódmiak, J.; Mastalerz, R.; Kocot, N.; Dulęba, J.; Haraldsson, G.G.; Wątróbska-Świetlikowska, D.; Marszałł, M.P. Climatic Chamber Stability Tests of Lipase-Catalytic Octyl-Sepharose Systems. Catalysts 2023, 13, 501. [Google Scholar] [CrossRef]
- Siódmiak, J.; Dulęba, J.; Kocot, N.; Mastalerz, R.; Haraldsson, G.G.; Marszałł, M.P.; Siódmiak, T. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives. Int. J. Mol. Sci. 2024, 25, 5084. [Google Scholar] [CrossRef] [PubMed]
- Subinya, M.; Steudle, A.K.; Jurkowski, T.P.; Stubenrauch, C. Conformation and activity of lipase B from Candida antarctica in bicontinuous microemulsions. Colloids Surf. B Biointerfaces 2015, 131, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Li, D.M.; Wang, W.F.; Liu, P.Z.; Xu, L.; Faiza, M.; Yang, B.; Wang, L.Y.; Lan, D.M.; Wang, Y.H. Immobilization of Candida antarctica Lipase B Onto ECR1030 Resin and its Application in the Synthesis of n-3 PUFA-Rich Triacylglycerols. Eur. J. Lipid Sci. Technol. 2017, 119, 1700266. [Google Scholar] [CrossRef]
- Abellanas-Perez, P.; Carballares, D.; Rocha-Martin, J.; Fernandez-Lafuente, R. The nature of the buffer alters the effects of the chemical modification on the stability of immobilized lipases. Process Biochem. 2023, 133, 20–27. [Google Scholar] [CrossRef]
- Abellanas-Perez, P.; Carballares, D.; Rocha-Martin, J.; Fernandez-Lafuente, R. The Effects of Buffer Nature on Immobilized Lipase Stability Depend on Enzyme Support Loading. Catalysts 2024, 14, 105. [Google Scholar] [CrossRef]
- Dong, Y.H.; Laaksonen, A.; Gao, Q.W.; Ji, X.Y. Molecular Mechanistic Insights into the Ionic-Strength-Controlled Interfacial Behavior of Proteins on a TiO2 Surface. Langmuir 2021, 37, 11499–11507. [Google Scholar] [CrossRef] [PubMed]
- Alnoch, R.C.; dos Santos, L.A.; de Almeida, J.M.; Krieger, N.; Mateo, C. Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts 2020, 10, 697. [Google Scholar] [CrossRef]
- de Andrades, D.; Abellanas-Perez, P.; Rocha-Martin, J.; Lopez-Gallego, F.; Alcántara, A.; Polizeli, M.; Fernandez-Lafuente, R. Effect of the support alkyl chain nature in the functional properties of the immobilized lipases. Enzyme Microb. Technol. 2025, 184, 110583. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, I.; Guisán, J.; Sayari, A.; Fernández-Lorente, G. Various Strategies for the Immobilization of a Phospholipase C from Bacillus cereus for the Modulation of Its Biochemical Properties. Molecules 2024, 29, 1467. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, N.; Cejudo-Sanches, J.; Tardioli, P.; Guisan, J.; Vieira, A. Optimizing Thermal Stability: Evaluating the Impact of Heterofunctional Hydrophobic Supports on Immobilized Flaxseed Lipase. Appl. Biochem. Biotechnol. 2025, 197, 3152–3165. [Google Scholar] [CrossRef] [PubMed]
- Sabi, G.; de Souza, L.; Abellanas-Perez, P.; Tardioli, P.; Mendes, A.; Rocha-Martin, J.; Fernandez-Lafuente, R. Enzyme loading in the support and medium composition during immobilization alter activity, specificity and stability of octyl agarose-immobilized Eversa Transform. Int. J. Biol. Macromol. 2025, 295, 139667. [Google Scholar] [CrossRef] [PubMed]
- Abellanas-Perez, P.; de Andrades, D.; Alcantara, A.; Rocha-Martin, J.; Polizeli, M.; Fernandez-Lafuente, R. Vinyl sulfone-amino-alkyl supports: Heterofunctional matrixes to prevent enzyme release and stabilize lipases via covalent immobilization. Int. J. Biol. Macromol. 2025, 310, 143305. [Google Scholar] [CrossRef] [PubMed]
- Arana-Pena, S.; Rios, N.S.; Carballares, D.; Goncalves, L.R.B.; Fernandez-Lafuente, R. Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catalysis Today 2021, 362, 130–140. [Google Scholar] [CrossRef]
- Arana-Pena, S.; Carballares, D.; Corberan, V.C.; Fernandez-Lafuente, R. Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts 2020, 10, 1207. [Google Scholar] [CrossRef]
- Ahrari, F.; Pourmohammadi Lish, M.; Yousefi, M.; Mohammadi, M. Improving the stability of an unstable lipase by applying different immobilization strategies for the selective hydrolysis of fish oil. J. Am. Oil Chem. Soc. 2024, 101, 839–850. [Google Scholar] [CrossRef]
- Siódmiak, T.; Haraldsson, G.G.; Dulęba, J.; Ziegler-Borowska, M.; Siódmiak, J.; Marszałł, M.P. Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica. Catalysts 2020, 10, 876. [Google Scholar] [CrossRef]
- Siódmiak, T.; Mangelings, D.; Vander Heyden, Y.; Ziegler-Borowska, M.; Marszałł, M.P. High Enantioselective Novozym 435-Catalyzed Esterification of (R,S)-Flurbiprofen Monitored with a Chiral Stationary Phase. Appl. Biochem. Biotechnol. 2015, 175, 2769–2785. [Google Scholar] [CrossRef] [PubMed]
- Chałupka, J.; Dulęba, J.; Sikora, A.; Siódmiak, T.; Marszałł, M.P. The Application of Two-Phase Catalytic System in Enantioselective Separation of Racemic (R,S)-1-Phenylethanol. Catalysts 2023, 13, 292. [Google Scholar] [CrossRef]
Lipase | Immobilization Conditions | Lipase Loading (mg/g Support) * | ees (%) | eep (%) | C (%) | E |
---|---|---|---|---|---|---|
CALB | pH 4; 100 mM | 64.8 ± 0.9 | 68.8 ± 2.1 | 99.8 ± 0.2 | 40.8 ± 0.8 | >200 |
pH 7; 100 mM | 42.1 ± 1.4 | 47.4 ± 1.8 | 99.8 ± 0.2 | 32.2 ± 0.8 | >200 | |
pH 9; 100 mM | 30.5 ± 0.6 | 21.9 ± 1.1 | 99.8 ± 0.1 | 18.0 ± 0.7 | >200 |
Lipase | Immobilization Conditions | ees (%) | eep (%) | C (%) | E |
---|---|---|---|---|---|
CALB | pH 4; 50 mM | 61.3 ± 2.4 | 99.8 ± 0.2 | 38.1 ± 1.0 | >200 |
pH 4; 100 mM | 68.8 ± 2.1 | 99.8 ± 0.2 | 40.8 ± 0.8 | >200 | |
pH 4; 300 mM | 75.6 ± 1.6 | 99.8 ± 0.2 | 43.1 ± 0.5 | >200 | |
pH 4; 500 mM | 69.7 ± 1.8 | 99.9 ± 0.1 | 41.1 ± 0.6 | >200 |
Author | Lipase | Support | Substrate | Reaction Medium/ Type of Reaction | Literature |
---|---|---|---|---|---|
de Andrades et al. | CALA 1, CALB | octyl-agarose; amino-hexyl-agarose; amino-octyl-agarose; | p-nitrophenyl ester, triacetin, (R) and (S)-methyl mandelate | aqueous buffer medium/hydrolysis | [39] |
Abdelkader et al. | PLCBC 2 | octyl sepharose, Q-sepharose, glyoxyl agarose | pNPPC 3 | aqueous buffer medium/hydrolysis | [40] |
do Nascimento et al. | FL 4 | octyl glyoxyl agarose, octyl monoaminoethyl-N-aminoethyl glutaraldehyde agarose, octyl divinyl sulfone agarose | pNPB 5 | aqueous buffer medium/hydrolysis | [41] |
Sabi et al. | ETL 6 | octyl agarose | triacetin, pNPB 5 | aqueous buffer medium/hydrolysis | [42] |
Abellanas-Perez et al. | CALA 1, CALB | amino-octyl-vinyl sulfone- agarose, amino-hexyl-vinyl sulfone-agarose, octyl-vinyl sulfone-agarose | triacetin, pNPB 5, (D) and (L)-methyl mandelate | aqueous buffer medium/hydrolysis | [43] |
Arana-Pena et al. | CALA 1, CALB, CRL 7, RML 8 | octyl agarose | triacetin, pNPB 5, (R) and (S)-methyl mandelate | aqueous buffer medium/hydrolysis | [44] |
Arana-Pena et al. | CALB, CALA 1, TLL 9, RML 8, LEU 10 | octyl agarose, octyl-vinyl sulfone agarose, octyl-vinyl sulfone agarose coated with PEI 11 | triacetin, pNPB 5, (R) and (S)-methyl mandelate | aqueous buffer medium/hydrolysis | [45] |
Ahrari et al. | ROL 12 | octyl-sepharose, cyanogen bromide activated sepharose, glyoxyl-agarose, Q-sepharose, monoaminoethyl-N-aminoethyl-agarose | pNPB 5, fish oil | aqueous buffer medium, biphasic system/hydrolysis | [46] |
Siódmiak et al. | CALB, CRL-OF 13 | octyl-agarose | (R,S)-flurbiprofen with methanol | organic solvents/ esterification | [32] |
Siódmiak et al. | CALB | octyl-agarose | (R,S)-1-phenylethanol with isopropenyl acetate | organic solvents/ transesterification | This work |
Lipase | Storage Conditions | Storage Time | ees (%) | eep (%) | C (%) | E |
---|---|---|---|---|---|---|
CALB | Without storage | - | 75.6 ± 1.6 | 99.8 ± 0.2 | 43.1 ± 0.5 | >200 |
Climatic chamber (65 °C; no light) | 7 days | 73.8 ± 2.4 | 99.9 ± 0.1 | 42.5 ± 0.8 | >200 | |
Climatic chamber (65 °C; Vis 400–800 nm) | 7 days | 74.9 ± 1.5 | 99.7 ± 0.3 | 42.9 ± 0.4 | >200 | |
Refrigerator (4 °C; no light) | 7 days | 64.9 ± 2.3 | 99.7 ± 0.2 | 39.4 ± 0.8 | >200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siódmiak, J.; Dulęba, J.; Kocot, N.; Mastalerz, R.; Haraldsson, G.G.; Siódmiak, T. CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium. Int. J. Mol. Sci. 2025, 26, 6961. https://doi.org/10.3390/ijms26146961
Siódmiak J, Dulęba J, Kocot N, Mastalerz R, Haraldsson GG, Siódmiak T. CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium. International Journal of Molecular Sciences. 2025; 26(14):6961. https://doi.org/10.3390/ijms26146961
Chicago/Turabian StyleSiódmiak, Joanna, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson, and Tomasz Siódmiak. 2025. "CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium" International Journal of Molecular Sciences 26, no. 14: 6961. https://doi.org/10.3390/ijms26146961
APA StyleSiódmiak, J., Dulęba, J., Kocot, N., Mastalerz, R., Haraldsson, G. G., & Siódmiak, T. (2025). CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium. International Journal of Molecular Sciences, 26(14), 6961. https://doi.org/10.3390/ijms26146961