Contribution of PNPLA3, GCKR, MBOAT7, NCAN, and TM6SF2 Genetic Variants to Hepatocellular Carcinoma Development in Mexican Patients
Abstract
1. Introduction
2. Results
2.1. Subjects Characteristic
2.2. Analysis of the Association Between SNPs and Cases-Controls
2.3. The Inheritance Model Analysis of Polymorphisms in Patients with HCC and Controls
2.4. Analysis of PNPLA3 Haplotypes in Cases and Controls
2.5. Gene-Gene Interaction Analysis
3. Discussion
4. Material and Methods
4.1. Subjects
4.2. SNPs Selection and Genotyping
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HCC | Hepatocellular carcinoma |
SNPs | Single nucleotide polymorphisms |
PNPLA3 | Patatin-like phospholipase domain-containing protein 3 |
GCKR | Glucokinase regulator |
MBOAT7 | Membrane-bound O-acyltransferase domain containing 7 |
NCAN | Neurocan |
TM6SF2 | Transmembrane 6 superfamily member 2 |
HBV | Hepatitis B virus |
HBC | Hepatic C virus |
ALD | excessive alcohol intake |
AFB1 | aflotoxin B1 |
NAFLD | Non-alcoholic fatty liver disease |
NASH | Non-alcoholic steatohepatitis |
T2DM | Type 2 diabetes |
GWAS | Genome Wide Association Studies |
BMI | Body mass index |
BCLC | Barcelona Clinic Liver Cancer |
MDR | Multifactor Dimensionality Reduction Software |
VLDL | very low-density lipoproteins |
ALT | alanine transaminase |
RNA | Ribonucleic acid |
DNA | deoxyribonucleic acid |
HbsAg | Hepatic B surface antigen |
MAF | Minor allele Frequency |
CVC | Cross Validation Consistency |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Kelly, S.P.; Altekruse, S.F.; McGlynn, K.A.; Rosenberg, P.S. Future of Hepatocellular Carcinoma Incidence in the United States Forecast Through 2030. J. Clin. Oncol. 2016, 34, 1787–1794. [Google Scholar] [CrossRef]
- Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 2020, 245, 96–108. [Google Scholar] [CrossRef]
- Suresh, D.; Srinivas, A.N.; Kumar, D.P. Etiology of Hepatocellular Carcinoma: Special Focus on Fatty Liver Disease. Front. Oncol. 2020, 10, 601710. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Goto, T.; Hirotsu, Y.; Masuzaki, R.; Moriyama, M.; Omata, M. Molecular Mechanisms: Connections between Nonalcoholic Fatty Liver Disease, Steatohepatitis and Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 1525. [Google Scholar] [CrossRef] [PubMed]
- Mattos, A.Z.; Debes, J.D.; Dhanasekaran, R.; Benhammou, J.N.; Arrese, M.; Patricio, A.L.V.; Zilio, A.C.; Mattos, A.A. Hepatocellular carcinoma in nonalcoholic fatty liver disease: A growing challenge. World J. Hepatol. 2021, 13, 1107–1121. [Google Scholar] [CrossRef] [PubMed]
- Grove, J.I.; Austin, M.; Tibble, J.; Aithal, G.P.; Verma, S. Monozygotic twins with NASH cirrhosis: Cumulative effect of multiple single nucleotide polymorphisms? Ann. Hepatol. 2016, 15, 277–282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weledji, E.P. Familial hepatocellular carcinoma: ‘A model for studying preventive and therapeutic measures’. Ann. Med. Surg. 2018, 35, 129–132. [Google Scholar] [CrossRef]
- Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.; Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008, 40, 1461–1465. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Donati, B.; Fares, R.; Lombardi, R.; Mancina, R.M.; Romeo, S.; Valenti, L. PNPLA3 I148M polymorphism and progressive liver disease. World J. Gastroenterol. 2013, 19, 6969–6978. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Patman, G.L.; Leathart, J.B.; Piguet, A.C.; Burt, A.D.; Dufour, J.F.; Day, C.P.; Daly, A.K.; Reeves, H.L.; Anstee, Q.M. Carriage of the PNPLA3 rs738409 C > G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 2014, 61, 75–81. [Google Scholar] [CrossRef]
- Singal, A.G.; Manjunath, H.; Yopp, A.C.; Beg, M.S.; Marrero, J.A.; Gopal, P.; Waljee, A.K. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: A meta-analysis. Am. J. Gastroenterol. 2014, 109, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, P.; Romeo, S. The role of PNPLA3 in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Donati, B.; Motta, B.M.; Pingitore, P.; Meroni, M.; Pietrelli, A.; Alisi, A.; Petta, S.; Xing, C.; Dongiovanni, P.; del Menico, B.; et al. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage. Hepatology 2016, 63, 787–798. [Google Scholar] [CrossRef]
- Yang, J.; Trepo, E.; Nahon, P.; Cao, Q.; Moreno, C.; Letouze, E.; Imbeaud, S.; Gustot, T.; Deviere, J.; Debette, S.; et al. PNPLA3 and TM6SF2 variants as risk factors of hepatocellular carcinoma across various etiologies and severity of underlying liver diseases. Int. J. Cancer 2019, 144, 533–544. [Google Scholar] [CrossRef]
- Fernandes Silva, L.; Vangipurapu, J.; Kuulasmaa, T.; Laakso, M. An intronic variant in the GCKR gene is associated with multiple lipids. Sci. Rep. 2019, 9, 10240. [Google Scholar] [CrossRef]
- Bianco, C.; Jamialahmadi, O.; Pelusi, S.; Baselli, G.; Dongiovanni, P.; Zanoni, I.; Santoro, L.; Maier, S.; Liguori, A.; Meroni, M.; et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J. Hepatol. 2021, 74, 775–782. [Google Scholar] [CrossRef]
- Nischalke, H.D.; Lutz, P.; Kramer, B.; Sohne, J.; Muller, T.; Rosendahl, J.; Fischer, J.; Berg, T.; Hittatiya, K.; Fischer, H.P.; et al. A common polymorphism in the NCAN gene is associated with hepatocellular carcinoma in alcoholic liver disease. J. Hepatol. 2014, 61, 1073–1079. [Google Scholar] [CrossRef]
- Lai, M.; Qin, Y.L.; Jin, Q.Y.; Chen, W.J.; Hu, J. Association of MBOAT7 rs641738 polymorphism with hepatocellular carcinoma susceptibility: A systematic review and meta-analysis. World J. Gastrointest. Oncol. 2023, 15, 2225–2236. [Google Scholar] [CrossRef]
- Grimaudo, S.; Pipitone, R.M.; Pennisi, G.; Celsa, C.; Camma, C.; Di Marco, V.; Barcellona, M.R.; Boemi, R.; Enea, M.; Giannetti, A.; et al. Association Between PNPLA3 rs738409 C > G Variant and Liver-Related Outcomes in Patients With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2020, 18, 935–944.e3. [Google Scholar] [CrossRef]
- Dhar, D.; Loomba, R. Emerging Metabolic and Transcriptomic Signature of PNPLA3-Associated NASH. Hepatology 2021, 73, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Trepo, E.; Caruso, S.; Yang, J.; Imbeaud, S.; Couchy, G.; Bayard, Q.; Letouze, E.; Ganne-Carrie, N.; Moreno, C.; Oussalah, A.; et al. Common genetic variation in alcohol-related hepatocellular carcinoma: A case-control genome-wide association study. Lancet Oncol. 2022, 23, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Gellert-Kristensen, H.; Richardson, T.G.; Davey Smith, G.; Nordestgaard, B.G.; Tybjaerg-Hansen, A.; Stender, S. Combined Effect of PNPLA3, TM6SF2, and HSD17B13 Variants on Risk of Cirrhosis and Hepatocellular Carcinoma in the General Population. Hepatology 2020, 72, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Urias, E.; Tedesco, N.R.; Burkholder, D.A.; Moran, I.J.; Miller, M.J.; Jasty, V.S.J.; Patil, S.; Zoellner, S.; Wijarnpreecha, K.; Chen, V.L. PNPLA3 risk allele is associated with risk of hepatocellular carcinoma but not decompensation in compensated cirrhosis. Hepatol. Commun. 2024, 8, e0441. [Google Scholar] [CrossRef]
- Mahmoudi, S.K.; Tarzemani, S.; Aghajanzadeh, T.; Kasravi, M.; Hatami, B.; Zali, M.R.; Baghaei, K. Exploring the role of genetic variations in NAFLD: Implications for disease pathogenesis and precision medicine approaches. Eur. J. Med. Res. 2024, 29, 190. [Google Scholar] [CrossRef]
- De Benedittis, C.; Bellan, M.; Crevola, M.; Boin, E.; Barbaglia, M.N.; Mallela, V.R.; Ravanini, P.; Ceriani, E.; Fangazio, S.; Sainaghi, P.P.; et al. Interplay of PNPLA3 and HSD17B13 Variants in Modulating the Risk of Hepatocellular Carcinoma among Hepatitis C Patients. Gastroenterol. Res. Pract. 2020, 2020, 4216451. [Google Scholar] [CrossRef]
- Enomoto, H.; Aizawa, N.; Ikeda, N.; Takashima, T.; Yuri, Y.; Okamoto, M.; Yoshioka, R.; Kawata, S.; Yoshihara, K.; Ota, S.; et al. Association of PNPLA3 SNP With the Development of HBV-related Hepatocellular Carcinoma. In Vivo 2023, 37, 763–770. [Google Scholar] [CrossRef]
- Qadri, S.; Lallukka-Bruck, S.; Luukkonen, P.K.; Zhou, Y.; Gastaldelli, A.; Orho-Melander, M.; Sammalkorpi, H.; Juuti, A.; Penttila, A.K.; Perttila, J.; et al. The PNPLA3-I148M variant increases polyunsaturated triglycerides in human adipose tissue. Liver Int. 2020, 40, 2128–2138. [Google Scholar] [CrossRef]
- Akkiz, H.; Taskin, E.; Karaogullarindan, U.; Delik, A.; Kuran, S.; Kutlu, O. The influence of RS738409 I148M polymorphism of patatin-like phospholipase domain containing 3 gene on the susceptibility of non-alcoholic fatty liver disease. Medicine 2021, 100, e25893. [Google Scholar] [CrossRef]
- Basu Ray, S. PNPLA3-I148M: A problem of plenty in non-alcoholic fatty liver disease. Adipocyte 2019, 8, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Zhao, M.; Zheng, S.; Zheng, L.; Wang, H. Advances in genetic variation in metabolism-related fatty liver disease. Front. Genet. 2023, 14, 1213916. [Google Scholar] [CrossRef] [PubMed]
- Larrieta-Carrasco, E.; Leon-Mimila, P.; Villarreal-Molina, T.; Villamil-Ramirez, H.; Romero-Hidalgo, S.; Jacobo-Albavera, L.; Gutierrez-Vidal, R.; Lopez-Contreras, B.E.; Guillen-Pineda, L.E.; Sanchez-Munoz, F.; et al. Association of the I148M/PNPLA3 variant with elevated alanine transaminase levels in normal-weight and overweight/obese Mexican children. Gene 2013, 520, 185–188. [Google Scholar] [CrossRef]
- Larrieta-Carrasco, E.; Acuna-Alonzo, V.; Velazquez-Cruz, R.; Barquera-Lozano, R.; Leon-Mimila, P.; Villamil-Ramirez, H.; Menjivar, M.; Romero-Hidalgo, S.; Mendez-Sanchez, N.; Cardenas, V.; et al. PNPLA3 I148M polymorphism is associated with elevated alanine transaminase levels in Mexican Indigenous and Mestizo populations. Mol. Biol. Rep. 2014, 41, 4705–4711. [Google Scholar] [CrossRef] [PubMed]
- Flores, Y.N.; Velazquez-Cruz, R.; Ramirez, P.; Banuelos, M.; Zhang, Z.F.; Yee, H.F., Jr.; Chang, S.C.; Canizales-Quinteros, S.; Quiterio, M.; Cabrera-Alvarez, G.; et al. Association between PNPLA3 (rs738409), LYPLAL1 (rs12137855), PPP1R3B (rs4240624), GCKR (rs780094), and elevated transaminase levels in overweight/obese Mexican adults. Mol. Biol. Rep. 2016, 43, 1359–1369. [Google Scholar] [CrossRef]
- Martinez, L.A.; Larrieta, E.; Calva, J.J.; Kershenobich, D.; Torre, A. The Expression of PNPLA3 Polymorphism could be the Key for Severe Liver Disease in NAFLD in Hispanic Population. Ann. Hepatol. 2017, 16, 909–915. [Google Scholar] [CrossRef]
- Chinchilla-Lopez, P.; Ramirez-Perez, O.; Cruz-Ramon, V.; Canizales-Quinteros, S.; Dominguez-Lopez, A.; Ponciano-Rodriguez, G.; Sanchez-Munoz, F.; Mendez-Sanchez, N. More Evidence for the Genetic Susceptibility of Mexican Population to Nonalcoholic Fatty Liver Disease through PNPLA3. Ann. Hepatol. 2018, 17, 250–255. [Google Scholar] [CrossRef]
- Moreno-Estrada, A.; Gignoux, C.R.; Fernandez-Lopez, J.C.; Zakharia, F.; Sikora, M.; Contreras, A.V.; Acuna-Alonzo, V.; Sandoval, K.; Eng, C.; Romero-Hidalgo, S.; et al. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science 2014, 344, 1280–1285. [Google Scholar] [CrossRef]
- Nagel, R.L. Epistasis and the genetics of human diseases. C. R. Biol. 2005, 328, 606–615. [Google Scholar] [CrossRef]
- Li, F.; Fan, X.; Wang, X.; Deng, H.; Zhang, X.; Zhang, K.; Li, N.; Han, Q.; Lv, Y.; Liu, Z. Genetic association and interaction of PD1 and TIM3 polymorphisms in susceptibility of chronic hepatitis B virus infection and hepatocarcinogenesis. Discov. Med. 2019, 27, 79–92. [Google Scholar]
- Moore, J.H.; Gilbert, J.C.; Tsai, C.T.; Chiang, F.T.; Holden, T.; Barney, N.; White, B.C. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 2006, 241, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Liu, W.; Zhang, X.; Gao, X.; Yu, F.; Guo, W.; Meng, Y.; Gao, P.; Zhou, J.; Yuan, M.; et al. Oxidative Stress-Related Gene Polymorphisms Are Associated With Hepatitis B Virus-Induced Liver Disease in the Northern Chinese Han Population. Front. Genet. 2019, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yang, Y.; An, Y.; Zhou, Y.; Liu, Y.; Yu, Q.; Lu, D.; Wang, H.; Jin, L.; Zhou, W.; et al. Genetic polymorphisms in DNA double-strand break repair genes XRCC5, XRCC6 and susceptibility to hepatocellular carcinoma. Carcinogenesis 2011, 32, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Motsinger, A.A.; Ritchie, M.D. Multifactor dimensionality reduction: An analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum. Genom. 2006, 2, 318–328. [Google Scholar] [CrossRef]
Clinical Data | Casos n = 173 | Controles n = 346 | p |
---|---|---|---|
Age, y, mean ± SD | 63 ± 9.9 | 62.9 ± 10 | 0.4 |
Male sex, n (%) | 102 (58.96%) | 204 (58.96%) | 1 |
Female sex, n (%) | 71 (41.04%) | 142 (41.04%) | 1 |
BMI, kg/m2 mean ± SD | 28.42 ± 4.01 | 25.7 ± 3.4 | 0.08 |
Type II diabetes mellitus, n (%) | 95 (55%) | 102 (29.41%) | <0.0001 |
Hypertension, n (%) | 55 (32%) | 80 (23.12%) | 0.04 |
Cirrhosis | 157 (90%) | ||
Child Pugh | |||
A | 82 (50%) | ||
B | 62 (37.8%) | ||
C | 20 (12.2%) | ||
BCLC | |||
A | 44 (25.4%) | ||
B | 52 (30.0%) | ||
C | 48 (27.8%) | ||
D | 29 (16.8%) | ||
Etiology of liver disease, n (%) | |||
Non- alcoholic fatty liver disease (NAFLD) | 53 (31%) | ||
Alcoho liver disease (ALD) | 65 (38%) | ||
Hepatitis C virus disease (HCV) | 30 (17%) | ||
Hepatitis B virus disease (HBV) | |||
Autoinmune liver disease | 9 (5%) | ||
Unknown liver disease | 16 (9%) |
Gene | SNP | Allele | Cases n = 173 | Controls n = 346 | OR (CI 95%) | p Value | HWE p |
---|---|---|---|---|---|---|---|
PNPLA3 | rs738409 | G | 254 (73%) | 387 (56%) | 2.2 (1.6–2.9) | <0.0001 | 0.8 |
C | 92 (27%) | 305 (44%) | 0.4 (0.3–0.6) | ||||
PNPLA3 | rs2294918 | G | 299 (86%) | 553 (80%) | 1.6 (1.1–2.3) | 0.01 | 0.9 |
A | 47 (14%) | 139 (20%) | 0.62 (0.43–0.8) | ||||
GCKR | rs780094 | T | 130 (38%) | 203 (29%) | 1.4 (1.1–1.9) | 0.007 | 0.07 |
C | 216 (62%) | 489 (71%) | 0.6 (0.5–0.9) | ||||
MBOAT7 | rs641738 | T | 151 (44%) | 231 (33%) | 1.5 (1.1–2.0) | 0.001 | 0.12 |
C | 195 (56%) | 461 (67%) | 0.6 (0.5–0.8) | ||||
TM6SF2 | rs58542926 | T | 18 (5%) | 34 (5%) | 1.1 (0.5–1.9) | 0.8 | 0.33 |
C | 328 (95%) | 658 (95%) | 0.9 (0.5–1.7) | ||||
NCAN | rs2228603 | C | 6 (2%) | 12 (2%) | 1 (0.37–2.68) | 1.0 | 0.7 |
T | 340 (98%) | 680 (98%) | 1 (0.37–2.68) |
Gene | Cases | Controls | OR (CI 95%) | p | OR (CI 95%) a | p a |
---|---|---|---|---|---|---|
PNPLA3 rs738409 | ||||||
Codominant | ||||||
GG | 95 (55%) | 107 (31%) | 4.2 (2.2–7.9) | <0.0001 | 4.5 (2.3–8.9) | <0.0001 |
CG | 64 (37%) | 173 (50%) | 1.7 (0.9–3.3) | 0.09 | 1.9 (0.9–3.7) | 0.07 |
CC | 14 (8%) | 66 (19%) | 1 | |||
Dominant | ||||||
GG/CG vs. CC | 159 (91.9%) | 280 (80.9%) | 2.6 (1.4–4.9) | 0.002 | 2.8 (1.5–5.5) | 0.001 |
Recessive | ||||||
GG vs. CG/CC | 95 (54.9%) | 107 (30.9%) | 2.7 (1.9–3.9) | <0.0001 | 2.7 (1.8–4.1) | <0.0001 |
PNPLA3 rs2294918 | ||||||
Codominant | ||||||
GG | 130 (75%) | 221 (64%) | 2.0 (0.6–6.4) | 0.2 | 2.7 (0.8–9.3) | 0.09 |
AG | 39 (23%) | 111 (32%) | 1.2 (0.4–3.9) | 0.7 | 1.7 (0.5–5.8) | 0.4 |
AA | 4 (2%) | 14 (4%) | 1 | |||
Dominant | ||||||
GG/AG vs. AA | 332 (95.9%) | 169 (97.7%) | 1.8 (0.6–5.5) | 0.3 | 2.4 (0.7–8.0) | 0.1 |
Recessive | ||||||
GG vs. AG/AA | 130 (75.1%) | 221 (63.9%) | 1.7 (1.1–2.6) | 0.01 | 1.8 (1.1–2.7) | 0.01 |
GCKR rs780094 | ||||||
Codominant | ||||||
TT | 30 (17%) | 37 (11%) | 1.9 (1.1–3.4) | 0.01 | 2.2 (1.2–3.9) | 0.009 |
TC | 70 (41%) | 129 (37%) | 1.3 (0.9–2.0) | 0.1 | 1.7 (1.1–2.6) | 0.01 |
CC | 73 (42%) | 180 (52%) | 1 | 1 | ||
Dominant | ||||||
TT/TC vs. CC | 100 (58%) | 166 (48%) | 1.5 (1.01–2.2) | 0.03 | 1.8 (1.2–2.7) | 0.003 |
Recessive | ||||||
TT vs. TC vs. CC | 30 (17%) | 37 (11%) | 1.7 (1.04–2.9) | 0.03 | 1.7 (0.9–3.0) | 0.05 |
MBOAT7 rs641738 | ||||||
Codominant | ||||||
TT | 38 (22%) | 45 (13%) | 2.2 (1.3–3.9) | 0.002 | 2.9 (1.6–5.1) | 0.001 |
TC | 75 (43%) | 141 (41%) | 1.4 (0.9–2.2) | 0.09 | 1.7 (1.1–2.7) | 0.02 |
CC | 60 (35%) | 160 (46%) | 1 | |||
Dominant | ||||||
TT/TC vs. CC | 113 (65%) | 186 (54%) | 1.6 (1.1–2.4) | 0.01 | 1.7 (1.1–2.7) | 0.001 |
Recessive | ||||||
TT vs. TC/CC | 38 (22%) | 45 (13%) | 1.9 (1.1–3.1) | 0.009 | 2.2 (1.3–3.6) | 0.003 |
TM6SF2 rs58542926 | ||||||
Codominant | ||||||
TT | 1 (0.6%) | 0 (0%) | ||||
TC | 16 (9%) | 34 (10%) | 0.9 (0.5–1.8) | 0.8 | 1.02 (0.5–1.9) | 0.9 |
CC | 156 (90%) | 312 (90%) | 1 | 1 | ||
Dominant | ||||||
TT/TC vs. CC | 17 (9.8) | 34 (9.8) | 1.0 (0.5–1.9) | 1.0 | 1.1 (0.5–2.1) | 0.8 |
Recessive | ||||||
TT vs. TC/CC | 1 (0.6%) | 0 (0%) | 0.1 | |||
NCAN rs2228603 | ||||||
Codominant | ||||||
CC | 167 (97%) | 334 (97%) | 1 | |||
TC | 6 (3%) | 12 (3%) | 1 (0.3–2.9) | 1 | 1.3 (0.4–4.0) | 0.6 |
TT | 0 | 0 | ||||
Dominant | ||||||
CC/TC vs. TT | 6 (3%) | 12 (3%) | 1 (0.3–2.9) | 1 | 1.3 (0.4–4.0) | |
Recessive | ||||||
TT vs. TC/CC | 0 (0.0%) | 0 (0.0%) |
Haplotype | Case | Control | ||
---|---|---|---|---|
rs738409, rs2294918 | HF (%) | HF (%) | OR (CI95%) | p |
GG | 0.723 | 0.543 | 2.2 (1.7–2.9) | <0.0001 |
CG | 0.142 | 0.256 | 0.5 (0.3–0.7) | <0.0001 |
CA | 0.124 | 0.184 | 0.6 (0.4–0.9) | 0.0139 |
GA | 0.012 | 0.016 | 0.6 (0.2–1.8) | 0.5318 |
Model | Training Accuracy | Testing Accuracy | CVC | p | OR (95% CI) |
---|---|---|---|---|---|
PNPLA3 rs738409, GCKR rs780094 | 0.6344 | 0.6055 | 7/10 | 0.002 | 2.9 (2.03–4.3) |
PNPLA3 rs738409, GCKR rs780094, MBOAT7 rs641738 | 0.6651 | 0.6084 | 10/10 | 0.001 | 3.9 (2.6–5.8) |
PNPLA3 rs738409, rs2294918, GCKR rs780094, MBOAT7 rs641738 | 0.6867 | 0.5839 | 10/10 | 0.01 | 4.7 (3.1–6.9) |
Gene | Genetic Variant | Position | Transition | Consequence |
---|---|---|---|---|
PNPLA3 | rs738409 | chr22:43928847 | C > G | Missense Variant |
PNPLA3 | rs2294918 | chr22:43946236 | A > G | Missense Variant |
GCKR | rs780094 | chr2:27518370 | C > T | Intron variant |
MBOAT7 | rs641738 | chr19:54173068 | C > T | Downstream Transcript Variant |
TM6SF2 | rs58542926 | chr19:19268740 | C > T | Stop gained |
NCAN | rs2228603 | chr19:19219115 | C > T | Missense Variant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arreola Cruz, A.; Navarro Hernández, J.C.; Cisneros Garza, L.E.; Miranda Duarte, A.; Mata Tijerina, V.L.; Hernández Garcia, M.E.; Peñuelas-Urquides, K.; González-Escalante, L.A.; Bermúdez de León, M.; Silva Ramirez, B. Contribution of PNPLA3, GCKR, MBOAT7, NCAN, and TM6SF2 Genetic Variants to Hepatocellular Carcinoma Development in Mexican Patients. Int. J. Mol. Sci. 2025, 26, 7409. https://doi.org/10.3390/ijms26157409
Arreola Cruz A, Navarro Hernández JC, Cisneros Garza LE, Miranda Duarte A, Mata Tijerina VL, Hernández Garcia ME, Peñuelas-Urquides K, González-Escalante LA, Bermúdez de León M, Silva Ramirez B. Contribution of PNPLA3, GCKR, MBOAT7, NCAN, and TM6SF2 Genetic Variants to Hepatocellular Carcinoma Development in Mexican Patients. International Journal of Molecular Sciences. 2025; 26(15):7409. https://doi.org/10.3390/ijms26157409
Chicago/Turabian StyleArreola Cruz, Alejandro, Juan Carlos Navarro Hernández, Laura Estela Cisneros Garza, Antonio Miranda Duarte, Viviana Leticia Mata Tijerina, Magda Elizabeth Hernández Garcia, Katia Peñuelas-Urquides, Laura Adiene González-Escalante, Mario Bermúdez de León, and Beatriz Silva Ramirez. 2025. "Contribution of PNPLA3, GCKR, MBOAT7, NCAN, and TM6SF2 Genetic Variants to Hepatocellular Carcinoma Development in Mexican Patients" International Journal of Molecular Sciences 26, no. 15: 7409. https://doi.org/10.3390/ijms26157409
APA StyleArreola Cruz, A., Navarro Hernández, J. C., Cisneros Garza, L. E., Miranda Duarte, A., Mata Tijerina, V. L., Hernández Garcia, M. E., Peñuelas-Urquides, K., González-Escalante, L. A., Bermúdez de León, M., & Silva Ramirez, B. (2025). Contribution of PNPLA3, GCKR, MBOAT7, NCAN, and TM6SF2 Genetic Variants to Hepatocellular Carcinoma Development in Mexican Patients. International Journal of Molecular Sciences, 26(15), 7409. https://doi.org/10.3390/ijms26157409