Examination of the TPMT and NUDT15*3 Variants to Predict the Response to Thiopurines in an Italian Cohort of Patients with Inflammatory Bowel Disease
Abstract
1. Introduction
2. Results
2.1. Response of Patients to AZA/5-MP Treatment
2.2. TMPT and NUDT15 Gene Polymorphisms
2.3. Response to AZA/5-MP Treatment in Relation to Clinical–Pathological Features of IBDs
3. Discussion
4. Materials and Methods
4.1. Patients Enrolled in This Study
4.2. DNA Isolation and TPMT and NUDT15 Genotyping
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6-MMP | 6-Methylmercaptopurine |
6-MP | 6-Mercaptopurine |
6-TC | 6-Thiouric acid |
6-TGNs | 6-Thioguanine nucleotides |
6-TIMP | 6-Thiosine monophosphate |
AZA | Azathioprine |
CD | Crohn’s disease |
CI | Confidence interval |
CPIC | Clinical Pharmacogenetics Implementation Consortium |
CRP | C-reactive protein |
DPWG | Dutch Pharmacogenetics Working Group |
ECCO | European Crohn’s and Colitis Organization |
EIM | Extra-intestinal manifestation |
FDA | Federal Drug Administration |
GI | Gastrointestinal |
HBI | Harvey–Bradshaw Index |
IBD | Inflammatory bowel disease |
MR | Magnetic resonance |
NUDT15 | Nudix hydrolase 15 |
OR | Odds Ratio |
PMS | Partial Mayo score |
SES-CD | Simple Endoscopic Score for Crohn’s Disease |
SNP | Single-nucleotide polymorphisms |
TG | Thioguanine |
TPMT | Thiopurine s-methyltransferase |
UC | Ulcerative colitis |
References
- Baumgart, D.C.; Sandborn, W.J. Crohn’s disease. Lancet 2012, 380, 1590–1605. [Google Scholar] [CrossRef]
- Ordás, I.; Eckmann, L.; Talamini, M.; Baumgart, D.C.; Sandborn, W.J. Ulcerative colitis. Lancet 2012, 380, 1606–1619. [Google Scholar] [CrossRef]
- Caron, B.; Honap, S.; Peyrin-Biroulet, L. Epidemiology of Inflammatory Bowel Disease across the Ages in the Era of Advanced Therapies. J. Crohns Colitis 2024, 18 (Suppl. 2), ii3–ii15. [Google Scholar] [CrossRef]
- Ng, S.C.; Bernstein, C.N.; Vatn, M.H.; Lakatos, P.L.; Loftus, E.V., Jr.; Tysk, C.; O’Morain, C.; Moum, B.; Colombel, J.F.; Epidemiology and Natural History Task Force of the International Organization of Inflammatory Bowel Disease (IOIBD). Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 2013, 62, 630–649. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, M.; Negrulj, R.; Mooranian, A.; Al-Salami, H. Inflammatory bowel disease: Clinical aspects and treatments. J. Inflamm. Res. 2014, 7, 113–120. [Google Scholar] [CrossRef]
- de Boer, N.K.H.; Thiopurine Working Group. Thiopurine therapy in inflammatory bowel diseases: Making new friends should not mean losing old ones. Gastroenterology 2019, 156, 11–14. [Google Scholar] [CrossRef]
- Al Hadithy, A.F.; de Boer, N.K.; Derijks, L.J.; Escher, J.C.; Mulder, C.J.; Brouwers, J.R. Thiopurines in inflammatory bowel disease: Pharmacogenetics, therapeutic drug monitoring and clinical recommendations. Dig. Liver Dis. 2005, 37, 282–297. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.; Ordás, I.; Cabré, E.; Garcia-Sanchez, V.; Bastida, G.; Peñalva, M.; Gomollón, F.; García-Planella, E.; Merino, O.; Gutiérrez, A.; et al. Safety of thiopurine therapy in inflammatory bowel disease: Long-term follow-up study of 3931 patients. Inflamm. Bowel Dis. 2013, 19, 1404–1410. [Google Scholar] [CrossRef]
- Jharap, B.; Seinen, M.L.; de Boer, N.K.; van Ginkel, J.R.; Linskens, R.K.; Kneppelhout, J.C.; Mulder, C.J.; van Bodegraven, A.A. Thiopurine therapy in inflammatory bowel disease patients: Analyses of two 8-year intercept cohorts. Inflamm. Bowel Dis. 2010, 16, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mahajan, R.; Kedia, S.; Dutta, A.K.; Anand, A.; Bernstein, C.N.; Desai, D.; Pai, C.G.; Makharia, G.; Tevethia, H.V.; et al. Use of thiopurines in inflammatory bowel disease: An update. Intest. Res. 2022, 20, 11–30. [Google Scholar] [CrossRef]
- Dean, L. Thioguanine Therapy and TPMT and NUDT15 Genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK100663/ (accessed on 21 April 2025).
- Almoguera, B.; Vazquez, L.; Connolly, J.J.; Bradfield, J.; Sleiman, P.; Keating, B.; Hakonarson, H. Imputation of TPMT defective alleles for the identification of patients with high-risk phenotypes. Front. Genet. 2014, 5, 96. [Google Scholar] [CrossRef]
- Weinshilboum, R.M.; Sladek, S.L. Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 1980, 32, 651–662. [Google Scholar]
- Collie-Duguid, E.S.; Pritchard, S.C.; Powrie, R.H.; Sludden, J.; Collier, D.A.; Li, T.; McLeod, H.L. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999, 9, 37–42. [Google Scholar] [CrossRef]
- Yang, S.K.; Hong, M.; Baek, J.; Choi, H.; Zhao, W.; Jung, Y.; Haritunians, T.; Ye, B.D.; Kim, K.J.; Park, S.H.; et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat. Genet. 2014, 46, 1017–1020. [Google Scholar] [CrossRef]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef]
- Lennard, L. Implementation of TPMT testing. Br. J. Clin. Pharmacol. 2014, 77, 704–714. [Google Scholar] [CrossRef]
- Kakuta, Y.; Kato, M.; Shimoyama, Y.; Naito, T.; Moroi, R.; Kuroha, M.; Shiga, H.; Kinouchi, Y.; Masamune, A. Usefulness and difficulties with the thiopurine pharmacogenomic NUDT15 genotyping test: Analysis of real-world data in Japan. J. Pharmacol. Sci. 2023, 153, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, K.W.; Smith, D.M.; Elsey, A.R.; Duong, B.Q.; Burkley, B.; Clare-Salzler, M.; Gong, Y.; Higgins, T.A.; Kong, B.; Langaee, T.; et al. Implementation of Standardized Clinical Processes for TPMT Testing in a Diverse Multidisciplinary Population: Challenges and Lessons Learned. Clin. Transl. Sci. 2018, 11, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Garrido, C.; Santizo, V.G.; Müllers, P.; Soriano, D.R.; Avila, G.B.; Dean, M.; Jimenez-Morales, S. Frequency of thiopurine S-methyltransferase mutant alleles in indigenous and admixed Guatemalan patients with acute lymphoblastic leukemia. Med. Oncol. 2013, 30, 474. [Google Scholar] [CrossRef] [PubMed]
- Pratt, V.M.; Cavallari, L.H.; Fulmer, M.L.; Gaedigk, A.; Hachad, H.; Ji, Y.; Kalman, L.V.; Ly, R.C.; Moyer, A.M.; Scott, S.A.; et al. TPMT and NUDT15 Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase. J. Mol. Diagn. 2022, 24, 1051–1063. [Google Scholar] [CrossRef]
- Gazouli, M.; Pachoula, I.; Panayotou, I.; Chouliaras, G.; Anagnou, N.P.; Chroussos, G.; Roma, E. Thiopurine methyltransferase genotype and thiopurine S-methyltransferase activity in Greek children with inflammatory bowel disease. Ann. Gastroenterol. 2012, 25, 249–253. [Google Scholar] [CrossRef][Green Version]
- Roberts, C.; Peters, J.; Sazonvos, A.; Goodman, N.; Sharip, M.; Smith, R.; Bishara, M.; Bewshea, C.; Lin, S.; Chanchlani, N.; et al. Clinical Utility and Cost-Effectiveness of Pretreatment NUDT15 Pharmacogenetic Testing to Prevent Thiopurine-Induced Myelosuppression: A Genotype-First Reverse Phenotyping Cohort Study Within the UK NIHR Inflammatory Bowel Disease Bioresource. Aliment. Pharmacol. Ther. 2025, Online ahead of print. [Google Scholar] [CrossRef]
- Rossi, A.M.; Bianchi, M.; Guarnieri, C.; Barale, R.; Pacifici, G.M. Genotype-phenotype correlation for thiopurine S-methyltransferase in healthy Italian subjects. Eur. J. Clin. Pharmacol. 2001, 57, 51–54. [Google Scholar] [CrossRef]
- Serpe, L.; Calvo, P.L.; Muntoni, E.; D’Antico, S.; Giaccone, M.; Avagnina, A.; Baldi, M.; Barbera, C.; Curti, F.; Pera, A.; et al. Thiopurine S-methyltransferase pharmacogenetics in a large-scale healthy Italian-Caucasian population: Differences in enzyme activity. Pharmacogenomics 2009, 10, 1753–1765. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Gerheim, P.S.A.S.; Chebli, J.M.F.; Nascimento, J.W.L.; de Faria Pinto, P. The Role of Pharmacogenetics in the Therapeutic Response to Thiopurines in the Treatment of Inflammatory Bowel Disease: A Systematic Review. J. Clin. Med. 2023, 12, 6742. [Google Scholar] [CrossRef]
- Jena, A.; Birda, C.L.; Choudhury, A.; Sharma, V. Safety and efficacy of personalized versus standard initial dosing of thiopurines: Systematic review and meta-analysis of randomized trials. Expert. Opin. Drug Saf. 2023, 22, 1253–1263. [Google Scholar] [CrossRef]
- Deenen, M.J.; van Noordenburg, A.J.; Bouwens-Bijsterveld, J.; van Dijk, M.A.; Stapelbroek, J.M.; Derijks, L.J.J.; Gilissen, L.P.L.; Deiman, B.A.L.M. Genetic association analysis and frequency of NUDT15*3 with thiopurine-induced myelosuppression in patients with inflammatory bowel disease in a large Dutch cohort. Pharmacogenom. J. 2024, 24, 39. [Google Scholar] [CrossRef]
- Royal Dutch Pharmacists Association (KNMP). The Dutch Pharmacogenetics Working Group-May 2020 Guideline. 2020. Available online: https://api.pharmgkb.org/v1/download/file/attachment/DPWG_May_2020.pdf (accessed on 15 June 2023).
- Mercaptopurine Tablet [Package Insert]; MylanPharmaceuticals: Morgantown, WV, USA, 2020. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=15904472-4c32-4224-95d3-eb131a7ff9c8 (accessed on 13 May 2025).
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohns Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.M.; Griffiths, A.M.; Muise, A.M.; Walters, T.D.; Ricciuto, A.; Huynh, H.Q.; Wine, E.; Jacobson, K.; Lawrence, S.; Carman, N.; et al. Landscape of TPMT and NUDT15 Pharmacogenetic Variation in a Cohort of Canadian Pediatric Inflammatory Bowel Disease Patients. Inflamm. Bowel Dis. 2024, 30, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.; Cheng, G.; Lewis, S.; Ashton, J.J.; Barakat, F.; Driscoll, K.C.T.; Sholeye-Bolaji, A.E.; Batra, A.; Afzal, N.A.; Beattie, R.M.; et al. Pharmacogenomic Assessment of Genes Implicated in Thiopurine Metabolism and Toxicity in a UK Cohort of Pediatric Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2025, 31, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Newman, W.G.; Elliott, R.A.; Roberts, S.A.; Tricker, K.; Payne, K. The cost-effectiveness of a pharmacogenetic test: A trial-based evaluation of TPMT genotyping for azathioprine. Value Health 2014, 17, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.F.; Ferrari, N.; Debuysere, H.; Marteau, P.; Gendre, J.P.; Bonaz, B.; Soulé, J.C.; Modigliani, R.; Touze, Y.; Catala, P.; et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 2000, 118, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Anandi, P.; Dickson, A.L.; Feng, Q.; Wei, W.Q.; Dupont, W.D.; Plummer, D.; Liu, G.; Octaria, R.; Barker, K.A.; Kawai, V.K.; et al. Combining clinical and candidate gene data into a risk score for azathioprine-associated leukopenia in routine clinical practice. Pharmacogenom. J. 2020, 20, 736–745. [Google Scholar] [CrossRef]
- Stournaras, E.; Qian, W.; Pappas, A.; Hong, Y.Y.; Shawky, R.; UK IBD BioResource Investigators; Raine, T.; Parkes, M. Thiopurine monotherapy is effective in ulcerative colitis but significantly less so in Crohn’s disease: Long-term outcomes for 11 928 patients in the UK inflammatory bowel disease bioresource. Gut 2021, 70, 677–686. [Google Scholar] [CrossRef]
- Moran, G.W.; Dubeau, M.F.; Kaplan, G.G.; Yang, H.; Eksteen, B.; Ghosh, S.; Panaccione, R. Clinical predictors of thiopurine-related adverse events in Crohn’s disease. World J. Gastroenterol. 2015, 21, 7795–7804. [Google Scholar] [CrossRef]
- Bermudez, H.; Faye, A.S.; Kochar, B. Managing the Older Adult with Inflammatory Bowel Disease: Is Age Just a Number? Curr. Opin. Gastroenterol. 2023, 39, 268–273. [Google Scholar] [CrossRef]
- Mahid, S.S.; Minor, K.S.; Soto, R.E.; Hornung, C.A.; Galandiuk, S. Smoking and inflammatory bowel disease: A meta-analysis. Mayo Clin. Proc. 2006, 81, 1462–1471, Erratum Mayo Clin. Proc. 2007, 82, 890. [Google Scholar] [CrossRef]
- Bastida, G.; Beltrán, B. Ulcerative colitis in smokers, non-smokers and ex-smokers. World J. Gastroenterol. 2011, 17, 2740–2747. [Google Scholar] [CrossRef]
- Nicolaides, S.; Vasudevan, A.; Long, T.; van Langenberg, D. The impact of tobacco smoking on treatment choice and efficacy in inflammatory bowel disease. Intest. Res. 2021, 19, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Poon, S.S.; Asher, R.; Jackson, R.; Kneebone, A.; Collins, P.; Probert, C.; Dibb, M.; Subramanian, S. Body Mass Index and Smoking Affect Thioguanine Nucleotide Levels in Inflammatory Bowel Disease. J. Crohns Colitis 2015, 9, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Jarmakiewicz-Czaja, S.; Zielińska, M.; Sokal, A.; Filip, R. Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes 2022, 13, 2388. [Google Scholar] [CrossRef]
- Spire-Vayron de la Moureyre, C.; Debuysere, H.; Mastain, B.; Vinner, E.; Marez, D.; Lo Guidice, J.M.; Chevalier, D.; Brique, S.; Motte, K.; Colombel, J.F.; et al. Genotypic and phenotypic analysis of the polymorphic thiopurine S-methyltransferase gene (TPMT) in a European population. Br. J. Pharmacol. 1998, 125, 879–887. [Google Scholar] [CrossRef]
- Lindqvist, M.; Skoglund, K.; Karlgren, A.; Söderkvist, P.; Peterson, C.; Kidhall, I.; Almer, S. Explaining TPMT genotype/phenotype discrepancy by haplotyping of TPMT*3A and identification of a novel sequence variant, TPMT*23. Pharmacogenet. Genom. 2007, 17, 891–895. [Google Scholar] [CrossRef]
- Chansavang, A.; Maalej, S.; Narjoz, C.; Loriot, M.A.; Pallet, N. Identification of rare defective allelic variants in cases of thiopurine S-methyltransferase deficient activity. Pharmacogenomics 2020, 21, 1217–1226. [Google Scholar] [CrossRef]
- Hamdan-Khalil, R.; Gala, J.L.; Allorge, D.; Lo-Guidice, J.M.; Horsmans, Y.; Houdret, N.; Broly, F. Identification and functional analysis of two rare allelic variants of the thiopurine S-methyltransferase gene, TPMT*16 and TPMT*19. Biochem. Pharmacol. 2005, 69, 525–529. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, S.; Eiff, B.; Szumlanski, C.L.; Powers, M.; O’Brien, J.F.; Weinshilboum, R.M. Thiopurine methyltransferase polymorphic tandem repeat: Genotype-phenotype correlation analysis. Clin. Pharmacol. Ther. 2000, 68, 210–219. [Google Scholar] [CrossRef]
- Arenas, M.; Simpson, G.; Lewis, C.M.; Shobowale-Bakre, E.-M.; Escuredo, E.; Fairbanks, L.D.; Duley, J.A.; Ansari, A.; Sanderson, J.D.; Marinaki, A.M. Genetic variation in the MTHFR gene influences thiopurine methyltransferase activity. Clin. Chem. 2005, 51, 2371–2374. [Google Scholar] [CrossRef]
- Urbančič, D.; Jukič, M.; Šmid, A.; Gobec, S.; Jazbec, J.; Mlinarič-Raščan, I. Thiopurine S-methyltransferase-An important intersection of drug-drug interactions in thiopurine treatment. Biomed. Pharmacother. 2025, 184, 117893. [Google Scholar] [CrossRef] [PubMed]
- Zakerska-Banaszak, O.; Łykowska-Szuber, L.; Walczak, M.; Żuraszek, J.; Zielińska, A.; Skrzypczak-Zielińska, M. Cytotoxicity of Thiopurine Drugs in Patients with Inflammatory Bowel Disease. Toxics 2022, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Effenberger, M.; Reider, S.; Waschina, S.; Bronowski, C.; Enrich, B.; Adolph, T.E.; Koch, R.; Moschen, A.R.; Rosenstiel, P.; Aden, K.; et al. Microbial Butyrate Synthesis Indicates Therapeutic Efficacy of Azathioprine in IBD Patients. J. Crohns Colitis 2021, 15, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Urbančič, D.; Pasha, F.; Šmid, A.; Mlinarič-Raščan, I. Personalization of thiopurine therapy: Current recommendations and future perspectives. Acta Pharm. 2024, 74, 355–381. [Google Scholar] [CrossRef] [PubMed]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Borralho Nunes, P.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohns Colitis 2019, 13, 144–164. [Google Scholar] [CrossRef]
- Silverberg, M.S.; Satsangi, J.; Ahmad, T.; Arnott, I.D.; Bernstein, C.N.; Brant, S.R.; Caprilli, R.; Colombel, J.F.; Gasche, C.; Geboes, K.; et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can. J. Gastroenterol. 2005, 19 (Suppl. A), 5A–36A. [Google Scholar] [CrossRef] [PubMed]
- Satsangi, J.; Silverberg, M.S.; Vermeire, S.; Colombel, J.F. The Montreal classification of inflammatory bowel disease: Controversies, consensus, and implications. Gut 2006, 55, 749–753. [Google Scholar] [CrossRef]
- Dubinsky, M.C. Azathioprine, 6-mercaptopurine in inflammatory bowel disease: Pharmacology, efficacy, and safety. Clin. Gastroenterol. Hepatol. 2004, 2, 731–743. [Google Scholar] [CrossRef]
- Frei, P.; Biedermann, L.; Nielsen, O.H.; Rogler, G. Use of thiopurines in inflammatory bowel disease. World J. Gastroenterol. 2013, 19, 1040–1048. [Google Scholar] [CrossRef]
- Connell, W.R.; Kamm, M.A.; Ritchie, J.K.; Lennard-Jones, J.E. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 1993, 34, 1081–1085. [Google Scholar] [CrossRef]
- Palmieri, O.; Latiano, A.; Bossa, F.; Vecchi, M.; D’Incà, R.; Guagnozzi, D.; Tonelli, F.; Cucchiara, S.; Valvano, M.R.; Latiano, T.; et al. Sequential evaluation of thiopurine methyltransferase, inosine triphosphate pyrophosphatase, and HPRT1 genes polymorphisms to explain thiopurines’ toxicity and efficacy. Aliment. Pharmacol. Ther. 2007, 26, 737–745. [Google Scholar] [CrossRef]
TPMT*3A, *3B, *3C | NUDT15*3 $ | |||||
---|---|---|---|---|---|---|
Mutant | Wild-Type | p-Value | Mutant | Wild-Type | p-Value | |
Hepatotoxicity (n = 15) | 1 (17) | 14 (6) | ns | 0 (0) | 14 (6) | ns |
Acute pancreatitis (n = 16) | 0 (0) | 16 (6) | ns | 0 (0) | 16 (6) | ns |
Leukopenia (n = 10) | 2 (29) | 8 (3) | 0.027 | 1 (33) | 9 (4) | ns |
Nausea/vomiting (n = 14) | 0 (0) | 14 (6) | ns | 1 (33) | 13 (5) | ns |
Flu-like symptoms (n = 5) | 0 (0) | 5 (2) | ns | 0 (0) | 5 (2) | ns |
Skin reaction (n = 4) | 0 (0) | 4 (2) | ns | 0 (0) | 4 (2) | ns |
Infections/pain (n = 13) | 1 (17) | 12 (5) | ns | 0 (0) | 13 (5) | ns |
Responder | Non-Responder | Intolerant | |||
---|---|---|---|---|---|
(R) | (NR) | (I) | p-Value | ||
n = 241 | n = 67 | n = 75 | NR vs. R | I vs. R | |
Resection, n (%) | |||||
No | 199 (83) | 47 (70) | 57 (76) | 0.025 | |
Yes | 42 (17) | 20 (30) | 18 (24) | ||
Age at diagnosis *, n (%) | |||||
A1: ≤16 | 28 (12) | 14 (21) | 10 (13) | 0.038 | |
A2: 17–40 | 153 (64) | 36 (54) | 36 (48) | ||
A3: >40 | 59 (25) | 17 (25) | 29 (39) | ||
Family history of IBDs *, n (%) | |||||
No | 223 (94) | 55 (82) | 59 (80) | 0.002 | <0.001 |
Yes | 14 (6) | 12 (18) | 15 (20) | ||
EIMs, n (%) | |||||
No | 161 (67) | 52 (78) | 41 (55) | 0.09 | 0.06 |
Yes | 80 (33) | 15 (22) | 34 (45) |
(A) | |||||
Responder | Non-Responder | Intolerant | |||
(R) | (NR) | (I) | p-Value | ||
n = 121 | n = 29 | n = 42 | NR vs. R | I vs. R | |
Non-perianal fistula, n (%) | |||||
No | 107 (88) | 21 (72) | 21 (72) | 0.04 | |
Yes | 14 (12) | 8 (28) | 8 (28) | ||
Family history of IBDs *, n (%) | |||||
No | 109 (92) | 23 (79) | 30 (71) | 0.001 | |
Yes | 10 (8) | 6 (21) | 12 (29) | ||
Behavior CD, n (%) | |||||
B1: Inflammatory | 72 (59) | 12 (41) | 21 (50) | 0.064 | |
B2: Stenosing | 35 (29) | 9 (31) | 15 (36) | ||
B3: Fistulizing | 14 (12) | 8 (28) | 6 (14) | ||
(B) | |||||
Responder | Non-Responder | Intolerant | |||
(R) | (NR) | (I) | p-Value | ||
n = 120 | n = 38 | n = 33 | NR vs. R | I vs. R | |
Family history of IBDs *, n (%) | |||||
No | 114 (97) | 32 (84) | 29 (91) | 0.014 | |
Yes | 4 (3) | 6 (16) | 3 (9) | ||
Age at diagnosis, n (%) | |||||
A1: <16 A2: 17–40 A3: >40 | 11 (9) | 6 (16) | 1 (3) | 0.035 | |
72 (60) | 19 (50) | 14 (42) | |||
37 (31) | 13 (34) | 18 (55) | |||
Smoking habit *, n (%) | |||||
No | 55 (49) | 25 (68) | 23 (70) | 0.037 | |
Yes | 57 (51) | 12 (32) | 10 (30) |
IBDs n = 383 | CD n = 192 | UC n = 191 | |
---|---|---|---|
Age at diagnosis *, mean ± DS | 33 ± 14 | 29 ± 13 | 37 ± 15 |
A1: ≤16, n (%) | 52 (14) | 34 (18) | 18 (9) |
A2: 17–40, n (%) | 225 (59) | 120 (63) | 105 (55) |
A3: >40, n (%) | 105 (27) | 37 (19) | 68 (36) |
Gender, M/F (%M) | 228/155 (60) | 116/76 (60) | 112/79 (59) |
Smoking habit *, n (%) | |||
No | 192 (52) | 89 (47) | 103 (57) |
Yes | 180 (48) | 101 (53) | 79 (43) |
Appendicitis *, n (%) | |||
No | 318 (87) | 150 (80) | 168 (94) |
Yes | 48 (13) | 38 (20) | 10 (6) |
Tonsillectomy *, n (%) | |||
No | 306 (86) | 163 (90) | 143 (82) |
Yes | 50 (14) | 19 (10) | 31 (18) |
Family history of IBDs *, n (%) | |||
No | 337 (89) | 162 (85) | 185 (93) |
Yes | 41 (11) | 28 (15) | 13 (7) |
Localization UC, n (%) | |||
E1: Rectum | 3 (2) | ||
E2: Colon sx | 88 (46) | ||
E3: Pancolitis | 100 (52) | ||
Localization CD, n (%) | |||
Ileum | 83 (43) | ||
Ileum–colon | 80 (42) | ||
Colon | 24 (12) | ||
Upper GI tract | 5 (3) | ||
Behavior CD, n (%) | |||
B1: Inflammatory | 105 (54.7) | ||
B2: Stenosing | 59 (30.7) | ||
B3: Fistulizing | 28 (14.6) | ||
Perianal disease, yes/no (%) | 43/340 (11) | 37/155 (19) | 6/185 (3) |
Non-perianal fistulas, yes/no (%) | 28/355 (7) | 28/164 (15) | 0/191 (0) |
Resection, yes/no (%) | 80/303 (21) | 65/127 (34) | 15/176 (8) |
EIMs, yes/no (%) | 129/254 (34) | 74/118 (39) | 55/136 (29) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavano, F.; Palmieri, O.; Latiano, M.; Gioffreda, D.; Latiano, T.; Guerra, M.; Martino, G.; Valvano, M.R.; Bossa, F.; Perri, F.; et al. Examination of the TPMT and NUDT15*3 Variants to Predict the Response to Thiopurines in an Italian Cohort of Patients with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2025, 26, 7860. https://doi.org/10.3390/ijms26167860
Tavano F, Palmieri O, Latiano M, Gioffreda D, Latiano T, Guerra M, Martino G, Valvano MR, Bossa F, Perri F, et al. Examination of the TPMT and NUDT15*3 Variants to Predict the Response to Thiopurines in an Italian Cohort of Patients with Inflammatory Bowel Disease. International Journal of Molecular Sciences. 2025; 26(16):7860. https://doi.org/10.3390/ijms26167860
Chicago/Turabian StyleTavano, Francesca, Orazio Palmieri, Maria Latiano, Domenica Gioffreda, Tiziana Latiano, Maria Guerra, Giuseppina Martino, Maria Rosa Valvano, Fabrizio Bossa, Francesco Perri, and et al. 2025. "Examination of the TPMT and NUDT15*3 Variants to Predict the Response to Thiopurines in an Italian Cohort of Patients with Inflammatory Bowel Disease" International Journal of Molecular Sciences 26, no. 16: 7860. https://doi.org/10.3390/ijms26167860
APA StyleTavano, F., Palmieri, O., Latiano, M., Gioffreda, D., Latiano, T., Guerra, M., Martino, G., Valvano, M. R., Bossa, F., Perri, F., & Latiano, A. (2025). Examination of the TPMT and NUDT15*3 Variants to Predict the Response to Thiopurines in an Italian Cohort of Patients with Inflammatory Bowel Disease. International Journal of Molecular Sciences, 26(16), 7860. https://doi.org/10.3390/ijms26167860