High-Sensitivity Troponins and Homocysteine: Combined Biomarkers for Better Prediction of Cardiovascular Events
Abstract
1. Introduction
2. Troponins as Cardiac Biomarkers
2.1. Pathophysiology of cTns in Myocardial Injury
2.2. Evolution of High-Sensitivity Assays
2.2.1. cTnI Assays
2.2.2. cTnT Assays
2.3. Role in Diagnosing Cardiovascular Diseases
2.4. Role of Cardiac Troponins in Risk Stratification and Prognosis in Patients with Cardiovascular Diseases
3. Hcy as Cardiovascular Biomarker
3.1. Toxicity of Hcy and Related Compounds
3.2. Dysregulated Hcy Levels and Cardiovascular Diseases
4. Clinical Applications: Integrating Biomarkers for Improved Cardiovascular Risk Prediction
5. Research Findings: From Individual to Combined Biomarker Utility
6. Challenges and Limitations in the Use of High-Sensitivity Troponins and Hcy
6.1. Analytical and Pre-Analytical Limitations
6.2. Clinical Interpretation and Differential Diagnostics
6.3. Impact of Comorbidities and Physiological Factors
7. Future Directions: Advancing Cardiovascular Risk Prediction with Biomarkers
7.1. Novel Methods of Detection
7.2. Personalized Interpretation of Threshold Values
7.3. Integration of Multiple Biomarkers
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danese, E.; Montagnana, M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann. Transl. Med. 2016, 4, 194. [Google Scholar] [CrossRef]
- LaDue, J.S.; Wróblewski, F.; Karmen, A. Serum Glutamic Oxaloacetic Transaminase Activity in Human Acute Transmural Myocardial Infarction. Science 1954, 120, 497–499. [Google Scholar] [CrossRef]
- Karmen, A. A note on the spectrometric assay of glutamic-oxalacetic transaminase in human blood serum. J. Clin. Investig. 1955, 34, 131–133. [Google Scholar]
- Henry, R.J.; Chiamori, N.; Golub, O.J.; Berkman, S. Revised Spectrophotometric Methods for the Determination of Glutamic-Oxalacetic Transaminase, Glutamic-Pyruvic Transaminase, and Lactic Acid Dehydrogenase. Am. J. Clin. Pathol. 1960, 34, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.R.; Levi, C. Elevation of a serum component in neoplastic disease. Cancer Res. 1954, 14, 513–515. [Google Scholar] [PubMed]
- Wróblewski, F.; Ruegsegger, P.; LaDue, J.S. Serum Lactic Dehydrogenase Activity in Acute Transmural Myocardial Infarction. Science 1956, 123, 1122–1123. [Google Scholar] [CrossRef]
- Dreyfus, J.; Schapira, G.; Resnais, J.; Scebat, L. Serum creatine kinase in the diagnosis of myocardial infarct. Rev. Fr. D’Etudes Clin. Biol. 1960, 5, 386–387. [Google Scholar]
- Roe, C.R.; Limbird, L.E.; Wagner, G.S.; Nerenberg, S.T. Combined isoenzyme analysis in the diagnosis of myocardial injury: Application of electrophoretic methods for the detection and quantitation of the creatine phosphokinase MB isoenzyme. J. Lab. Clin. Med. 1972, 80, 577–590. [Google Scholar]
- Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature. Circulation 1979, 59, 607–609. [CrossRef]
- Ebashi, S. Calcium Binding and Relaxation in the Actomyosin System. J. Biochem. 1960, 48, 150–151. [Google Scholar] [CrossRef]
- Ebashi, S.; Endo, M.; Otsuki, I. Control of muscle contraction. Q. Rev. Biophys. 1969, 2, 351–384. [Google Scholar] [CrossRef] [PubMed]
- Greaser, M.L.; Gergely, J. Reconstitution of Tn Activity from Three Protein Components. J. Biol. Chem. 1971, 246, 4226–4233. [Google Scholar] [CrossRef]
- Chong, S.M.; Jin, J.-P.P. To Investigate Protein Evolution by Detecting Suppressed Epitope Structures. J. Mol. Evol. 2009, 68, 448–460. [Google Scholar] [CrossRef]
- Sheng, J.-J.; Jin, J.-P. Gene regulation, alternative splicing, and posttranslational modification of Tn subunits in cardiac development and adaptation: A focused review. Front. Physiol. 2014, 5, 165. [Google Scholar] [CrossRef]
- Brotto, M.A.; Biesiadecki, B.J.; Brotto, L.S.; Nosek, T.M.; Jin, J.-P. Coupled expression of Tn T and Tn I isoforms in single skeletal muscle fibers correlates with contractility. Am. J. Physiol. Physiol. 2006, 290, C567–C576. [Google Scholar] [CrossRef]
- Rasmussen, M.; Jin, J.-P. Tn Variants as Markers of Skeletal Muscle Health and Diseases. Front. Physiol. 2021, 12, 74721. [Google Scholar] [CrossRef]
- Leite, L.; Matos, P.; Leon-Justel, A.; Espírito-Santo, C.; Rodríguez-Padial, L.; Rodrigues, F.; Orozco, D.; Redon, J. High sensitivity Tns: A potential biomarkers of cardiovascular risk for primary prevention. Front. Cardiovasc. Med. 2022, 9, 1054959. [Google Scholar] [CrossRef]
- Blanda, V.; Bracale, U.M.; Di Taranto, M.D.; Fortunato, G. Galectin-3 in Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 9232. [Google Scholar] [CrossRef]
- Merino-Merino, A.; Gonzalez-Bernal, J.; Fernandez-Zoppino, D.; Saez-Maleta, R.; Perez-Rivera, J.-A. The Role of Galectin-3 and ST2 in Cardiology: A Short Review. Biomolecules 2021, 11, 1167. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Han, L.; Liu, H. Combined use of high-sensitivity ST2 and NT-proBNP for predicting major adverse cardiovascular events in coronary heart failure. Ann. Palliat. Med. 2020, 9, 1976–1989. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Aw, T.-C. Natriuretic Peptides in Clinical Practice: A Current Review. J. Immunol. Sci. 2023, 7, 28–34. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, X.; Kong, W. Hyperhomocysteinaemia and vascular injury: Advances in mechanisms and drug targets. Br. J. Pharmacol. 2018, 175, 1173–1189. [Google Scholar] [CrossRef]
- Cao, X.; Wang, T.; Mu, G.; Chen, Y.; Xiang, B.; Zhu, J.; Shen, Z. Dysregulated homocysteine metabolism and cardiovascular disease and clinical treatments. Mol. Cell. Biochem. 2025. [Google Scholar] [CrossRef]
- Wu, D.-F.; Yin, R.-X.; Deng, J.-L. Homocysteine, hyperhomocysteinemia, and H-type hypertension. Eur. J. Prev. Cardiol. 2024, 31, 1092–1103. [Google Scholar] [CrossRef]
- McCully, K.S. Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis. Am. J. Pathol. 1969, 56, 111–128. [Google Scholar]
- Wilkinson, J.M. Tn C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur. J. Biochem. 1980, 103, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Li, M.X.; Hwang, P.M. Structure and function of cardiac Tn C (TNNC1): Implications for heart failure, cardiomyopathies, and Tn modulating drugs. Gene 2015, 571, 153–166. [Google Scholar] [CrossRef]
- Van Eerd, J.P.; Takahashi, K. Determination of the complete amino acid sequence of bovine cardiac Tn C. Biochemistry 1976, 15, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Putkey, J.A.; Liu, W.; Sweeney, H.L. Function of the N-terminal calcium-binding sites in cardiac/slow Tn C assessed in fast skeletal muscle fibers. J. Biol. Chem. 1991, 266, 14881–14884. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.S.; Field, L.J.; Parmacek, M.S.; Soonpaa, M.; Leiden, J.M.; Moss, R.L. Length dependence of Ca2+ sensitivity of tension in mouse cardiac myocytes expressing skeletal Tn C. J. Physiol. 1995, 483, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.; Wang, Y.P. Force, length, and Ca2+-Tn C affinity in skeletal muscle. Am. J. Physiol. Physiol. 1991, 261, C787–C792. [Google Scholar] [CrossRef]
- Hastings, K.E. Molecular evolution of the vertebrate Tn I gene family. Cell Struct. Funct. 1997, 22, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Mullen, A.J.; Barton, P.J. Structural characterization of the human fast skeletal muscle Tn I gene (TNNI2). Gene 2000, 242, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.-J.; Jin, J.-P. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships. Gene 2016, 576, 385–394. [Google Scholar] [CrossRef]
- de Tombe, P.P.; Belus, A.; Piroddi, N.; Scellini, B.; Walker, J.S.; Martin, A.F.; Tesi, C.; Poggesi, C. Myofilament calcium sensitivity does not affect cross-bridge activation-relaxation kinetics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1129–R1136. [Google Scholar] [CrossRef]
- Westfall, M.V.; Rust, E.M.; Metzger, J.M. Slow skeletal Tn I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. Proc. Natl. Acad. Sci. USA 1997, 94, 5444–5449. [Google Scholar] [CrossRef]
- Hunkeler, N.M.; Kullman, J.; Murphy, A.M. Tn I isoform expression in human heart. Circ. Res. 1991, 69, 1409–1414. [Google Scholar] [CrossRef]
- Wei, B.; Jin, J.-P. Tn T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch. Biochem. Biophys. 2011, 505, 144–154. [Google Scholar] [CrossRef]
- Wei, B.; Jin, J.-P. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene 2016, 582, 1–13. [Google Scholar] [CrossRef]
- Jin, J.-P.; Zhang, Z.; Bautista, J.A. Isoform diversity, regulation, and functional adaptation of Tn and calponin. Crit. Rev. Eukaryot. Gene Expr. 2008, 18, 93–124. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, D.; Richter, D.; Chronopoulou, G.; Goumas, G.; Kountouras, D.; Mastorakou, A.; Papingiotis, G.; Hahalis, G.; Tsioufis, K. High-sensitivity cardiac Tn I for cardiovascular risk stratification in apparently healthy individuals. Hell. J. Cardiol. 2024, 75, 74–81. [Google Scholar] [CrossRef]
- Apple, F.S.; Ler, R.; Murakami, M.M. Determination of 19 Cardiac Tn I and T Assay 99th Percentile Values from a Common Presumably Healthy Population. Clin. Chem. 2012, 58, 1574–1581. [Google Scholar] [CrossRef]
- Neumann, J.T.; Twerenbold, R.; Ojeda, F.; Sörensen, N.A.; Chapman, A.R.; Shah, A.S.; Anand, A.; Boeddinghaus, J.; Nestelberger, T.; Badertscher, P.; et al. Application of High-Sensitivity Tn in Suspected Myocardial Infarction. N. Engl. J. Med. 2019, 380, 2529–2540. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Sandoval, Y.; Januzzi, J.L.; Jaffe, A.S. Cardiac Tn for Assessment of Myocardial Injury in COVID-19: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 76, 1244–1258. [Google Scholar] [CrossRef]
- Farmakis, D.; Mueller, C.; Apple, F.S. High-sensitivity cardiac Tn assays for cardiovascular risk stratification in the general population. Eur. Heart J. 2020, 41, 4050–4056. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G. Degradation of Tn i in serum or plasma: Mechanisms, and analytical and clinical implications. Semin. Thromb. Hemost. 2012, 38, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). Glob. Heart 2018, 138, e618–e651. [Google Scholar] [CrossRef]
- Sanfelice, D.; Sanz-Hernández, M.; de Simone, A.; Bullard, B.; Pastore, A. Toward Understanding the Molecular Bases of Stretch Activation: A structural comparison of the two Tn c isoforms of lethocerus. J. Biol. Chem. 2016, 291, 16090–16099. [Google Scholar] [CrossRef]
- Aimo, A.; Gaggin, H.K.; Barison, A.; Emdin, M.; Januzzi, J.L.J. Imaging, Biomarker, and Clinical Predictors of Cardiac Remodeling in Heart Failure With Reduced Ejection Fraction. JACC Heart Fail. 2019, 7, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Gafane-Matemane, L.F.; Mokae, N.L.; Breet, Y.; Malan, L. Relation of the renin-angiotensin-aldosterone system with potential cardiac injury and remodelling: The SABPA study. Blood Press. 2020, 29, 31–38. [Google Scholar] [CrossRef]
- Lyngbakken, M.N.; Vigen, T.; Ihle-Hansen, H.; Brynildsen, J.; Berge, T.; Rønning, O.M.; Tveit, A.; Røsjø, H.; Omland, T. Cardiac Tn I measured with a very high sensitivity assay predicts subclinical carotid atherosclerosis: The Akershus Cardiac Examination 1950 Study. Clin. Biochem. 2021, 93, 59–65. [Google Scholar] [CrossRef]
- Wang, W.; Schulze, C.J.; Suarez-Pinzon, W.L.; Dyck, J.R.B.; Sawicki, G.; Schulz, R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 2002, 106, 1543–1549. [Google Scholar] [CrossRef]
- Chapman, A.R.; Adamson, P.D.; Mills, N.L. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart 2017, 103, 10–18. [Google Scholar] [CrossRef]
- Hessel, M.H.M.; Atsma, D.E.; van der Valk, E.J.M.; Bax, W.H.; Schalij, M.J.; van der Laarse, A. Release of cardiac Tn I from viable cardiomyocytes is mediated by integrin stimulation. Pflug. Arch. 2008, 455, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Morrow, D.A.; De Lemos, J.A.; Omland, T.; Desai, M.Y.; Tanasijevic, M.; Hall, C.; McCabe, C.H.; Braunwald, E. Acute changes in circulating natriuretic peptide levels in relation to myocardial ischemia. J. Am. Coll. Cardiol. 2004, 44, 1988–1995. [Google Scholar] [CrossRef] [PubMed]
- Canty, J.M.J. Myocardial injury, Tn release, and cardiomyocyte death in brief ischemia, failure, and ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H1–H15. [Google Scholar] [CrossRef]
- Chaulin, A.M. The Metabolic Pathway of Cardiac Tns Release: Mechanisms and Diagnostic Role. Cardiol. Res. 2022, 13, 190–205. [Google Scholar] [CrossRef]
- Mair, J. The Pathophysiology of Cardiac Troponin Release and the Various Circulating Cardiac Troponin Forms—Potential Clinical Implications. J. Clin. Med. 2025, 14, 4241. [Google Scholar] [CrossRef]
- Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabé-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.A.; Druid, H.; et al. Evidence for cardiomyocyte renewal in humans. Science 2009, 324, 98–102. [Google Scholar] [CrossRef]
- Rovira, M.; Borràs, D.M.; Marques, I.J.; Puig, C.; Planas, J. V Physiological Responses to Swimming-Induced Exercise in the Adult Zebrafish Regenerating Heart. Front. Physiol. 2018, 9, 1362. [Google Scholar] [CrossRef]
- Giacca, M. Cardiac Regeneration After Myocardial Infarction: An Approachable Goal. Curr. Cardiol. Rep. 2020, 22, 122. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hessel, M.; van der Valk, L.; Bax, M.; van der Linden, I.; van der Laarse, A. Partial and delayed release of Tn-I compared with the release of lactate dehydrogenase from necrotic cardiomyocytes. Pflug. Arch. 2004, 448, 146–152. [Google Scholar] [CrossRef]
- Schwartz, P.; Piper, H.M.; Spahr, R.; Spieckermann, P.G. Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am. J. Pathol. 1984, 115, 349–361. [Google Scholar]
- Walter, S.; Carlsson, J.; Schröder, R.; Neuhaus, K.L.; Sorges, E.; Tebbe, U. Enzymatic markers of reperfusion in acute myocardial infarct. With data from the ISAM study. Herz 1999, 24, 430–439. [Google Scholar] [CrossRef]
- Christenson, R.H.; Newby, L.K.; Ohman, E.M. Cardiac markers in the assessment of acute coronary syndromes. Md. Med. J. 1997, 46, 18–24. [Google Scholar]
- Cummins, B.; Auckland, M.L.; Cummins, P. Cardiac-specific Tn-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am. Heart J. 1987, 113, 1333–1344. [Google Scholar] [CrossRef]
- Larue, C.; Defacque-Lacquement, H.; Calzolari, C.; Le Nguyen, D.; Pau, B. New monoclonal antibodies as probes for human cardiac Tn I: Epitopic analysis with synthetic peptides. Mol. Immunol. 1992, 29, 271–278. [Google Scholar] [CrossRef]
- Bodor, G.S.; Porter, S.; Landt, Y.; Ladenson, J.H. Development of monoclonal antibodies for an assay of cardiac Tn-I and preliminary results in suspected cases of myocardial infarction. Clin. Chem. 1992, 38, 2203–2214. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.E., 3rd; Bodor, G.S.; Dávila-Román, V.G.; Delmez, J.A.; Apple, F.S.; Ladenson, J.H.; Jaffe, A.S. Cardiac Tn I. A marker with high specificity for cardiac injury. Circulation 1993, 88, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Salvagno, G.L.; Da Rin, G.; Giavarina, D. Harmonization of contemporary-sensitive Tn I immunoassays: Calibration may only be a part of the problem. Riv. Ital. Med. Lab. 2014, 10, 108–114. [Google Scholar] [CrossRef]
- Salvagno, G.L.; Giavarina, D.; Meneghello, M.; Musa, R.; Aloe, R.; Da Rin, G.; Lippi, G. Multicenter comparison of four contemporary sensitive Tn immunoassays. J. Med. Biochem. 2014, 33, 271–277. [Google Scholar] [CrossRef]
- Katus, H.A.; Remppis, A.; Looser, S.; Hallermeier, K.; Scheffold, T.; Kübler, W. Enzyme linked immuno assay of cardiac Tn T for the detection of acute myocardial infarction in patients. J. Mol. Cell. Cardiol. 1989, 21, 1349–1353. [Google Scholar] [CrossRef]
- Katus, H.A.; Looser, S.; Hallermayer, K.; Remppis, A.; Scheffold, T.; Borgya, A.; Essig, U.; Geuss, U. Development and in vitro characterization of a new immunoassay of cardiac Tn T. Clin. Chem. 1992, 38, 386–393. [Google Scholar] [CrossRef]
- Müller-Bardorff, M.; Hallermayer, K.; Schröder, A.; Ebert, C.; Borgya, A.; Gerhardt, W.; Remppis, A.; Zehelein, J.; Katus, H.A. Improved Tn T ELISA specific for cardiac Tn T isoform: Assay development and analytical and clinical validation. Clin. Chem. 1997, 43, 458–466. [Google Scholar] [CrossRef]
- Hallermayer, K.; Klenner, D.; Vogel, R. Use of recombinant human cardiac Tn T for standardization of third generation Tn T methods. Scand. J. Clin. Lab. Investig. Suppl. 1999, 230, 128–131. [Google Scholar] [CrossRef]
- Hermsen, D.; Apple, F.; Garcia-Beltràn, L.; Jaffe, A.; Karon, B.; Lewandrowski, E.; Mühlbacher, A.; Müller, R.; Ordóñez, J.; Pagani, F.; et al. Results from a multicenter evaluation of the 4th generation Elecsys Tn T assay. Clin. Lab. 2007, 53, 1–9. [Google Scholar]
- Giannitsis, E.; Kurz, K.; Hallermayer, K.; Jarausch, J.; Jaffe, A.S.; Katus, H.A. Analytical validation of a high-sensitivity cardiac Tn T assay. Clin. Chem. 2010, 56, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Eggers, K.M.; Jernberg, T.; Lindahl, B. Unstable Angina in the Era of Cardiac Tn Assays with Improved Sensitivity—A Clinical Dilemma. Am. J. Med. 2017, 130, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- deFilippi, C.R.; de Lemos, J.A.; Christenson, R.H.; Gottdiener, J.S.; Kop, W.J.; Zhan, M.; Seliger, S.L. Association of Serial Measures of Cardiac Tn T Using a Sensitive Assay With Incident Heart Failure and Cardiovascular Mortality in Older Adults. JAMA 2010, 304, 2494–2502. [Google Scholar] [CrossRef] [PubMed]
- Diez, M.; Talavera, M.L.; Conde, D.G.; Campos, R.; Acosta, A.; Trivi, M.S. High-sensitivity Tn is associated with high risk clinical profile and outcome in acute heart failure. Cardiol. J. 2016, 23, 78–83. [Google Scholar] [CrossRef]
- Raber, I.; McCarthy, C.P.; Januzzi, J.L. A Test in Context: Interpretation of High-Sensitivity Cardiac Tn Assays in Different Clinical Settings. J. Am. Coll. Cardiol. 2021, 77, 1357–1367. [Google Scholar] [CrossRef]
- Feng, J.; Schaus, B.J.; Fallavollita, J.A.; Lee, T.C.; Canty, J.M.J. Preload induces Tn I degradation independently of myocardial ischemia. Circulation 2001, 103, 2035–2037. [Google Scholar] [CrossRef]
- Aimo, A.; Januzzi, J.L.J.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Magnoli, M.; Anand, I.S.; Cohn, J.N.; Tavazzi, L.; et al. Prognostic Value of High-Sensitivity Tn T in Chronic Heart Failure: An Individual Patient Data Meta-Analysis. Circulation 2018, 137, 286–297. [Google Scholar] [CrossRef]
- Chin, C.W.L.; Shah, A.S.V.; McAllister, D.A.; Joanna Cowell, S.; Alam, S.; Langrish, J.P.; Strachan, F.E.; Hunter, A.L.; Maria Choy, A.; Lang, C.C.; et al. High-sensitivity Tn I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur. Heart J. 2014, 35, 2312–2321. [Google Scholar] [CrossRef]
- Sandoval, Y.; Apple, F.S.; Mahler, S.A.; Body, R.; Collinson, P.O.; Jaffe, A.S. High-Sensitivity Cardiac Tn and the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guidelines for the Evaluation and Diagnosis of Acute Chest Pain. Circulation 2022, 146, 569–581. [Google Scholar] [CrossRef]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 144, e368–e454, Erratum in: Circulation 2021, 144, e455. https://doi.org/10.1161/CIR.0000000000001047; Erratum in: Circulation 2023, 148, e281. https://doi.org/10.1161/CIR.0000000000001198. [Google Scholar] [CrossRef] [PubMed]
- Jülicher, P.; Varounis, C. Estimating the cost-effectiveness of screening a general population for cardiovascular risk with high-sensitivity Tn-I. Eur. Heart J.-Qual. Care Clin. Outcomes 2022, 8, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Bajic, Z.; Sobot, T.; Skrbic, R.; Stojiljkovic, M.P.; Ponorac, N.; Matavulj, A.; Djuric, D.M. Homocysteine, Vitamins B6 and Folic Acid in Experimental Models of Myocardial Infarction and Heart Failure—How Strong Is That Link? Biomolecules 2022, 12, 536. [Google Scholar] [CrossRef] [PubMed]
- Škovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halašová, E.; Lehotský, J. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int. J. Mol. Sci. 2016, 17, 1733. [Google Scholar] [CrossRef]
- De Matteis, C.; Crudele, L.; Di Buduo, E.; Cantatore, S.; Gadaleta, R.M.; Cariello, M.; Suppressa, P.; Antonica, G.; Berardi, E.; Graziano, G.; et al. Hyperhomocysteinemia is linked to MASLD. Eur. J. Intern. Med. 2024, 131, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Stea, T.H.; Mansoor, M.A.; Wandel, M.; Uglem, S.; Frølich, W. Changes in predictors and status of homocysteine in young male adults after a dietary intervention with vegetables, fruits and bread. Eur. J. Nutr. 2008, 47, 201–209. [Google Scholar] [CrossRef]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef]
- Kaye, A.D.; Jeha, G.M.; Pham, A.D.; Fuller, M.C.; Lerner, Z.I.; Sibley, G.T.; Cornett, E.M.; Urits, I.; Viswanath, O.; Kevil, C.G. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv. Ther. 2020, 37, 4149–4164. [Google Scholar] [CrossRef]
- Roy, S.; Sable, P.; Khaire, A.; Randhir, K.; Kale, A.; Joshi, S. Effect of maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids on indices of brain oxidative stress in the offspring. Brain Dev. 2014, 36, 219–227. [Google Scholar] [CrossRef]
- Vezzoli, A.; Dellanoce, C.; Caimi, T.M.; Vietti, D.; Montorsi, M.; Mrakic-Sposta, S.; Accinni, R. Influence of dietary supplementation for hyperhomocysteinemia treatments. Nutrients 2020, 12, 1957. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Xu, R.Q.; Wang, X.Q.; Sun, L.F.; Mo, P.; Cai, R.J.; Lin, X.Z.; Luo, C.F.; Ou, W.C.; Lu, L.J.; et al. Comprehensive transcriptomics and metabolomics analyses reveal that hyperhomocysteinemia is a high risk factor for coronary artery disease in a chinese obese population aged 40–65: A prospective cross-sectional study. Cardiovasc. Diabetol. 2023, 22, 219. [Google Scholar] [CrossRef] [PubMed]
- Perła-Kaján, J.; Twardowski, T.; Jakubowski, H. Mechanisms of homocysteine toxicity in humans. Amino Acids 2007, 32, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.; Sedoris, K.C.; Steed, M.; Ovechkin, A.V.; Moshal, K.S.; Tyagi, S.C. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, 2649–2656. [Google Scholar] [CrossRef]
- Lehotsky, J.; Petras, M.; Kovalska, M.; Tothova, B.; Drgova, A.; Kaplan, P. Mechanisms Involved in the Ischemic Tolerance in Brain: Effect of the Homocysteine. Cell. Mol. Neurobiol. 2015, 35, 7–15. [Google Scholar] [CrossRef]
- Xi, H.; Zhang, Y.; Xu, Y.; Yang, W.Y.; Jiang, X.; Sha, X.; Cheng, X.; Wang, J.; Qin, X.; Yu, J.; et al. Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells. Circ. Res. 2016, 118, 1525–1539. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, J.; Zhao, W.; Yue, M.; Ma, J.; Zeng, S.; Tang, J.; Wang, Y.; Zhou, Z. Intracellular Iron Deficiency and Abnormal Metabolism, Not Ferroptosis, Contributes to Homocysteine-Induced Vascular Endothelial Cell Death. Biomedicines 2024, 12, 2301. [Google Scholar] [CrossRef] [PubMed]
- Valez, V.; Cassina, A.; Batinic-Haberle, I.; Kalyanaraman, B.; Ferrer-Sueta, G.; Radi, R. Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: Detection, oxidative damage and catalytic removal by Mn-porphyrins. Arch. Biochem. Biophys. 2013, 529, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, K.; Sun, H. Alpha-lipoic acid defends homocysteine-induced endoplasmic reticulum and oxidative stress in HAECs. Biomed. Pharmacother. 2016, 80, 63–72. [Google Scholar] [CrossRef]
- Sibrian-Vazquez, M.; Escobedo, J.O.; Lim, S.; Samoei, G.K.; Strongin, R.M. Homocystamides promote free-radical and oxidative damage to proteins. Proc. Natl. Acad. Sci. USA 2010, 107, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.K.C.; Kan, M.Y. Homocysteine-induced endothelial dysfunction. Ann. Nutr. Metab. 2015, 67, 1–12. [Google Scholar] [CrossRef]
- Chatterjee, B.; Fatima, F.; Seth, S.; Sinha Roy, S. Moderate Elevation of Homocysteine Induces Endothelial Dysfunction through Adaptive UPR Activation and Metabolic Rewiring. Cells 2024, 13, 214. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Yuan, K.; Yue, H.-T.; Yuan, F.-H.; Bi, H.-T.; Weng, S.-P.; He, J.-G.; Chen, Y.-H. Identification and functional characterization of an endoplasmic reticulum oxidoreductin 1-$α$ gene in Litopenaeus vannamei. Dev. Comp. Immunol. 2016, 57, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Shai, I.; Stampfer, M.J.; Ma, J.; Manson, J.E.; Hankinson, S.E.; Cannuscio, C.; Selhub, J.; Curhan, G.; Rimm, E.B. Homocysteine as a risk factor for coronary heart diseases and its association with inflammatory biomarkers, lipids and dietary factors. Atherosclerosis 2004, 177, 375–381. [Google Scholar] [CrossRef]
- Tian, W.; Ju, J.; Guan, B.; Wang, T.; Zhang, J.; Song, L.; Xu, H. Role of hyperhomocysteinemia in atherosclerosis: From bench to bedside. Ann. Med. 2025, 57, 2457527. [Google Scholar] [CrossRef]
- Yuan, D.; Chu, J.; Lin, H.; Zhu, G.; Qian, J.; Yu, Y.; Yao, T.; Ping, F.; Chen, F.; Liu, X. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front. Cardiovasc. Med. 2023, 9, 1109445. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.T.; Schalinske, K.L. Homocysteine metabolism and its relation to health and disease. BioFactors 2010, 36, 19–24. [Google Scholar] [CrossRef]
- Bernardi, M.; Paneni, F.; Sabouret, P. Homocysteine: A futile comeback or a promising tool for the risk assessment of hypertensive patients? Eur. J. Prev. Cardiol. 2024, 31, 1090–1091. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Li, Y.; Sun, N.; Wang, H.; Zhang, Y.; Wang, J.; Li, J.; Xu, X.; Liang, M.; Nie, J.; et al. Elevated homocysteine concentrations decrease the antihypertensive effect of angiotensin-converting enzyme inhibitors in hypertensive patients. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 166–172. [Google Scholar] [CrossRef]
- Calim, A. The Relation between Homocysteine Levels in Patients with Acute Coronary Syndrome and Grace Score. SiSli Etfal Hastan. Tip Bul./Med. Bull. Sisli Hosp. 2020, 54, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Jha, R.K.; Ambad, R.S.; Jha, R.K. Comparative Analysis of Biomarkers in CAD: Evaluating Homocysteine, Lipid HS-CRP, Apo A, and ADMA. J. Pharm. Bioallied Sci. 2025, 17, S366–S368. [Google Scholar] [CrossRef] [PubMed]
- Niazi, A.A.; Karajibani, M.; Ghassami, K.; Montazerifar, F.; Iranneghad, M.; Bolouri, A. A Comparison of Homocysteine, Tn, Cobalamin and Folate Status in Acute Myocardial Infarction Patients and Healthy Subjects. Adv. Hum. Biol. 2021, 11, S27–S33. [Google Scholar] [CrossRef]
- Spence, J.D. Homocysteine and Myocardial Injury. JACC Asia 2024, 4, 621–623. [Google Scholar] [CrossRef]
- Ullah, H.; Huma, S.; Naeem, L.; Yasin, G.; Ashraf, M.; Tahir, N.; Yunus, M.; Shabana, H.; Shalaby, A.; Hassan Ali, A.A.; et al. Correlation of Serum Homocysteine Levels With Various Types of Coronary Syndromes (CS) and In-Hospital Mortality—A Multicenter Study. Int. J. Gen. Med. 2025, 18, 725–732. [Google Scholar] [CrossRef]
- Tan, X.; Tang, F.; Tian, W.; Zhang, Y.; Fang, S.; Yang, S.; Wang, S.; Yu, B. Homocysteine Metabolism, Subclinical Myocardial Injury, and Cardiovascular Mortality in the General Population. JACC Asia 2024, 4, 609–620. [Google Scholar] [CrossRef]
- Rawashdeh, S.I.; Al-Mistarehi, A.H.; Yassin, A.; Rabab’ah, W.; Skaff, H.; Ibdah, R. A concurrent ischemic stroke, myocardial infarction, and aortic thrombi in a young patient with hyperhomocysteinemia: A case report. Int. Med. Case Rep. J. 2020, 13, 581–590. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, D.; Peng, H.; Zhong, C.; Bu, X.; Xu, T.; Zhu, Z.; Wang, A.; Chen, J.; Xu, T.; et al. Platelet counts affect the prognostic value of homocysteine in acute ischemic stroke patients. Atherosclerosis 2019, 285, 163–169. [Google Scholar] [CrossRef]
- Balmforth, D.; Harky, A.; Adams, B.; Yap, J.; Shipolini, A.; Roberts, N.; Uppal, R.; Bashir, M. Is there a role for biomarkers in thoracic aortic aneurysm disease? Gen. Thorac. Cardiovasc. Surg. 2019, 67, 12–19. [Google Scholar] [CrossRef]
- Aday, A.W.; Duran, E.K.; Van Denburgh, M.; Kim, E.; Christen, W.G.; Manson, J.E.; Ridker, P.M.; Pradhan, A.D. Homocysteine Is Associated with Future Venous Thromboembolism in 2 Prospective Cohorts of Women. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2215–2224. [Google Scholar] [CrossRef] [PubMed]
- Manolescu, B.N.; Oprea, E.; Farcasanu, I.C.; Berteanu, M.; Cercasov, C. Homocysteine and vitamin therapy in stroke prevention and treatment: A review. Acta Biochim. Pol. 2010, 57, 467–477. [Google Scholar] [CrossRef]
- Xie, W.; Shan, Y.; Wu, Z.; Liu, N.; Yang, J.; Zhang, H.; Sun, S.; Chi, J.; Feng, W.; Lin, H.; et al. Herpud1 deficiency alleviates homocysteine-induced aortic valve calcification. Cell Biol. Toxicol. 2023, 39, 2665–2684. [Google Scholar] [CrossRef]
- Luo, Z.; Tang, K.; Huang, G.; Wang, X.; Zhou, S.; Dai, D.; Yang, H.; Jiang, W. Homocysteine concentration in coronary artery disease and severity of coronary lesions. J. Cell. Mol. Med. 2024, 28, e18474. [Google Scholar] [CrossRef]
- Kim, B.J.; Seo, M.; Huh, J.K.; Kwon, C.H.; Kim, J.T.; Sung, K.C.; Kim, B.S.; Kang, J.H. Associations of plasma homocysteine levels with arterial stiffness in prehypertensive individuals. Clin. Exp. Hypertens. 2011, 33, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N. Mechanisms of Increased Vascular Oxidant Stress in Hyperhomocysteinemia and Its Impact on Endothelial Function. Curr. Drug Metab. 2005, 6, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Woo, C.W.H.; Sung, F.L.; Siow, Y.L.; Karmin, O. Increased Monocyte Adhesion to Aortic Endothelium in Rats with Hyperhomocysteinemia: Role of Chemokine and Adhesion Molecules. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1777–1783. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Braun, S.; Schulz, S.; Mehilli, J.; Schömig, A.; Kastrati, A. High-Sensitivity Troponin T Level and Angiographic Severity of Coronary Artery Disease. Am. J. Cardiol. 2011, 108, 639–643. [Google Scholar] [CrossRef]
- Loscalzo, J. Nitric Oxide Insufficiency, Platelet Activation, and Arterial Thrombosis. Circ. Res. 2001, 88, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, J.D. Mechanisms of Vascular Remodeling in Hypertension. Am. J. Hypertens. 2021, 34, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Z.; Ma, S.; Zhang, H.; Kong, F.; He, Y.; Yang, X.; Wang, Y.; Xu, H.; Yang, A.; et al. Ratio of S-adenosylmethionine to S-adenosylhomocysteine as a sensitive indicator of atherosclerosis. Mol. Med. Rep. 2016, 14, 289–300. [Google Scholar] [CrossRef]
- Yang, A.N.; Zhang, H.; Zhang, H.P.; Sun, Y.; Yang, X.L.; Wang, N.; Zhu, G.; Xu, H.; Ma, S.C.; Zhang, Y.; et al. High-methionine diets accelerate atherosclerosis by HHcy-mediated FABP4 gene demethylation pathway via DNMT1 in ApoE-/- mice. FEBS Lett. 2015, 589, 3998–4009. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Z.; Tian, W.; Zhang, J.; Li, Q.; Ju, J.; Xu, H.; Chen, K. Plasma homocysteine levels and risk of congestive heart failure or cardiomyopathy: A Mendelian randomization study. Front. Cardiovasc. Med. 2023, 10, 1030257. [Google Scholar] [CrossRef]
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Jain, M. Unveiling the Role of Biomarkers in Cardiovascular Risk Assessment and Prognosis. Cureus 2024, 16, e51874. [Google Scholar] [CrossRef]
- Jigoranu, R.A.; Roca, M.; Costache, A.-D.; Mitu, O.; Oancea, A.-F.; Miftode, R.-S.; Haba, M.Ș.C.; Botnariu, E.G.; Maștaleru, A.; Gavril, R.-S.; et al. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life 2023, 13, 1639. [Google Scholar] [CrossRef]
- Sabbatinelli, J.; Sbriscia, M.; Olivieri, F.; Giuliani, A. Integrating cardiovascular risk biomarkers in the context of inflammaging. Aging 2024, 16, 12670–12672. [Google Scholar] [CrossRef]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Cardiovascular Risk: Assumptions, Limitations, and Research. In The Impact of Nutrition and Statins on Cardiovascular Diseases; Academic Press: Cambridge, MA, USA, 2019; pp. 201–266. [Google Scholar] [CrossRef]
- Gigante, B. Present and Future Perspectives on the Role of Biomarkers in Atherosclerotic Cardiovascular Disease Risk Stratification. Eur. Cardiol. Rev. 2023, 18, e13. [Google Scholar] [CrossRef]
- Ananthan, K.; Lyon, A.R. The Role of Biomarkers in Cardio-Oncology. J. Cardiovasc. Transl. Res 2020, 13, 431–450. [Google Scholar] [CrossRef]
- Sabkaewyod, P.; Vathesatogkit, P.; Sritara, P. Clinical Significance of Undetectable High-sensitivity Cardiac Tn I in Thai Individuals with Low Cardiovascular Risk. J. Asian Pac. Soc. Cardiol. 2024, 3, e42. [Google Scholar] [CrossRef]
- Unadkat, S.V.; Padhi, B.K.; Bhongir, A.V.; Gandhi, A.P.; Shamim, M.A.; Dahiya, N.; Satapathy, P.; Rustagi, S.; Khatib, M.N.; Gaidhane, A.; et al. Association between homocysteine and coronary artery disease-trend over time and across the regions: A systematic review and meta-analysis. Egypt Heart J. 2024, 76, 29. [Google Scholar] [CrossRef]
- Karger, A.B.; Nomura, S.O.; Guan, W.; Garg, P.K.; Tison, G.H.; Szklo, M.; Budoff, M.J.; Tsai, M.Y. Association between elevated total homocysteine and heart failure risk in the Multi-Ethnic Study of Atherosclerosis cohort. J. Am. Heart Assoc. 2024, 14, e038168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gu, X.; Fang, X.; Tang, Z.; Guan, S.; Liu, H.; Wu, X.; Wang, C.; Zhao, Y. Homocysteine and the Risk of Cardiovascular Events and All-Cause Death in Elderly Population: A Community-Based Prospective Cohort Study. Ther. Clin. Risk Manag. 2020, 16, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Codoñer-Franch, P.; Alonso-Iglesias, E. Homocysteine as a Biomarker in Vascular Disease. In Biomarkers in Cardiovascular Disease; Patel, V.B., Preedy, V.R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 381–406. [Google Scholar] [CrossRef]
- Mendez, D.Y.; Zhou, M.; Brynedal, B.; Gudjonsdottir, H.; Tynelius, P.; Lagerros, Y.T.; Lager, A. Risk stratification for cardiovascular disease: A comparative analysis of cluster analysis and traditional prediction models. Eur. J. Prev. Cardiol. 2025, zwaf013. [Google Scholar] [CrossRef]
- Kim, S.J.; Mesquita, F.C.P.; Hochman-Mendez, C. New Biomarkers for Cardiovascular Disease. Tex. Heart Inst. J. 2023, 50, e238178. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Welsh, P.; Evans, J.D.W.; Tschiderer, L.; Boachie, C.; Jukema, J.W.; Ford, I.; Trompet, S.; Stott, D.J.; Kearney, P.M.; et al. High-Sensitivity Cardiac Tn Concentration and Risk of First-Ever Cardiovascular Outcomes in 154,052 Participants. J. Am. Coll. Cardiol. 2017, 70, 558–568. [Google Scholar] [CrossRef]
- Katsioupa, M.; Kourampi, I.; Oikonomou, E.; Tsigkou, V.; Theofilis, P.; Charalambous, G.; Marinos, G.; Gialamas, I.; Zisimos, K.; Anastasiou, A.; et al. Novel Biomarkers and Their Role in the Diagnosis and Prognosis of Acute Coronary Syndrome. Life 2023, 13, 1992. [Google Scholar] [CrossRef]
- Nestelberger, T.; Boeddinghaus, J.; Wussler, D.; Twerenbold, R.; Badertscher, P.; Wildi, K.; Miró, Ò.; López, B.; Martin-Sanchez, F.J.; Muzyk, P.; et al. Predicting Major Adverse Events in Patients With Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 74, 842–854. [Google Scholar] [CrossRef]
- Mueller, C.; Giannitsis, E.; Christ, M.; Ordóñez-Llanos, J.; deFilippi, C.; McCord, J.; Body, R.; Panteghini, M.; Jernberg, T.; Plebani, M.; et al. Multicenter Evaluation of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction With High-Sensitivity Cardiac Tn T. Ann. Emerg. Med. 2016, 68, 76–87.e4. [Google Scholar] [CrossRef]
- Paiva, L.; Vieira, M.J.; Baptista, R.; Ferreira, M.J.; Gonçalves, L. Unstable Angina: Risk Stratification for Significant Coronary Artery Disease in The Era of High-Sensitivity Cardiac Tn. Glob. Heart 2024, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Yan, I.; Börschel, C.S.; Neumann, J.T.; Sprünker, N.A.; Makarova, N.; Kontto, J.; Kuulasmaa, K.; Salomaa, V.; Magnussen, C.; Iacoviello, L.; et al. High-Sensitivity Cardiac Tn I Levels and Prediction of Heart Failure: Results From the BiomarCaRE Consortium. JACC Heart Fail. 2020, 8, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D.W.; Dobbin, S.J.H.; Pettit, S.J.; Di Angelantonio, E.; Willeit, P. High-Sensitivity Cardiac Tn and New-Onset Heart Failure: A Systematic Review and Meta-Analysis of 67,063 Patients With 4165 Incident Heart Failure Events. JACC Heart Fail. 2018, 6, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Lv, X.; Pan, C.; Guo, H.; Chang, J.; Gao, X.; Wu, X.; Zhi, X.; Ren, C.; Chen, Q.; Jiang, H.; et al. Early diagnostic value of high-sensitivity cardiac Tn T for cancer treatment-related cardiac dysfunction: A meta-analysis. ESC Heart Fail. 2023, 10, 2170–2182. [Google Scholar] [CrossRef]
- Romann, S.W.; Finke, D.; Heckmann, M.B.; Hund, H.; Giannitsis, E.; Katus, H.A.; Frey, N.; Lehmann, L.H. Cardiological parameters predict mortality and cardiotoxicity in oncological patients. ESC Heart Fail. 2024, 11, 366–377. [Google Scholar] [CrossRef]
- Battault, S.; Renguet, E.; Van Steenbergen, A.; Horman, S.; Beauloye, C.; Bertrand, L. Myocardial glucotoxicity: Mechanisms and potential therapeutic targets. Arch. Cardiovasc. Dis. 2020, 113, 736–748. [Google Scholar] [CrossRef]
- Yiu, K.H.; Lau, K.K.; Zhao, C.T.; Chan, Y.H.; Chen, Y.; Zhen, Z.; Wong, A.; Lau, C.P.; Tse, H.F. Predictive value of high-sensitivity Tn-I for future adverse cardiovascular outcome in stable patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2014, 13, 63. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhang, S.; Wang, Z.; Tian, R.; Xu, F.; Chen, Y.; Li, C. Distribution and prognostic value of high-sensitivity cardiac Tn T and I across glycemic status: A population-based study. Cardiovasc. Diabetol. 2024, 23, 83. [Google Scholar] [CrossRef]
- Osredkar, J.; Bajrić, A.; Možina, H.; Lipar, L.; Jerin, A. Cardiac Tns I and T as Biomarkers of Cardiomyocyte Injury—Advantages and Disadvantages of Each. Appl. Sci. 2024, 14, 6007. [Google Scholar] [CrossRef]
- Airaksinen, J.K.E.; Tuominen, T.; Paana, T.; Hellman, T.; Vasankari, T.; Salonen, S.; Junes, H.; Linko-Parvinen, A.; Pallari, H.M.; Strandberg, M.; et al. Novel Tn fragmentation assay to discriminate between Takotsubo syndrome and acute myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Couch, L.S.; Garrard, J.W.; Henry, J.A.; Kotronias, R.A.; Alaour, B.; De Maria, G.L.; Channon, K.M.; Banning, A.P.; Lyon, A.R.; Marber, M.; et al. Comparison of Tn and natriuretic peptides in Takotsubo syndrome and acute coronary syndrome: A meta-analysis. Open Heart 2024, 11, e002607. [Google Scholar] [CrossRef]
- Airaksinen, K.E.J.; Aalto, R.; Hellman, T.; Vasankari, T.; Lahtinen, A.; Wittfooth, S. Novel Tn Fragmentation Assay to Discriminate Between Tn Elevations in Acute Myocardial Infarction and End-Stage Renal Disease. Circulation 2022, 146, 1408–1421. [Google Scholar] [CrossRef]
- Brattström, L.; Wilcken, D.E. Homocysteine and cardiovascular disease: Cause or effect? Am. J. Clin. Nutr. 2000, 72, 315–323. [Google Scholar] [CrossRef]
- Refsum, H.; Nurk, E.; Smith, A.D.; Ueland, P.M.; Gjesdal, C.G.; Bjelland, I.; Tverdal, A.; Tell, G.S.; Nygård, O.; Vollset, S.E. The Hordaland Homocysteine Study: A community-based study of homocysteine, its determinants, and associations with disease. J. Nutr. 2006, 136, 1731S–1740S. [Google Scholar] [CrossRef]
- Jin, N.; Huang, L.; Hong, J.; Zhao, X.; Chen, Y.; Hu, J.; Cong, X.; Xie, Y.; Pu, J. Elevated homocysteine levels in patients with heart failure: A systematic review and meta-analysis. Medicine 2021, 100, e26875. [Google Scholar] [CrossRef]
- Djuric, D.; Jakovljevic, V.; Zivkovic, V.; Srejovic, I. Homocysteine and homocysteine-related compounds: An overview of the roles in the pathology of the cardiovascular and nervous systems. Can. J. Physiol. Pharmacol. 2018, 96, 991–1003. [Google Scholar] [CrossRef]
- de Lemos, J.A.; Ayers, C.R.; Levine, B.D.; deFilippi, C.R.; Wang, T.J.; Hundley, W.G.; Berry, J.D.; Seliger, S.L.; McGuire, D.K.; Ouyang, P.; et al. Multimodality Strategy for Cardiovascular Risk Assessment: Performance in 2 Population-Based Cohorts. Circulation 2017, 135, 2119–2132. [Google Scholar] [CrossRef] [PubMed]
- Sickan, J.; Aw, T.C.; Du, S.X.; Li, J.; Janel, H.; Beshiri, A. Cardiovascular disease risk assessment with high-sensitivity cardiac Tn I and other biomarkers: An observational cohort study in Johor, Malaysia. Malays. J. Public Health Med. 2020, 20, 27–36. [Google Scholar] [CrossRef]
- Alam, N.; Khan, H.I.; Chowdhury, A.W.; Haque, M.S.; Ali, M.S.; Sabah, K.M.; Amin, M.G. Elevated serum homocysteine level has a positive correlation with serum cardiac Tn I in patients with acute myocardial infarction. Bangladesh Med. Res. Counc. Bull. 2012, 38, 9–13. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.; Kumar, P.; Kumar, A. Homocysteine: A newer and novel independent risk factor and cardiac marker for acute MI. Asian J. Pharm. Clin. Res. 2019, 12, 217–220. [Google Scholar] [CrossRef]
- Hanoon, A.H.; Jassim, A.K.; Hashim, N.A. The effect of homocysteine and Tn levels on the development and diagnosis of cardiovascular diseases. Int. J. Cardiol. Sci. 2024, 6, 86–94. [Google Scholar] [CrossRef]
- Al-Obaidi, M.K.; Stubbs, P.J.; Collinson, P.; Conroy, R.; Graham, I.; Noble, M.I.M. Elevated homocysteine levels are associated with increased ischemic myocardial injury in acute coronary syndromes. J. Am. Coll. Cardiol. 2000, 36, 1217–1222. [Google Scholar] [CrossRef]
- Ashraf, M.U.; Aslam, M.; Ajmal, M.R.; Habib, A. Correlation of serum homocysteine with cardiac Tn-T in patients with acute myocardial infarction. Int. Arch. Integr. Med. 2014, 2, 131–135. [Google Scholar]
- Cao, R.; Bai, Y.; Xu, R.; Ye, P. Homocysteine is associated with plasma high-sensitivity cardiac Tn T levels in a community-dwelling population. Clin. Interv. Aging 2014, 9, 79–84. [Google Scholar] [CrossRef] [PubMed]
- El-Amrousy, D.; Hassan, S.; Hodeib, H. Prognostic value of homocysteine and highly sensitive cardiac Tn T in children with acute heart failure. J. Saudi Heart Assoc. 2018, 30, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Chen, X.M.; Nie, X.Y.; Zhang, J.; Cheng, Y.J.; Lin, X.X.; Wu, S.H. Cardiac troponin and C-reactive protein for predicting all-cause and cardiovascular mortality in patients with chronic kidney disease: A meta-analysis. Clinics 2015, 70, 301–311. [Google Scholar] [CrossRef]
- Adeoye, M.; Hamdallah, H.; Adeoye, A.M. Homocysteine levels and cardiovascular disease risk factors in chronic kidney disease (CKD), hypertensive and healthy Nigerian adults: A comparative retrospective study. BMJ Open 2025, 15, e089644. [Google Scholar] [CrossRef]
- Aakre, K.M.; Saeed, N.; Wu, A.H.B.; Kavsak, P.A. Analytical performance of cardiac troponin assays—Current status and future needs. Clin. Chem. Acta 2020, 509, 149–155. [Google Scholar] [CrossRef]
- Clerico, A.; Zaninotto, M.; Aimo, A.; Padoan, A.; Passino, C.; Fortunato, A.; Galli, C.; Plebani, M. Advancements and challenges in high-sensitivity cardiac troponin assays: Diagnostic, pathophysiological, and clinical perspectives: On behalf of the Italian Study Group on Cardiac Biomarkers. Clin. Chem. Lab. Med. (CCLM) 2025, 63, 1260–1278. [Google Scholar] [CrossRef]
- Koechlin, L.; Boeddinghaus, J.; Lopez-Ayala, P.; Reber, C.; Nestelberger, T.; Wildi, K.; Spagnuolo, C.C.; Strebel, I.; Glaeser, J.; Bima, P.; et al. Clinical and Analytical Performance of a Novel Point-of-Care High-Sensitivity Cardiac Troponin I Assay. JACC 2024, 84, 726–740. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.; Bisse, E.; Nauck, M.; Wieland, H. Pre-analytical Conditions Affecting the Determination of the Plasma Homocysteine Concentration. Clin. Chem. Lab. Med. 2001, 39, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Refsum, H.; Smith, A.D.; Ueland, P.M.; Nexo, E.; Clarke, R.; McPartlin, J.; Johnston, C.; Engbaek, F.; Schneede, J.; McPartlin, C.; et al. Facts and Recommendations about Total Homocysteine Determinations: An Expert Opinion. Clin. Chem. 2004, 50, 3–32. [Google Scholar] [CrossRef]
- McCarthy, C.P.; Raber, I.; Chapman, A.R.; Sandoval, Y.; Apple, F.S.; Mills, N.L.; Januzzi, J.L. Myocardial Injury in the Era of High-Sensitivity Cardiac Tn Assays: A Practical Approach for Clinicians. JAMA Cardiol. 2019, 4, 1034–1042. [Google Scholar] [CrossRef]
- Krychtiuk, K.A.; Newby, L.K. High-sensitivity cardiac Tn assays: Ready for prime time! Annu. Rev. Med. 2024, 75, 459–474. [Google Scholar] [CrossRef]
- Narayanan, M.A.; Garcia, S. Role of High-sensitivity Cardiac Tn in Acute Coronary Syndrome. US Cardiol. Rev. 2019, 13, 5–10. [Google Scholar] [CrossRef]
- Yuan, S.; Mason, A.M.; Carter, P.; Burgess, S.; Larsson, S.C. Homocysteine, B vitamins, and cardiovascular disease: A Mendelian randomization study. BMC Med. 2021, 19, 97. [Google Scholar] [CrossRef]
- Clarke, R.; Halsey, J.; Lewington, S.; Lonn, E.; Armitage, J.; Manson, J.E.; Bønaa, K.H.; Spence, J.D.; Nygård, O.; Jamison, R.; et al. Effects of Lowering Homocysteine Levels With B Vitamins on Cardiovascular Disease, Cancer, and Cause-Specific Mortality: Meta-analysis of 8 Randomized Trials Involving 37,485 Individuals. Arch. Intern. Med. 2010, 170, 1622–1631. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, J.; Fang, S. Meta-analysis of B vitamin supplementation on plasma homocysteine, cardiovascular and all-cause mortality. Clin. Nutr. 2013, 32, 314–320. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.Y.; Qin, Y.Y.; Yu, F.F.; Zhou, Y.H. Association between B vitamins supplementation and risk of cardiovascular outcomes: A cumulative meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e107060. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Mahler, S.A.; Christenson, R.H.; Rymer, J.; Newby, L.K.; Body, R.; Apple, F.S.; Morrow, D.A.; Jaffe, A.S. Recommendations for Institutions Transitioning to High-Sensitivity Tn Testing. J. Am. Coll. Cardiol. 2019, 73, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- de Haan, J. Preparing for High Sensitivity Tn Testing. Acutecaretesting.org. 2019. Available online: https://acutecaretesting.org/en/articles/preparing-for-high-sensitivity-troponin-testing (accessed on 24 April 2025).
- Rasmussen, K.; Møller, J. Total homocysteine measurement in clinical practice. Ann. Clin. Biochem. 2000, 37, 627–648. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P.F.; Bostom, A.G.; Wilson, P.W.; Rich, S.; Rosenberg, I.H.; Selhub, J. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am. J. Clin. Nutr. 2001, 73, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Brustolin, S.; Giugliani, R.; Félix, T.M. Genetics of homocysteine metabolism and associated disorders. Braz. J. Med. Biol. Res. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Filipovic, M.G.; Luedi, M.M. Cardiovascular Biomarkers: Current Status and Future Directions. Cells 2023, 12, 2647. [Google Scholar] [CrossRef]
- Pervan, P.; Svaguša, T.; Prkačin, I.; Savuk, A.; Bakos, M.; Perkov, S. Urine high sensitive Tn I measuring in patients with hypertension. Signa Vitae 2017, 13, 62–64. [Google Scholar] [CrossRef]
- Mirzaii-Dizgah, I.; Riahi, E. Salivary high-sensitivity cardiac Tn T levels in patients with acute myocardial infarction. Oral Dis. 2013, 19, 180–184. [Google Scholar] [CrossRef]
- Lazar, D.R.; Lazar, F.L.; Homorodean, C.; Cainap, C.; Focsan, M.; Cainap, S.; Olinic, D.M. High-Sensitivity Tn: A Review on Characteristics, Assessment, and Clinical Implications. Dis. Markers 2022, 2022, 9713326. [Google Scholar] [CrossRef]
- Kongintr, U.; Lertanantawong, B.; Promptmas, C. A Label-Free Electrochemical Biosensor for Homocysteine Detection Using Molecularly Imprinted Polymer and Nanocomposite-Modified Electrodes. Polymers 2023, 15, 2241. [Google Scholar] [CrossRef]
- Zaimbashi, R.; Tajik, S.; Beitollahi, H.; Torkzadeh-Mahani, M. Fabrication of a Novel and Ultrasensitive Label-Free Electrochemical Aptasensor Based on Gold Nanostructure for Detection of Homocysteine. Biosensors 2023, 13, 244. [Google Scholar] [CrossRef]
- Piorino, F.; Johnson, S.; Styczynski, M.P. A Cell-Free Biosensor for Assessment of Hyperhomocysteinemia. ACS Synth. Biol. 2023, 12, 2487–2492. [Google Scholar] [CrossRef]
- Bularga, A.; Lee, K.K.; Stewart, S.; Ferry, A.V.; Chapman, A.R.; Marshall, L.; Strachan, F.E.; Mills, N.L.; Anand, A. High-Sensitivity Tn and the Application of Risk Stratification Thresholds in Patients With Suspected Acute Coronary Syndrome. Circulation 2019, 140, 1645–1657. [Google Scholar] [CrossRef]
- Marston, N.A.; Bonaca, M.P.; Jarolim, P.; Goodrich, E.L.; Bhatt, D.L.; Steg, P.G.; Cohen, M.; Storey, R.F.; Johanson, P.; Wiviott, S.D.; et al. Clinical Application of High-Sensitivity Tn Testing in the Atherosclerotic Cardiovascular Disease Framework of the Current Cholesterol Guidelines. JAMA Cardiol. 2020, 5, 1255–1262. [Google Scholar] [CrossRef]
- Bhatia, P.M.; Daniels, L.B. Highly Sensitive Cardiac Tns: The Evidence Behind Sex-Specific Cutoffs. J. Am. Heart Assoc. 2020, 9, e015272. [Google Scholar] [CrossRef]
- Neumann, J.T.; Twerenbold, R.; Ojeda, F.; Aldous, S.J.; Allen, B.R.; Apple, F.S.; Babel, H.; Christenson, R.H.; Cullen, L.; Di Carluccio, E.; et al. ARTEMIS study group (2023). Personalized diagnosis in suspected myocardial infarction. Clin. Res. Cardiol. 2025, 112, 1288–1301. [Google Scholar] [CrossRef] [PubMed]
- Toprak, B.; Solleder, H.; Di Carluccio, E.; Greenslade, J.H.; Parsonage, W.A.; Schulz, K.; Cullen, L.; Apple, F.S.; Ziegler, A.; Blankenberg, S.; et al. Diagnostic accuracy of a machine learning algorithm using point-of-care high-sensitivity cardiac troponin I for rapid rule-out of myocardial infarction: A retrospective study. Lancet Digit. Health 2024, 6, e729–e738. [Google Scholar] [CrossRef] [PubMed]
- Si, T.; Zhang, W.; Fu, X.; Wang, Y.; Liu, D.; Wu, Q. Reference intervals of homocysteine in apparently healthy Chinese Han ethnic adults. J. Lab. Med. 2022, 46, 125–132. [Google Scholar] [CrossRef]
- Ma, C.; Li, L.; Wang, X.; Hou, L.; Xia, L.; Yin, Y.; Cheng, X.; Qiu, L. Establishment of Reference Interval and Aging Model of Homocysteine Using Real-World Data. Front. Cardiovasc. Med. 2022, 9, 846685. [Google Scholar] [CrossRef]
- Cacciapuoti, F. Hyper-homocysteinemia: A novel risk factor or a powerful marker for cardiovascular diseases? Pathogenetic and therapeutical uncertainties. J. Thromb. Thrombolysis 2011, 32, 82–88. [Google Scholar] [CrossRef] [PubMed]
- González-Lamuño, D.; Arrieta-Blanco, F.J.; Fuentes, E.D.; Forga-Visa, M.T.; Morales-Conejo, M.; Peña-Quintana, L.; Vitoria-Miñana, I. Hyperhomocysteinemia in Adult Patients: A Treatable Metabolic Condition. Nutrients 2024, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Koklesova, L.; Mazurakova, A.; Samec, M.; Biringer, K.; Samuel, S.M.; Büsselberg, D.; Kubatka, P.; Golubnitschaja, O. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021, 12, 477–505. [Google Scholar] [CrossRef]
- Nguyen, K.; Fan, W.; Bertoni, A.; Budoff, M.J.; Defilippi, C.; Lombardo, D.; Maisel, A.; Szklo, M.; Wong, N.D. N-terminal Pro B-type Natriuretic Peptide and High-sensitivity Cardiac Troponin as Markers for Heart Failure and Cardiovascular Disease Risks According to Glucose Status (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am. J. Cardiol. 2020, 125, 1194–1201. [Google Scholar] [CrossRef]
- Dupuy, A.M.; Curinier, C.; Kuster, N.; Huet, F.; Leclercq, F.; Davy, J.M.; Cristol, J.P.; Roubille, F. Multi-Marker Strategy in Heart Failure: Combination of ST2 and CRP Predicts Poor Outcome. PLoS ONE 2016, 11, e0157159. [Google Scholar] [CrossRef]
- Cho, D.-Y.; Kim, K.-N.; Kim, K.-M.; Lee, D.-J.; Kim, B.-T. Combination of high-sensitivity C-reactive protein and homocysteine may predict an increased risk of coronary artery disease in Korean population. Chin. Med. J. 2012, 125, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Y.; Chu, C.; Hu, J.; Zheng, W.; Yan, Y.; Ma, Q.; Gao, K.; Yuan, Y.; Mu, J. Joint Association of Serum Homocysteine and High-Sensitivity C-Reactive Protein with Arterial Stiffness in Chinese Population: A 12-Year Longitudinal Study. Cardiology 2019, 144, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Djuric, D.M.; Todorovic, D.; Bajic, Z.; Krneta, S.M.; Sobot, T. Is Homocysteine a Biomarker of Environmental Health Risk and Epigenetic-DNA Methylation: Links to Cardiovascular Pathogenesis and B Vitamins. In Environmental Factors in the Pathogenesis of Cardiovascular Diseases. Advances in Biochemistry in Health and Disease; Djuric, D.M., Agrawal, D.K., Eds.; Springer: Cham, Switzerland, 2024; Volume 30, pp. 383–452. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djuric, D.; Bajic, Z.; Radisavljevic, N.; Sobot, T.; Mutavdzin Krneta, S.; Stankovic, S.; Skrbic, R. High-Sensitivity Troponins and Homocysteine: Combined Biomarkers for Better Prediction of Cardiovascular Events. Int. J. Mol. Sci. 2025, 26, 8186. https://doi.org/10.3390/ijms26178186
Djuric D, Bajic Z, Radisavljevic N, Sobot T, Mutavdzin Krneta S, Stankovic S, Skrbic R. High-Sensitivity Troponins and Homocysteine: Combined Biomarkers for Better Prediction of Cardiovascular Events. International Journal of Molecular Sciences. 2025; 26(17):8186. https://doi.org/10.3390/ijms26178186
Chicago/Turabian StyleDjuric, Dragan, Zorislava Bajic, Nina Radisavljevic, Tanja Sobot, Slavica Mutavdzin Krneta, Sanja Stankovic, and Ranko Skrbic. 2025. "High-Sensitivity Troponins and Homocysteine: Combined Biomarkers for Better Prediction of Cardiovascular Events" International Journal of Molecular Sciences 26, no. 17: 8186. https://doi.org/10.3390/ijms26178186
APA StyleDjuric, D., Bajic, Z., Radisavljevic, N., Sobot, T., Mutavdzin Krneta, S., Stankovic, S., & Skrbic, R. (2025). High-Sensitivity Troponins and Homocysteine: Combined Biomarkers for Better Prediction of Cardiovascular Events. International Journal of Molecular Sciences, 26(17), 8186. https://doi.org/10.3390/ijms26178186