Differential Expression of Erythrocyte Proteins in Patients with Alcohol Use Disorder
Abstract
1. Introduction
2. Results
- Expressions of endoplasmin and gelsolin were upregulated in AUD compared to the controls.
- Cytoskeletal proteins such as spectrin alpha chain, and actin cytoplasmic 1 and 2 were overexpressed in the AUD group and the MCV-high AUD subgroup.
- The MCV-high AUD subgroup compared to the MCV-normal AUD subgroup had significantly higher expression of 14-3-3 protein beta/alpha, 14-3-3 protein gamma, 14-3-3 protein zeta/delta, F-actin-capping protein subunit beta, hypoxanthine-guanine phosphoribosyl-transferase, protein phosphatase 1 regulatory subunit 7, thioredoxin-like protein 1, UV excision repair protein RAD23 homolog A, eukaryotic translation initiation factor 2 subunit 1 (IF2A), protein glutamine gamma-glutamyltransferase 2 (TGM2), heat shock protein HSP 90-alpha (HSP90A), heat shock 70 kDa protein 4 (HSP74), alpha-synuclein (SYUA), eukaryotic translation initiation factor 5A-1 (IF5A1), eukaryotic initiation factor 4A-II (IF4A2), eukaryotic initiation factor 4A-I (IF4A1), protein DDI1 homolog 2 (DDI2), and ubiquitin carboxyl-terminal hydrolase 5 (UBP5).
- Conversely, bisphosphoglycerate mutase (PMGE) was consistently downregulated across all AUD groups, specifically in the MCV-high AUD subgroup.
- Additionally, four proteins, namely WD repeat-containing protein 1 (WDR1), uroporphyrinogen decarboxylase (DCUP), tropomyosin alpha-3 chain (TPM3), and band 3 anion transport protein (B3AT), exhibited differential expression only in the MCV subgroup comparison, with downregulation observed in the MCV-high subgroup relative to MCV-normal AUD patients.
Proteins | Spot No. a | Accession ID | Protein MW (kDa)/pI (Theoretical) | Protein MW (kDa)/pI (Observed) | Peptide Count | Protein Score | Protein Score C.I. % | Total Ion Score | Total Ion C.I. % | Change (Fold) b | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUD vs. Control | AUD vs. SD | MCV-High AUD vs. MCV-Normal AUD | ||||||||||||
14-3-3 protein beta/alpha OS = Homo sapiens GN = YWHAB PE = 1 SV = 3 | C590 | 1433B | 28.065 | 4.8 | 28 | 4.67 | 16 | 555 | 100 | 432 | 100 | ↑ 1.2 | ↑ 1.1 | ↑ 1.3 * |
14-3-3 protein epsilon OS = Homo sapiens GN = YWHAE PE = 1 SV = 1 | C559 | 1433E | 29.155 | 4.6 | 29 | 4.53 | 19 | 619 | 100 | 474 | 100 | ↔ 1.1 | ↔ 1.1 | ↑ 1.3 * |
14-3-3 protein gamma OS = Homo sapiens GN = YWHAG PE = 1 SV = 2 | C576 | 1433G | 28.285 | 4.8 | 28 | 4.68 | 11 | 416 | 100 | 351 | 100 | ↑ 1.2 | ↔ 1.1 | ↑ 1.3 * |
14-3-3 protein zeta/delta OS = Homo sapiens GN = YWHAZ PE = 1 SV = 1 | C589 | 1433Z | 27.728 | 4.7 | 28 | 4.62 | 17 | 775 | 100 | 645 | 100 | ↑ 1.2 | ↔↑ 1.1 | ↑ 1.3 * |
Actin, cytoplasmic 1 OS = Homo sapiens GN = ACTB PE = 1 SV = 1 | C472 | ACTB | 41.710 | 5.3 | 38 | 5.51 | 7 | 403 | 100 | 377 | 100 | ↑ 1.6 * | ↔ 1.0 | ↔↑ 1.2 |
Actin, cytoplasmic 2 OS = Homo sapiens GN = ACTG1 PE = 1 SV = 1 | C807 | ACTG | 41.766 | 5.3 | 44 | 5.25 | 16 | 654 | 100 | 546 | 100 | ↑ 1.6 * | ↔ 1.0 | ↑ 1.2 |
Acylamino-acid-releasing enzyme OS = Homo sapiens GN = APEH PE = 1 SV = 4 | C110 | ACPH | 81.173 | 5.3 | 82 | 5.35 | 24 | 1040 | 100 | 887 | 100 | ↔ 1.0 | ↔ 1.1 | ↑ 1.3 * |
ADP-sugar pyrophosphatase OS = Homo sapiens GN = NUDT5 PE = 1 SV = 1 | C529 | NUDT5 | 24.312 | 4.9 | 33 | 4.73 | 8 | 538 | 100 | 488 | 100 | ↑ 1.2 | ↔ 1.1 | ↑ 1.3 * |
Alpha-synuclein OS = Homo sapiens GN = SNCA PE = 1 SV = 1 | C706 | SYUA | 14.451 | 4.7 | 17 | 4.64 | 3 | 235 | 100 | 219 | 100 | ↔ 1.1 | ↔↓ 1.1 | ↑ 1.5 * |
Band 3 anion transport protein OS = Homo sapiens GN = SLC4A1 PE = 1 SV = 3 | M126 | B3AT | 101.727 | 5.1 | 45 | 4.44 | 14 | 839 | 100 | 794 | 100 | ↔↓ 1.1 | ↔↓ 1.1 | ↓ 1.2 * |
Bisphosphoglycerate mutase OS = Homo sapiens GN = BPGM PE = 1 SV = 2 | C582 | PMGE | 29.987 | 6.1 | 28 | 6.18 | 11 | 480 | 100 | 405 | 100 | ↓ 1.3 * | ↔↓ 1.1 | ↓ 1.3 * |
Bisphosphoglycerate mutase OS = Homo sapiens GN = BPGM PE = 1 SV = 2 | C588 | PMGE | 29.987 | 6.1 | 28 | 5.98 | 7 | 158 | 100 | 122 | 100 | ↓ 1.6 * | ↓ 1.8 * | ↓ 1.5 * |
Chloride intracellular channel protein 1 OS = Homo sapiens GN = CLIC1 PE = 1 SV = 4 | C558 | CLIC1 | 26.906 | 5.1 | 30 | 5.14 | 14 | 680 | 100 | 568 | 100 | ↔ 1.1 | ↔ 1.0 | ↑ 1.4 * |
DCN1-like protein 1 OS = Homo sapiens GN = DCUN1D1 PE= 1 SV =1 | C600 | DCNL1 | 30.105 | 5.2 | 27 | 5.11 | 7 | 145 | 100 | 116 | 100 | ↔ 1.1 | ↔ 1.1 | ↑ 1.3 * |
Endoplasmin OS = Homo sapiens GN = HSP90B1 PE = 1 SV = 1 | C46 | ENPL | 92.411 | 4.8 | 100 | 4.77 | 14 | 181 | 100 | 145 | 100 | ↑ 1.5 * | ↑ 1.2 | ↔ 1.1 |
Eukaryotic initiation factor 4A-I OS = Homo sapiens GN = EIF4A1 PE = 1 SV = 1 | C373 | IF4A1 | 46.125 | 5.3 | 47 | 5.27 | 23 | 846 | 100 | 677 | 100 | ↑ 1.2 | ↔↑ 1.1 | ↑ 1.5 * |
Eukaryotic initiation factor 4A-II OS = Homo sapiens GN = EIF4A2 PE = 1 SV = 2 | C376 | IF4A2 | 46.373 | 5.3 | 47 | 5.36 | 16 | 608 | 100 | 513 | 100 | ↑ 1.2 | ↔ 1.1 | ↑ 1.5 * |
Eukaryotic translation initiation factor 2 subunit 1 OS = Homo sapiens GN = EIF2S1 PE =1 SV=3 | C475 | IF2A | 36.089 | 5.0 | 37 | 5.13 | 16 | 387 | 100 | 285 | 100 | ↑ 1.3 | ↔ 1.1 | ↑ 1.7 * |
Eukaryotic translation initiation factor 5A-1 OS = Homo sapiens GN = EIF5A PE = 1 SV = 2 | C716 | IF5A1 | 16.821 | 5.1 | 16 | 5.09 | 8 | 580 | 100 | 528 | 100 | ↑ 1.3 | ↔ 1.2 | ↑ 1.5 * |
F-actin-capping protein subunit beta OS = Homo sapiens GN = CAPZB PE = 1 SV = 4 | C555 | CAPZB | 31.331 | 5.4 | 30 | 5.67 | 13 | 365 | 100 | 281 | 100 | ↑ 1.2 | ↔ 1.1 | ↑ 1.3 * |
Gelsolin OS = Homo sapiens GN = GSN PE = 1 SV = 1 | C74 | GELS | 85.644 | 5.9 | 92.0 | 5.8 | 21 | 554 | 100 | 443 | 100 | ↑ 1.6 | ↔ 1.1 | ↔↑ 1.4 |
Heat shock 70 kDa protein 4 OS = Homo sapiens GN = HSPA4 PE = 1 SV = 4 | C31 | HSP74 | 94.271 | 5.1 | 107 | 5.13 | 17 | 452 | 100 | 397 | 100 | ↔ 1.1 | ↔ 1.1 | ↑ 1.6 * |
Heat shock cognate 71 kDa protein OS = Homo sapiens GN = HSPA8 PE = 1 SV = 1 | C815 | HSP7C | 70.854 | 5.4 | 69 | 5.38 | 26 | 1200 | 100 | 1015 | 100 | ↔ 1.1 | ↔↑ 1.2 | ↑ 1.3 * |
Heat shock protein HSP 90-alpha OS = Homo sapiens GN = HSP90AA1 PE= 1 SV= 5 | C83 | HS90A | 84.607 | 4.9 | 89 | 4.94 | 22 | 844 | 100 | 750 | 100 | ↔↑ 1.2 | ↔ 1.0 | ↑ 1.6 * |
Hypoxanthine-guanine phosphoribosyltransferase OS = Homo sapiens GN = HPRT1 PE = 1 SV=2 | C642 | HPRT | 24.564 | 6.2 | 23 | 4.77 | 9 | 238 | 100 | 182 | 100 | ↑ 1.3 * | ↔↑ 1.1 | ↑ 1.4 * |
Protein DDI1 homolog 2 OS = Homo sapiens GN = DDI2 PE = 1 SV = 1 | C333 | DDI2 | 44.495 | 5.0 | 50 | 4.93 | 15 | 813 | 100 | 715 | 100 | ↑ 1.1 | ↔ 1.1 | ↑ 1.5* |
Protein DDI1 homolog 2 OS = Homo sapiens GN = DDI2 PE = 1 SV = 1 | C344 | DDI2 | 44.495 | 5.0 | 50 | 5.05 | 18 | 928 | 100 | 795 | 100 | ↔ 1.1 | ↔ 1.1 | ↑ 1.4 * |
Protein phosphatase 1 regulatory subunit 7 OS = Homo sapiens GN = PPP1R7 PE = 1 SV = 1 | C377 | PP1R7 | 41.539 | 4.8 | 47 | 4.88 | 20 | 500 | 100 | 346 | 100 | ↑ 1.3* | ↔ 1.1 | ↑ 1.3 |
Protein phosphatase 1 regulatory subunit 7 OS = Homo sapiens GN = PPP1R7 PE = 1 SV = 1 | C379 | PP1R7 | 41.539 | 4.8 | 47 | 4.81 | 19 | 491 | 100 | 349 | 100 | ↔ 1.0 | ↔↓ 1.1 | ↑ 1.4 * |
Protein phosphatase 1 regulatory subunit 7 OS = Homo sapiens GN = PPP1R7 PE = 1 SV = 1 | C380 | PP1R7 | 41.539 | 4.8 | 47 | 4.84 | 18 | 325 | 100 | 197 | 100 | ↑ 1.2 | ↔↓ 1.1 | ↑ 1.4 * |
Protein-glutamine gamma-glutamyltransferase 2 OS = Homo sapiens GN = TGM2 PE = 1 SV = 2 | C97 | TGM2 | 77.280 | 5.1 | 87 | 5.11 | 26 | 940 | 100 | 761 | 100 | ↔ 1.1 | ↔ 1.0 | ↑ 1.7 * |
Rab GDP dissociation inhibitor alpha OS = Homo sapiens GN = GDI1 PE = 1 SV = 2 | C224 | GDIA | 50.550 | 5.0 | 64 | 5.0 | 16 | 220 | 100 | 139 | 100 | ↔↑ 1.1 | ↔ 1.1 | ↑ 1.4 |
Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform OS = Homo sapiens GN = PPP2CB PE | C488 | PP2AB | 35.552 | 5.2 | 36 | 5.24 | 11 | 227 | 100 | 160 | 100 | ↔ 1.1 | ↔ 1.1 | ↑ 1.2 * |
Spectrin alpha chain, erythrocyte OS = Homo sapiens GN = SPTA1 PE = 1 SV = 5 | M112 | SPTA1 | 280.014 | 5.0 | 50 | 5.17 | 21 | 104 | 100 | 86 | 100 | ↑ 1.6 * | ↑ 1.4 | ↑ 1.2 |
Thioredoxin-like protein 1 OS = Homo sapiens GN = TXNL1 PE = 1 SV = 3 | C504 | TXNL1 | 32.231 | 4.8 | 36 | 4.89 | 11 | 653 | 100 | 581 | 100 | ↑ 1.2 | ↑ 1.2 | ↑ 1.3 * |
Thioredoxin-like protein 1 OS = Homo sapiens GN = TXNL1 PE = 1 SV = 3 | C506 | TXNL1 | 32.231 | 4.8 | 36 | 4.97 | 12 | 708 | 100 | 627 | 100 | ↔ 1.1 | ↔ 1.1 | ↑ 1.4 * |
Tropomyosin alpha-3 chain OS = Homo sapiens GN = TPM3 PE = 1 SV = 1 | M174 | TPM3 | 32.799 | 4.7 | 31 | 4.6 | 11 | 410 | 100 | 361 | 100 | ↔ 1.0 | ↔ 1.0 | ↓ 1.2 * |
Tubulin–tyrosine ligase-like protein 12 OS = Homo sapiens GN = TTLL12 PE = 1 SV = 2 | C519 | TTL12 | 74.356 | 5.3 | 80 | 5.44 | 24 | 846 | 100 | 686 | 100 | ↑ 1.4 | ↑ 1.3 | ↑ 1.2 * |
Ubiquitin carboxyl-terminal hydrolase 5 OS = Homo sapiens GN = USP5 PE = 1 SV = 2 | C52 | UBP5 | 95.725 | 4.9 | 96 | 4.92 | 31 | 1030 | 100 | 816 | 100 | ↔ 1.1 | ↔ 1.1 | ↑ 1.4 * |
Ubiquitin carboxyl-terminal hydrolase 5 OS = Homo sapiens GN = USP5 PE = 1 SV = 2 | C53 | UBP5 | 95.725 | 4.9 | 96 | 4.95 | 34 | 1090 | 100 | 835 | 100 | ↔ 1.1 | ↔ 1.1 | ↑ 1.5 |
Ubiquitin carboxyl-terminal hydrolase 5 OS = Homo sapiens GN = USP5 PE = 1 SV = 2 | C814 | UBP5 | 95.725 | 4.9 | 96 | 4.9 | 27 | 714 | 100 | 550 | 100 | ↔ 1.0 | ↔ 1.0 | ↑ 1.3 * |
Ubiquitin thioesterase OTUB1 OS = Homo sapiens GN = OTUB1 PE = 1 SV = 2 | C519 | OTUB1 | 31.264 | 4.9 | 34 | 4.74 | 15 | 773 | 100 | 653 | 100 | ↑ 1.2 | ↔ 1.0 | ↑ 1.2 * |
Uroporphyrinogen decarboxylase OS = Homo sapiens GN = UROD PE = 1 SV = 2 | C466 | DCUP | 40.761 | 5.8 | 38 | 5.88 | 8 | 288 | 100 | 252 | 100 | ↔↓ 1.2 | ↔ 1.1 | ↓ 1.3 |
UV excision repair protein RAD23 homolog A OS = Homo sapiens GN = RAD23A PE = 1 SV = 1 | C283 | RD23A | 39.585 | 4.6 | 56 | 4.46 | 16 | 513 | 100 | 395 | 100 | ↔ 1.1 | ↔ 1.0 | ↑ 1.5 * |
UV excision repair protein RAD23 homolog A OS = Homo sapiens GN = RAD23A PE = 1 SV = 1 | C291 | RD23A | 39.585 | 4.6 | 56 | 4.49 | 15 | 448 | 100 | 341 | 100 | ↔ 1.1 | ↔ 1.0 | ↑ 1.3 * |
WD repeat-containing protein 1 OS = Homo sapiens GN = WDR1 PE = 1 SV = 4 | C166 | WDR1 | 66.152 | 6.2 | 70 | 6.53 | 16 | 276 | 100 | 191 | 100 | ↔ 1.0 | ↔ 1.0 | ↓ 1.3 * |
3. Discussion
- Degree, EPC, and Closeness are identical on top-15s, forming a cluster (Figure 9).
- MNC, MCC, Radiality, Stress, and Bottleneck are moderately similar to that cluster.
- “Betweenness vs. ClusteringCoefficient” is the most divergent pair. Additionally, clustering coefficient and EcCentricity are the most divergent, with the fewest shared proteins and weak edges.
- Among the hubs, YWHAG/1433G, YWHAB/1433B, YWHAZ/1433Z, YWHAE/1433E, ACTG1/ACTG, and HSP90B1/ENPL consistently appear across the top lists; ACTB, HSP90AA1/HS90A, and HSPA8/HSP7C are also frequent.
- The highest rank dispersion across algorithms appears in EIF5A/IF5A1 and EIF4A1/IF4A1.
- The primary deviations from the consensus in the algorithms are as follows: DMNC ranking HSP90AA1/HS90A significantly lower than other methods, and MCC assigning EIF5A/IF5A1 and HSPA4/HSP74 scores noticeably divergent from the consensus.
4. Materials and Methods
4.1. Materials
4.2. Sampling and Pre-Analytical Procedures
4.3. Two-Dimensional Gel Electrophoresis
4.4. MALDI-TOF MS and MALDI-TOF/TOF Tandem MS/MS
4.5. Enrichment Analysis, Protein–Protein Interaction Network, and Selection of Hub Proteins
4.6. Serum %CDT, Total SA, and Biochemical Tests
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
%CDT | Carbohydrate-deficient transferrin |
%DST | Disialotransferrin |
2,3-BPG | 2,3-bisphosphoglycerate |
2D | Two-dimensional |
2D-GE | Two-dimensional Gel Electrophoresis |
3D | Three-dimensional |
ACTB | Actin, cytoplasmic 1 |
ACTG1/ACTG | Actin, cytoplasmic 2 |
ALT | Alanine aminotransferase |
ANOVA | Analysis of variance |
APEH/ACPH | Acylamino-acid-releasing enzyme |
AST | Aspartate transaminase |
AUD | Alcohol use disorders |
BCA | Bicinchoninic acid |
BPGM/PMGE | Bisphosphoglycerate mutase |
CAPZB | F-actin-capping protein subunit beta |
CLIC1 | Chloride intracellular channel protein 1 |
DCUN1D1/DCNL1 | DCN1-like protein 1 |
DDI2 | Protein DDI1 homolog 2 |
DTT | Dithiothreitol |
EIF2S1/IF2A | Eukaryotic translation initiation factor 2 subunit 1 |
EIF4A1/IF4A1 | Eukaryotic initiation factor 4A-I |
EIF4A2/IF4A2 | Eukaryotic initiation factor 4A-II |
EIF5A/IF5A1 | Eukaryotic translation initiation factor 5A-1 |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
GDI1/GDIA | Rab GDP dissociation inhibitor alpha |
GGT | Gamma-glutamyl transferase |
GO | Gene Ontology |
GSH | Reduced glutathione |
GSN/GELS | Gelsolin |
GSSG | Oxidized glutathione |
HAE | 4-Hydroxyalkenals |
HPRT1/HPRT | Hypoxanthine-guanine phosphoribosyltransferase |
HSP90AA1/HS90A | Heat shock protein HSP 90-alpha |
HSP90B1/ENPL | Endoplasmin |
HSPA4/HSP74 | Heat shock 70 kDa protein 4 |
HSPA8/HSP7C | Heat shock cognate 71 kDa protein |
IAA | Iodoacetamide |
ICD-11 | International Classification of Diseases 11th Revision |
IEF | Isoelectric Focusing |
IMP | Inosine monophosphate |
IPG | Immobiline™ pH gradient |
MALDI-TOF/TOF | Matrix-Assisted Laser Desorption/Ionization Time-of-flight (TOF) mass spectrometry |
MDA | Malondialdehyde |
MW | Molecular weight |
NOx | Nitric oxide |
NUDT5 | ADP-sugar pyrophosphatase |
OSI | Oxidative stress index |
OTUB1 | Ubiquitin thioesterase |
pI | Isoelectric point |
PPP1R7/PP1R7 | Protein phosphatase 1 regulatory subunit 7 |
PPP2CB/PP2AB | Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform |
RAD23A/RD23A | UV excision repair protein RAD23 homolog A |
RDW | Red cell distribution width |
ROC | Receiver operating characteristic |
SDS-PAGE | Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis |
SLC4A1/B3AT | Band 3 anion transport protein |
SNCA/SYUA | Alpha-synuclein |
SPTA1 | Spectrin alpha chain, erythrocyte |
TAC | Total antioxidant capacity |
TGM2 | Protein-glutamine gamma-glutamyltransferase 2 |
TOS | Total oxidative status |
TPM3 | Tropomyosin alpha-3 chain |
TRX1 | Thioredoxin-1 |
TTLL12/TTL12 | Tubulin–tyrosine ligase-like protein 12 |
TXNL1 | Thioredoxin-like protein 1 |
TXNRD1 | Thioredoxin reductase 1 |
UROD/DCUP | Uroporphyrinogen decarboxylase |
USP5/UBP5 | Ubiquitin carboxyl-terminal hydrolase 5 |
WDR1 | WD repeat-containing protein 1 |
YWHAB/1433B | 14-3-3 protein beta/alpha |
YWHAE/1433E | 14-3-3 protein epsilon |
YWHAG/1433G | 14-3-3 protein gamma |
YWHAZ/1433Z | 14-3-3 protein zeta/delta |
References
- WHO. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- MacKillop, J.; Agabio, R.; Feldstein Ewing, S.W.; Heilig, M.; Kelly, J.F.; Leggio, L.; Lingford-Hughes, A.; Palmer, A.A.; Parry, C.D.; Ray, L.; et al. Hazardous Drinking and Alcohol Use Disorders. Nat. Rev. Dis. Primers 2022, 8, 80. [Google Scholar] [CrossRef]
- Global Status Report on Alcohol and Health and Treatment of Substance Use Disorders; World Health Organization: Geneva, Switzerland, 2024.
- Ronksley, P.E.; Brien, S.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Association of Alcohol Consumption with Selected Cardiovascular Disease Outcomes: A Systematic Review and Meta-Analysis. BMJ 2011, 342, d671. [Google Scholar] [CrossRef]
- Burton, R.; Sheron, N. No Level of Alcohol Consumption Improves Health. Lancet 2018, 392, 987–988. [Google Scholar] [CrossRef]
- Musto, J.A.; Brown, R.; Lucey, M.R. Is There a Safe Limit for Consumption of Alcohol? J. Hepatol. 2025, 82, 535–540. [Google Scholar] [CrossRef]
- Ortolá, R.; Sotos-Prieto, M.; García-Esquinas, E.; Galán, I.; Rodríguez-Artalejo, F. Alcohol Consumption Patterns and Mortality Among Older Adults with Health-Related or Socioeconomic Risk Factors. JAMA Netw. Open 2024, 7, e2424495. [Google Scholar] [CrossRef]
- WHO. Global Alcohol Action Plan 2022–2030; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Hannuksela, M.L.; Liisanantti, M.K.; Nissinen, A.E.T.; Savolainen, M.J. Biochemical Markers of Alcoholism. Clin. Chem. Lab. Med. 2007, 45, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Bataille, V. Joint Use of Clinical Parameters, Biological Markers and CAGE Questionnaire for the Identification of Heavy Drinkers in a Large Population-Based Sample. Alcohol Alcohol. 2003, 38, 121–127. [Google Scholar] [CrossRef]
- Rinck, D.; Frieling, H.; Freitag, A.; Hillemacher, T.; Bayerlein, K.; Kornhuber, J.; Bleich, S. Combinations of Carbohydrate-Deficient Transferrin, Mean Corpuscular Erythrocyte Volume, Gamma-Glutamyltransferase, Homocysteine and Folate Increase the Significance of Biological Markers in Alcohol Dependent Patients. Drug Alcohol Depend. 2007, 89, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Boşgelmez, I.; Guvendik, G.; Dilbaz, N.; Saracbasi, T.; Metin, E. A Combinatorial Approach in Discrimination of Alcohol Use Disorders: Inclusion of Differentially Expressed Plasma Proteins. Acta Medica 2016, 5, 99–108. [Google Scholar]
- Witzmann, F.A.; Strother, W.N. Proteomics and Alcoholism. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 61, pp. 189–214. ISBN 0123668638. [Google Scholar]
- Lovinger, D.M. Mixing Proteomics and Alcohol. Alcohol 2006, 40, 1–2. [Google Scholar] [CrossRef]
- Lai, X.; Liangpunsakul, S.; Crabb, D.W.; Ringham, H.N.; Witzmann, F.A. A Proteomic Workflow for Discovery of Serum Carrier Protein-Bound Biomarker Candidates of Alcohol Abuse Using LC-MS/MS. Electrophoresis 2009, 30, 2207–2214. [Google Scholar] [CrossRef]
- Liangpunsakul, S.; Lai, X.; Ringham, H.N.; Crabb, D.W.; Witzmann, F.A. Serum Proteomic Profiles in Subjects with Heavy Alcohol Abuse. J. Proteom. Bioinform. 2009, 2, 236–243. [Google Scholar] [CrossRef]
- Venkatraman, A.; Landar, A.; Davis, A.J.; Chamlee, L.; Sanderson, T.; Kim, H.; Page, G.; Pompilius, M.; Ballinger, S.; Darley-Usmar, V.; et al. Modification of the Mitochondrial Proteome in Response to the Stress of Ethanol-Dependent Hepatotoxicity. J. Biol. Chem. 2004, 279, 22092–22101. [Google Scholar] [CrossRef]
- Freeman, W.M.; Salzberg, A.C.; Gonzales, S.W.; Grant, K.A.; Vrana, K.E. Classification of Alcohol Abuse by Plasma Protein Biomarkers. Biol. Psychiatry 2010, 68, 219–222. [Google Scholar] [CrossRef]
- Pelekanou, V.; Villarroel-Espindola, F.; Schalper, K.A.; Pusztai, L.; Rimm, D.L. CD68, CD163, and Matrix Metalloproteinase 9 (MMP-9) Co-Localization in Breast Tumor Microenvironment Predicts Survival Differently in ER-Positive and -Negative Cancers. Breast Cancer Res. 2018, 20, 154. [Google Scholar] [CrossRef]
- Lance, E.I.; Casella, J.F.; Everett, A.D.; Barron-Casella, E. Proteomic and Biomarker Studies and Neurological Complications of Pediatric Sickle Cell Disease. Proteom.—Clin. Appl. 2014, 8, 813–827. [Google Scholar] [CrossRef] [PubMed]
- Lazari, D.; Freitas Leal, J.K.; Brock, R.; Bosman, G. The Relationship Between Aggregation and Deformability of Red Blood Cells in Health and Disease. Front. Physiol. 2020, 11, 288. [Google Scholar] [CrossRef]
- Nemkov, T.; Reisz, J.A.; Xia, Y.; Zimring, J.C.; D’Alessandro, A. Red Blood Cells as an Organ? How Deep Omics Characterization of the Most Abundant Cell in the Human Body Highlights Other Systemic Metabolic Functions beyond Oxygen Transport. Expert Rev. Proteom. 2018, 15, 855–864. [Google Scholar] [CrossRef]
- Pretini, V.; Koenen, M.H.; Kaestner, L.; Fens, M.H.A.M.; Schiffelers, R.M.; Bartels, M.; Van Wijk, R. Red Blood Cells: Chasing Interactions. Front. Physiol. 2019, 10, 945. [Google Scholar] [CrossRef]
- Anastasiadi, A.T.; Arvaniti, V.-Z.; Hudson, K.E.; Kriebardis, A.G.; Stathopoulos, C.; D’Alessandro, A.; Spitalnik, S.L.; Tzounakas, V.L. Exploring Unconventional Attributes of Red Blood Cells and Their Potential Applications in Biomedicine. Protein Cell 2024, 15, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Sabet, N.H.; Wyatt, T.A. The Alcohol Exposome. Alcohol 2025, 122, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein–Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. CytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef]
- Julius AI. Julius: AI Assistant for Data Analysis and Reporting. Version Current. Available online: https://julius.ai/ (accessed on 16 August 2025).
- Spinelli, S.; Marino, A.; Morabito, R.; Remigante, A. Interplay Between Metabolic Pathways and Increased Oxidative Stress in Human Red Blood Cells. Cells 2024, 13, 2026. [Google Scholar] [CrossRef]
- Ptaszyńska-Sarosiek, I.; Gołaś, E.; Nesterowicz, M.; Niemcunowicz-Janica, A.; Zalewska, A.; Żendzian-Piotrowska, M.; Maciejczyk, M. Total Antioxidant and Oxidative Status as Potential Biomarkers of Alcohol Overdose. Int. J. Mol. Sci. 2024, 26, 82. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Fu, X.; Reisz, J.A.; Stone, M.; Kleinman, S.; Zimring, J.C.; Busch, M. Ethyl Glucuronide, a Marker of Alcohol Consumption, Correlates with Metabolic Markers of Oxidant Stress but Not with Hemolysis in Stored Red Blood Cells from Healthy Blood Donors. Transfusion 2020, 60, 1183–1196. [Google Scholar] [CrossRef]
- Rabai, M.; Detterich, J.A.; Wenby, R.B.; Toth, K.; Meiselman, H.J. Effects of Ethanol on Red Blood Cell Rheological Behavior. Clin. Hemorheol. Microcirc. 2014, 56, 87–99. [Google Scholar] [CrossRef]
- Liu, L.; Huang, S.; Xu, X.; Han, J. Study of Individual Erythrocyte Deformability Susceptibility to INFeD and Ethanol Using a Microfluidic Chip. Sci. Rep. 2016, 6, 22929. [Google Scholar] [CrossRef] [PubMed]
- Maturu, P.; Vaddi, D.R.; Pannuru, P.; Nallanchakravarthula, V. Alterations in Erythrocyte Membrane Fluidity and Na+/K+-ATPase Activity in Chronic Alcoholics. Mol. Cell. Biochem. 2010, 339, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Padmini, E.; Thiripura Sundari, B. Erythrocyte Glutathione Depletion Impairs Resistance to Haemolysis in Women Consuming Alcohol. J. Clin. Biochem. Nutr. 2008, 42, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Idiz, N.; Güvendik, G.; Boşgelmez, I.I.; Söylemezǒlu, T.; Dǒan, Y.B.; Ilhan, I. Serum Sialic Acid and γ-Glutamyltransferase Levels in Alcohol-Dependent Individuals. Forensic Sci. Int. 2004, 146, S67–S70. [Google Scholar] [CrossRef] [PubMed]
- Güvendik, G.; Idiz, N.; Boşgelmez, I.I.; Söylemezoǧlu, T.; Doǧan, Y.B.; Ilhan, I.Ö. Comparative Assessment of Diagnostic Accuracy of Serum Sialic Acid and Several Conventional Biomarkers in Alcohol-Dependent Individuals. Turk. J. Pharm. Sci. 2006, 3, 19–30. [Google Scholar]
- Maruyama, S.; Hirayama, C.; Yamamoto, S.; Koda, M.; Udagawa, A.; Kadowaki, Y.; Inoue, M.; Sagayama, A.; Umeki, K. Red Blood Cell Status in Alcoholic and Non-Alcoholic Liver Disease. J. Lab. Clin. Med. 2001, 138, 332–337. [Google Scholar] [CrossRef]
- Garcia, D.A.; Bona, R. Hematologic Complications of Alcohol Use. In UpToDate, Connor RF; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2024; Available online: https://www.uptodate.com/contents/hematologic-complications-of-alcohol-use (accessed on 13 August 2025).
- Niemelä, O.; Halkola, A.; Bloigu, A.; Bloigu, R.; Nivukoski, U.; Pohjasniemi, H.; Kultti, J. Blood Cell Responses Following Heavy Alcohol Consumption Coincide with Changes in Acute Phase Reactants of Inflammation, Indices of Hemolysis and Immune Responses to Ethanol Metabolites. Int. J. Mol. Sci. 2022, 23, 12738. [Google Scholar] [CrossRef]
- Speicher, D.W. Deep Mining of the RBC Proteome. Blood 2006, 108, 779–780. [Google Scholar] [CrossRef]
- Pasini, E.M.; Kirkegaard, M.; Mortensen, P.; Lutz, H.U.; Thomas, A.W.; Mann, M. In-Depth Analysis of the Membrane and Cytosolic Proteome of Red Blood Cells. Blood 2006, 108, 791–801. [Google Scholar] [CrossRef]
- Riera, M.; Sánchez, J.; Rama, R.; Palacios, L. Changes in Haemoglobin Oxygen Affinity and Erythrocytic 2,3-BPG in Ethanol-Treated Rats. Gen. Pharmacol. Vasc. Syst. 1990, 21, 291–293. [Google Scholar] [CrossRef]
- Tellone, E.; Barreca, D.; Russo, A.; Galtieri, A.; Ficarra, S. New Role for an Old Molecule: The 2,3-Diphosphoglycerate Case. Biochim. Biophys. Acta—Gen. Subj. 2019, 1863, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Bulle, S.; Reddy, V.D.; Padmavathi, P.; Maturu, P.; Puvvada, P.K.; Nallanchakravarthula, V. Association between Alcohol-Induced Erythrocyte Membrane Alterations and Hemolysis in Chronic Alcoholics. J. Clin. Biochem. Nutr. 2017, 60, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Nemkov, T.; Sun, K.; Reisz, J.A.; Song, A.; Yoshida, T.; Dunham, A.; Wither, M.J.; Francis, R.O.; Roach, R.C.; Dzieciatkowska, M.; et al. Hypoxia Modulates the Purine Salvage Pathway and Decreases Red Blood Cell and Supernatant Levels of Hypoxanthine during Refrigerated Storage. Haematologica 2018, 103, 361–372. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Anastasiadi, A.T.; Tzounakas, V.L.; Nemkov, T.; Reisz, J.A.; Kriebardis, A.G.; Zimring, J.C.; Spitalnik, S.L.; Busch, M.P. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023, 13, 793. [Google Scholar] [CrossRef]
- Yu, J.-T.; Liu, Y.; Dong, P.; Cheng, R.-E.; Ke, S.-X.; Chen, K.-Q.; Wang, J.-J.; Shen, Z.-S.; Tang, Q.-Y.; Zhang, Z. Up-Regulation of Antioxidative Proteins TRX1, TXNL1 and TXNRD1 in the Cortex of PTZ Kindling Seizure Model Mice. PLoS ONE 2019, 14, e0210670. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.M.; Madsen, L.; Prag, S.; Johnsen, A.H.; Semple, C.A.; Hendil, K.B.; Hartmann-Petersen, R. Thioredoxin Txnl1/TRP32 Is a Redox-Active Cofactor of the 26 S Proteasome. J. Biol. Chem. 2009, 284, 15246–15254. [Google Scholar] [CrossRef]
- von Löhneysen, K.; Scott, T.M.; Soldau, K.; Xu, X.; Friedman, J.S. Assessment of the Red Cell Proteome of Young Patients with Unexplained Hemolytic Anemia by Two-Dimensional Differential In-Gel Electrophoresis (DIGE). PLoS ONE 2012, 7, e34237. [Google Scholar] [CrossRef]
- Barbour, R.; Kling, K.; Anderson, J.P.; Banducci, K.; Cole, T.; Diep, L.; Fox, M.; Goldstein, J.M.; Soriano, F.; Seubert, P.; et al. Red Blood Cells Are the Major Source of Alpha-Synuclein in Blood. Neurodegener. Dis. 2008, 5, 55–59. [Google Scholar] [CrossRef]
- Bönsch, D.; Greifenberg, V.; Bayerlein, K.; Biermann, T.; Reulbach, U.; Hillemacher, T.; Kornhuber, J.; Bleich, S. α-Synuclein Protein Levels Are Increased in Alcoholic Patients and Are Linked to Craving. Alcohol. Clin. Exp. Res. 2005, 29, 763–765. [Google Scholar] [CrossRef]
- Anokhin, P.K.; Proskuryakova, T.V.; Shamakina, I.Y.; Ustyugov, A.A.; Bachurin, S.O. A Comparison of the Expression of α-Synuclein MRNA in the Brain of Rats with Different Levels of Alcohol Consumption. Neurochem. J. 2016, 10, 294–299. [Google Scholar] [CrossRef]
- Buks, R.; Dagher, T.; Rotordam, M.; Monedero Alonso, D.; Cochet, S.; Gautier, E.-F.; Chafey, P.; Cassinat, B.; Kiladjian, J.-J.; Becker, N.; et al. Altered Ca2+ Homeostasis in Red Blood Cells of Polycythemia Vera Patients Following Disturbed Organelle Sorting during Terminal Erythropoiesis. Cells 2021, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Sluchanko, N.N.; Gusev, N.B. Moonlighting Chaperone-like Activity of the Universal Regulatory 14-3-3 Proteins. FEBS J. 2017, 284, 1279–1295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Edenberg, H.J.; Nurnberger, J.; Lai, D.; Cheng, F.; Liu, Y. Alcohol Use Disorder Is Associated with Higher Risks of Alzheimer’s and Parkinson’s Diseases: A Study of US Insurance Claims Data. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2022, 14, e12370. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lee, J.; Lee, Y.; Kim, S.; Kang, S. Reactive Oxygen Species as a Common Pathological Link Between Alcohol Use Disorder and Alzheimer’s Disease with Therapeutic Implications. Int. J. Mol. Sci. 2025, 26, 3272. [Google Scholar] [CrossRef]
- McColl, K.E.L.; Moore, M.R.; Thompson, G.G.; Goldberg, A. Abnormal Haem Biosynthesis in Chronic Alcoholics. Eur. J. Clin. Investig. 1981, 11, 461–468. [Google Scholar] [CrossRef]
- Sae-Lee, W.; McCafferty, C.L.; Verbeke, E.J.; Havugimana, P.C.; Papoulas, O.; McWhite, C.D.; Houser, J.R.; Vanuytsel, K.; Murphy, G.J.; Drew, K.; et al. The Protein Organization of a Red Blood Cell. Cell Rep. 2022, 40, 111103. [Google Scholar] [CrossRef]
- Anastasiadi, A.T.; Tzounakas, V.L.; Arvaniti, V.-Z.; Dzieciatkowska, M.; Stamoulis, K.; Lekka, M.E.; Papassideri, I.S.; D’Alessandro, A.; Kriebardis, A.G.; Antonelou, M.H. Red Blood Cell Proteasome in Beta-Thalassemia Trait: Topology of Activity and Networking in Blood Bank Conditions. Membranes 2021, 11, 716. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Righetti, P.G.; Zolla, L. The Red Blood Cell Proteome and Interactome: An Update. J. Proteome Res. 2010, 9, 144–163. [Google Scholar] [CrossRef]
- Nader, E.; Romana, M.; Guillot, N.; Fort, R.; Stauffer, E.; Lemonne, N.; Garnier, Y.; Skinner, S.C.; Etienne-Julan, M.; Robert, M.; et al. Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia. Front. Immunol. 2020, 11, 551441. [Google Scholar] [CrossRef]
- Shiraishi, K.; Matsuzaki, S.; Ishida, H.; Nakazawa, H. Impaired Erythrocyte Deformability and Membrane Fluidity in Alcoholic Liver Disease: Participation in Disturbed Hepatic Microcirculation. Alcohol Alcohol. 1993, 28, 59–64. [Google Scholar] [CrossRef]
- Guillet, R.; Nalpas, B.; Perrotin, P.; Beuzard, Y.; Koutsouris, D.; Boynard, M. Increased Erythrocyte Rigidity in Chronic Alcoholics without Cirrhosis: Deformability Improvement of Erythrocyte Sub-Populations after Alcohol Withdrawal. Clin. Hemorheol. Microcirc. 1991, 11, 55–62. [Google Scholar] [CrossRef]
- Pfefferbaum, A.; Rosenbloom, M.J.; Serventi, K.L.; Sullivan, E.V. Brain Volumes, RBC Status, and Hepatic Function in Alcoholics After 1 and 4 Weeks of Sobriety: Predictors of Outcome. Am. J. Psychiatry 2004, 161, 1190–1196. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics Enrichment Tools: Paths toward the Comprehensive Functional Analysis of Large Gene Lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Characteristic/Biochemical Test | Control (Non-Drinkers) | Social Drinkers | AUD-MCV Normal | AUD-MCV High |
---|---|---|---|---|
Participants (all male) | 15 | 15 | 16 | 14 |
Age (years) | 42.40 ± 8.33 | 43.53 ± 9.19 | 44.75 ± 9.60 | 44.14 ± 7.79 |
BMI (kg/m2) | 27.35 ± 3.05 | 27.38 ± 1.87 | 25.20 ± 4.42 | 24.91 ± 3.46 |
Ethanol intake (grams of ethanol per day) | - | 28.33 ± 8.38 | 203.0 ± 98.86 a,b | 232.0 ± 95.07 a,b |
Erythrocytes (M/mm3) | 5.31 ± 0.30 | 5.45 ± 0.41 | 5.25 ± 0.48 e | 4.55 ± 0.43 a,b,d |
MCV (fL) | 85.43 ± 2.64 | 85.68 ± 6.09 | 87.82 ± 3.20 | 96.77 ± 4.34 |
RDW (%) | 12.84 ± 0.52 | 13.34 ± 1.29 | 14.33 ± 1.66 | 13.68 ± 1.33 |
Vitamin B12 (pg/mL) | 242.6 ± 77.48 | 342.9 ± 149.0 | 443.4 ± 308.1 a,e | 590.0 ± 478.3 a,b,d |
Folic acid (ng/mL) | 7.64 ± 2.05 | 9.54 ± 3.38 | 9.03 ± 2.70 | 6.64 ± 2.90 |
AST/ALT | 0.88 ± 0.31 | 0.82 ± 0.18 | 1.35 ± 0.47 | 1.62 ± 0.56 |
GGT (IU/L) | 28.00 ± 17.46 | 25.07 ± 5.95 | 117.9 ± 134.0 e | 331.6 ± 276.4 a,b,d |
FDR | nGenes | GO Terms or Pathways | Description |
---|---|---|---|
2.44 × 10−5 | 13 | GO:0061024 | Membrane organization |
0.00069 | 26 | GO:1901564 | Organonitrogen compound metabolic process |
0.00069 | 7 | GO:1905475 | Regulation of protein localization to the membrane |
0.00089 | 6 | GO:0007006 | Mitochondrial membrane organization |
0.00089 | 23 | GO:0019538 | Protein metabolic process |
0.00089 | 4 | GO:1900740 | Positive regulation of protein insertion into the mitochondrial membrane involved in the apoptotic signaling pathway |
0.00095 | 18 | GO:0032268 | Regulation of the cellular protein metabolic process |
0.00095 | 21 | GO:0044267 | Cellular protein metabolic process |
0.00095 | 17 | GO:0051649 | Establishment of localization in cells |
0.00095 | 22 | GO:0065008 | Regulation of biological quality |
0.0020 | 22 | GO:0006810 | Transport |
0.0024 | 18 | GO:0051641 | Cellular localization |
0.0028 | 4 | GO:0030834 | Regulation of actin filament depolymerization |
0.0029 | 5 | GO:0043244 | Regulation of protein-containing complex disassembly |
0.0032 | 6 | GO:0006839 | Mitochondrial transport |
0.0033 | 7 | GO:0006605 | Protein targeting |
0.0033 | 19 | GO:0006996 | Organelle organization |
0.0033 | 24 | GO:0016043 | Cellular component organization |
0.0033 | 8 | GO:0030036 | Actin cytoskeleton organization |
0.0034 | 27 | GO:0006807 | Nitrogen compound metabolic process |
0.0034 | 7 | GO:1902903 | Regulation of supramolecular fiber organization |
0.0043 | 5 | GO:1902904 | Negative regulation of supramolecular fiber organization |
0.0051 | 8 | GO:1903827 | Regulation of cellular protein localization |
0.0052 | 4 | GO:0032272 | Negative regulation of protein polymerization |
0.0070 | 5 | GO:0006986 | Response to unfolded protein |
0.0071 | 10 | GO:0060341 | Regulation of cellular localization |
0.0073 | 13 | GO:0016192 | Vesicle-mediated transport |
0.0073 | 6 | GO:0031647 | Regulation of protein stability |
0.0073 | 22 | GO:0044260 | Cellular macromolecule metabolic process |
0.0073 | 15 | GO:0051128 | Regulation of cellular component organization |
FDR | nGenes | GO Terms or Pathways | Description |
---|---|---|---|
1.06 × 10−12 | 34 | GO:0005829 | Cytosol |
1.06 × 10−12 | 25 | GO:0070062 | Extracellular exosome |
4.41 × 10−10 | 26 | GO:0005615 | Extracellular space |
2.91 × 10−7 | 38 | GO:0005737 | Cytoplasm |
6.17 × 10−7 | 7 | GO:0072562 | Blood microparticle |
7.68 × 10−7 | 10 | GO:0005925 | Focal adhesion |
9.19 × 10−6 | 6 | GO:0042470 | Melanosome |
3.8 × 10−5 | 11 | GO:0070161 | Anchoring junction |
0.00016 | 5 | GO:0030863 | Cortical cytoskeleton |
0.00036 | 8 | GO:0015629 | Actin cytoskeleton |
0.00079 | 36 | GO:0043227 | Membrane-bounded organelle |
0.0013 | 37 | GO:0043226 | Organelle |
0.0018 | 6 | GO:0005938 | Cell cortex |
0.0024 | 8 | GO:0030424 | Axon |
0.0024 | 22 | GO:0032991 | Protein-containing complex |
0.0024 | 6 | GO:0150034 | Distal axon |
0.0048 | 8 | GO:0048471 | Perinuclear region of cytoplasm |
0.0062 | 13 | GO:0030054 | Cell junction |
0.0066 | 2 | GO:0097433 | Dense body |
0.0070 | 3 | GO:0043209 | Myelin sheath |
0.0070 | 4 | GO:1904813 | ficolin-1-rich granule lumen |
0.0103 | 13 | GO:0005856 | Cytoskeleton |
0.0180 | 2 | GO:0016281 | Eukaryotic translation initiation factor 4F complex |
0.0186 | 3 | GO:0030864 | Cortical actin cytoskeleton |
0.0208 | 34 | GO:0043229 | Intracellular organelle |
0.0218 | 25 | GO:0005634 | Nucleus |
0.040 | 2 | GO:0071682 | Endocytic vesicle lumen |
0.0478 | 4 | GO:0030016 | Myofibril |
0.0491 | 3 | GO:0005884 | Actin filament |
FDR | nGenes | GO Terms or Pathways | Description |
---|---|---|---|
0.00025 | 30 | GO:0005515 | Protein binding |
0.00043 | 13 | GO:0044877 | Protein-containing complex binding |
0.0015 | 11 | GO:0008092 | Cytoskeletal protein binding |
0.0015 | 5 | GO:0032182 | Ubiquitin-like protein binding |
0.0015 | 4 | GO:0048156 | Tau protein binding |
0.0034 | 3 | GO:0023026 | MHC class II protein complex binding |
0.0034 | 14 | GO:0042802 | Identical protein binding |
0.0073 | 4 | GO:0043130 | Ubiquitin binding |
0.0077 | 4 | GO:0008135 | Translation factor activity, RNA binding |
0.0077 | 6 | GO:0031625 | Ubiquitin protein ligase binding |
0.011 | 12 | GO:0003723 | RNA binding |
0.011 | 6 | GO:0045296 | Cadherin binding |
0.011 | 5 | GO:0051015 | Actin filament binding |
0.0145 | 2 | GO:0098973 | Structural constituent of postsynaptic actin cytoskeleton |
0.0251 | 3 | GO:0003743 | Translation initiation factor activity |
0.0264 | 2 | GO:0050815 | Phosphoserine residue binding |
0.03 | 6 | GO:0003779 | Actin binding |
0.03 | 13 | GO:0019899 | Enzyme binding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boşgelmez, İ.İ.; Güvendik, G.; Dilbaz, N.; Esen, M. Differential Expression of Erythrocyte Proteins in Patients with Alcohol Use Disorder. Int. J. Mol. Sci. 2025, 26, 8199. https://doi.org/10.3390/ijms26178199
Boşgelmez İİ, Güvendik G, Dilbaz N, Esen M. Differential Expression of Erythrocyte Proteins in Patients with Alcohol Use Disorder. International Journal of Molecular Sciences. 2025; 26(17):8199. https://doi.org/10.3390/ijms26178199
Chicago/Turabian StyleBoşgelmez, İ. İpek, Gülin Güvendik, Nesrin Dilbaz, and Metin Esen. 2025. "Differential Expression of Erythrocyte Proteins in Patients with Alcohol Use Disorder" International Journal of Molecular Sciences 26, no. 17: 8199. https://doi.org/10.3390/ijms26178199
APA StyleBoşgelmez, İ. İ., Güvendik, G., Dilbaz, N., & Esen, M. (2025). Differential Expression of Erythrocyte Proteins in Patients with Alcohol Use Disorder. International Journal of Molecular Sciences, 26(17), 8199. https://doi.org/10.3390/ijms26178199