AAV-Based Gene Therapy: Opportunities, Risks, and Scale-Up Strategies
Abstract
1. Introduction
2. Characteristics of AAV as a Vector
3. The Application of AAV-Based Therapeutics
4. AAV Production—Current Approaches to Increasing Titers
4.1. Approaches to Increasing Titers During Plasmid Development
4.2. AAV Producer Cell Lines
4.3. Approaches to Increasing Titer During Transfection
4.4. Approaches to Increasing Titer During Purification and Concentration
5. AAV Vector Production
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AAV | Adeno-associated virus |
ATA | Aurintricarboxylic acid |
aPD-1 | anti-PD-1 immunoadhesin |
BCL2 | B-cell lymphoma 2 |
CAR-NK | Chimeric antigen receptor natural killer |
CHOP | C/EBP homologous protein |
DRP1 | Dynamin-related protein 1 |
EGFR | Epidermal growth factor receptor |
FGFR1 | Fibroblast growth factor receptor 1 |
GADD34 | Growth arrest and DNA damage-inducible protein |
GRP78 | Glucose-regulated protein 78 |
HER2 | Human epidermal growth factor receptor 2 |
hG-CSF | Human granulocyte-colony-stimulating factor |
HGFR | Hepatocyte growth factor receptor |
HSPA6 | Heat-shock protein family member 6 |
HVEM | Herpesvirus entry mediator |
IFN | Interferon |
LC3-II | LC3-phosphatidylethanolamine conjugate |
LIDHT | Tumor necrosis factor superfamily protein 14 |
P62 | Sequestosome-1 |
PD1 | Programmed cell death 1 |
PDGFR | Platelet-derived growth factor receptor |
PEI | Polyethyleneimine |
TLR | Toll-like receptor |
VPA | Valproic acid |
z-VAD-fmk | carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone |
XBP1 | X-box binding protein 1 |
References
- Koh, A.L.; Jamuar, S.S. Therapeutics in Paediatric Genetic Diseases: Current and Future Landscape. Singap. Med. J. 2023, 64, 7–16. [Google Scholar] [CrossRef]
- Yilmaz, B.S.; Gurung, S.; Perocheau, D.; Counsell, J.; Baruteau, J. Gene Therapy for Inherited Metabolic Diseases. J. Mother Child 2020, 24, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Al-Zaidy, S.A.; Rodino-Klapac, L.R.; Goodspeed, K.; Gray, S.J.; Kay, C.N.; Boye, S.L.; Boye, S.E.; George, L.A.; Salabarria, S.; et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol. Ther. J. Am. Soc. Gene Ther. 2021, 29, 464–488. [Google Scholar] [CrossRef]
- Vasilieva, T.P.; Zinchenko, R.A.; Komarov, I.A.; Krasilnikova, E.Y.; Aleksandrova, O.Y.; Konovalov, G.; Kutsev, S.I. Prevalence and diagnosis of rare (orphan) diseases in pediatric population of the Russian federation. Pediatr. J. Named GN Speransky 2020, 99, 229–237. [Google Scholar] [CrossRef]
- Roth, T.L.; Marson, A. Genetic Disease and Therapy. Annu. Rev. Pathol. 2021, 16, 145–166. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, X. Human Gene Therapy: A Scientometric Analysis. Biomed. Pharmacother. Biomedecine Pharmacother. 2021, 138, 111510. [Google Scholar] [CrossRef]
- Day, J.W.; Finkel, R.S.; Chiriboga, C.A.; Connolly, A.M.; Crawford, T.O.; Darras, B.T.; Iannaccone, S.T.; Kuntz, N.L.; Peña, L.D.M.; Shieh, P.B.; et al. Onasemnogene Abeparvovec Gene Therapy for Symptomatic Infantile-Onset Spinal Muscular Atrophy in Patients with Two Copies of SMN2 (STR1VE): An Open-Label, Single-Arm, Multicentre, Phase 3 Trial. Lancet Neurol. 2021, 20, 284–293. [Google Scholar] [CrossRef]
- Li, X.; Le, Y.; Zhang, Z.; Nian, X.; Liu, B.; Yang, X. Viral Vector-Based Gene Therapy. Int. J. Mol. Sci. 2023, 24, 7736. [Google Scholar] [CrossRef]
- Zu, H.; Gao, D. Non-Viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS J. 2021, 23, 78. [Google Scholar] [CrossRef]
- Lundstrom, K. Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023, 15, 698. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Schäfer, V.N.; Bartnicki, N.; Eggenschwiler, R.; Cantz, T.; Stitz, J. Rapid Establishment of Stable Retroviral Packaging Cells and Recombinant Susceptible Target Cell Lines Employing Novel Transposon Vectors Derived from Sleeping Beauty. Virology 2019, 531, 40–47. [Google Scholar] [CrossRef]
- Milone, M.C.; O’Doherty, U. Clinical Use of Lentiviral Vectors. Leukemia 2018, 32, 1529–1541. [Google Scholar] [CrossRef]
- Nowrouzi, A.; Glimm, H.; von Kalle, C.; Schmidt, M. Retroviral Vectors: Post Entry Events and Genomic Alterations. Viruses 2011, 3, 429–455. [Google Scholar] [CrossRef]
- Perry, C.; Rayat, A.C.M.E. Lentiviral Vector Bioprocessing. Viruses 2021, 13, 268. [Google Scholar] [CrossRef]
- Coroadinha, A.S. Host Cell Restriction Factors Blocking Efficient Vector Transduction: Challenges in Lentiviral and Adeno-Associated Vector Based Gene Therapies. Cells 2023, 12, 732. [Google Scholar] [CrossRef]
- Shirley, J.L.; de Jong, Y.P.; Terhorst, C.; Herzog, R.W. Immune Responses to Viral Gene Therapy Vectors. Mol. Ther. J. Am. Soc. Gene Ther. 2020, 28, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Ricobaraza, A.; Gonzalez-Aparicio, M.; Mora-Jimenez, L.; Lumbreras, S.; Hernandez-Alcoceba, R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int. J. Mol. Sci. 2020, 21, 3643. [Google Scholar] [CrossRef]
- Tatsis, N.; Ertl, H.C.J. Adenoviruses as Vaccine Vectors. Mol. Ther. J. Am. Soc. Gene Ther. 2004, 10, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-C.; Sayedahmed, E.E.; Mittal, S.K. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022, 14, 2727. [Google Scholar] [CrossRef] [PubMed]
- Goins, W.F.; Hall, B.; Cohen, J.B.; Glorioso, J.C. Retargeting of Herpes Simplex Virus (HSV) Vectors. Curr. Opin. Virol. 2016, 21, 93–101. [Google Scholar] [CrossRef]
- Lachmann, R. Herpes Simplex Virus-Based Vectors. Int. J. Exp. Pathol. 2004, 85, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Nectow, A.R.; Nestler, E.J. Viral Tools for Neuroscience. Nat. Rev. Neurosci. 2020, 21, 669–681. [Google Scholar] [CrossRef]
- Podsakoff, G.; Wong, K.K.; Chatterjee, S. Efficient Gene Transfer into Nondividing Cells by Adeno-Associated Virus-Based Vectors. J. Virol. 1994, 68, 5656–5666. [Google Scholar] [CrossRef] [PubMed]
- Issa, S.S.; Shaimardanova, A.A.; Solovyeva, V.V.; Rizvanov, A.A. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023, 12, 785. [Google Scholar] [CrossRef]
- Sehara, Y.; Fujimoto, K.-I.; Ikeguchi, K.; Katakai, Y.; Ono, F.; Takino, N.; Ito, M.; Ozawa, K.; Muramatsu, S.-I. Persistent Expression of Dopamine-Synthesizing Enzymes 15 Years After Gene Transfer in a Primate Model of Parkinson’s Disease. Hum. Gene Ther. Clin. Dev. 2017, 28, 74–79. [Google Scholar] [CrossRef]
- Dalwadi, D.A.; Calabria, A.; Tiyaboonchai, A.; Posey, J.; Naugler, W.E.; Montini, E.; Grompe, M. AAV Integration in Human Hepatocytes. Mol. Ther. J. Am. Soc. Gene Ther. 2021, 29, 2898–2909. [Google Scholar] [CrossRef]
- Weber, T. Anti-AAV Antibodies in AAV Gene Therapy: Current Challenges and Possible Solutions. Front. Immunol. 2021, 12, 658399. [Google Scholar] [CrossRef]
- Ertl, H.C.J. Immunogenicity and Toxicity of AAV Gene Therapy. Front. Immunol. 2022, 13, 975803. [Google Scholar] [CrossRef]
- Ellis, B.L.; Hirsch, M.L.; Barker, J.C.; Connelly, J.P.; Steininger, R.J.; Porteus, M.H. A Survey of Ex Vivo/in Vitro Transduction Efficiency of Mammalian Primary Cells and Cell Lines with Nine Natural Adeno-Associated Virus (AAV1-9) and One Engineered Adeno-Associated Virus Serotype. Virol. J. 2013, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Wiley, L.A.; Burnight, E.R.; Kaalberg, E.E.; Jiao, C.; Riker, M.J.; Halder, J.A.; Luse, M.A.; Han, I.C.; Russell, S.R.; Sohn, E.H.; et al. Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants. Hum. Gene Ther. 2018, 29, 424–436. [Google Scholar] [CrossRef]
- Hickey, D.G.; Edwards, T.L.; Barnard, A.R.; Singh, M.S.; De Silva, S.R.; McClements, M.E.; Flannery, J.G.; Hankins, M.W.; MacLaren, R.E. Tropism of Engineered and Evolved Recombinant AAV Serotypes in the Rd1 Mouse and Ex Vivo Primate Retina. Gene Ther. 2017, 24, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Asokan, A.; Samulski, R.J. Adeno-Associated Virus Serotypes: Vector Toolkit for Human Gene Therapy. Mol. Ther. 2006, 14, 316–327. [Google Scholar] [CrossRef]
- Drouin, L.M.; Agbandje-McKenna, M. Adeno-Associated Virus Structural Biology as a Tool in Vector Development. Future Virol. 2013, 8, 1183–1199. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, D.L.; Grecco, G.G.; Reeves, K.C.; Atwood, B. Adeno-Associated Viral Vectors in Neuroscience Research. Mol. Ther. Methods Clin. Dev. 2020, 17, 69–82. [Google Scholar] [CrossRef] [PubMed]
- DiMattia, M.A.; Nam, H.-J.; Van Vliet, K.; Mitchell, M.; Bennett, A.; Gurda, B.L.; McKenna, R.; Olson, N.H.; Sinkovits, R.S.; Potter, M.; et al. Structural Insight into the Unique Properties of Adeno-Associated Virus Serotype 9. J. Virol. 2012, 86, 6947–6958. [Google Scholar] [CrossRef]
- Pupo, A.; Fernández, A.; Low, S.H.; François, A.; Suárez-Amarán, L.; Samulski, R.J. AAV Vectors: The Rubik’s Cube of Human Gene Therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2022, 30, 3515–3541. [Google Scholar] [CrossRef]
- Wang, J.-H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-Associated Virus as a Delivery Vector for Gene Therapy of Human Diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef]
- Rivière, C.; Danos, O.; Douar, A.M. Long-Term Expression and Repeated Administration of AAV Type 1, 2 and 5 Vectors in Skeletal Muscle of Immunocompetent Adult Mice. Gene Ther. 2006, 13, 1300–1308. [Google Scholar] [CrossRef]
- Jiang, Z.; Dalby, P.A. Challenges in Scaling up AAV-Based Gene Therapy Manufacturing. Trends Biotechnol. 2023, 41, 1268–1281. [Google Scholar] [CrossRef]
- Srivastava, A.; Mallela, K.M.G.; Deorkar, N.; Brophy, G. Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors. J. Pharm. Sci. 2021, 110, 2609–2624. [Google Scholar] [CrossRef]
- Asaad, W.; Volos, P.; Maksimov, D.; Khavina, E.; Deviatkin, A.; Mityaeva, O.; Volchkov, P. AAV Genome Modification for Efficient AAV Production. Heliyon 2023, 9, e15071. [Google Scholar] [CrossRef]
- Meyer, N.L.; Chapman, M.S. Adeno-Associated Virus (AAV) Cell Entry: Structural Insights. Trends Microbiol. 2022, 30, 432–451. [Google Scholar] [CrossRef]
- Sabatino, D.E.; McCarty, D.M. Topics in AAV Integration Come Front and Center at ASGCT AAV Integration Roundtable. Mol. Ther. J. Am. Soc. Gene Ther. 2021, 29, 3319–3320. [Google Scholar] [CrossRef]
- Rossi, A.; Salvetti, A. Integration of AAV vectors and insertional mutagenesis. Med. Sci. MS 2016, 32, 167–174. [Google Scholar] [CrossRef]
- Calabria, A.; Cipriani, C.; Spinozzi, G.; Rudilosso, L.; Esposito, S.; Benedicenti, F.; Albertini, A.; Pouzolles, M.; Luoni, M.; Giannelli, S.; et al. Intrathymic AAV Delivery Results in Therapeutic Site-Specific Integration at TCR Loci in Mice. Blood 2023, 141, 2316–2329. [Google Scholar] [CrossRef] [PubMed]
- Chanda, D.; Hensel, J.A.; Higgs, J.T.; Grover, R.; Kaza, N.; Ponnazhagan, S. Effects of Cellular Methylation on Transgene Expression and Site-Specific Integration of Adeno-Associated Virus. Genes 2017, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.G.; Petek, L.M.; Russell, D.W. Adeno-Associated Virus Vectors Integrate at Chromosome Breakage Sites. Nat. Genet. 2004, 36, 767–773. [Google Scholar] [CrossRef]
- Simpson, B.P.; Yrigollen, C.M.; Izda, A.; Davidson, B.L. Targeted Long-Read Sequencing Captures CRISPR Editing and AAV Integration Outcomes in Brain. Mol. Ther. J. Am. Soc. Gene Ther. 2023, 31, 760–773. [Google Scholar] [CrossRef]
- Ibreljic, N.; Draper, B.E.; Lawton, C.W. Recombinant AAV Genome Size Effect on Viral Vector Production, Purification, and Thermostability. Mol. Ther. Methods Clin. Dev. 2024, 32, 101188. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.K.; Guggenbiller, M.J.; Mistry, P.P.; King, O.D.; Harper, S.Q. A Self-Complementary AAV Proviral Plasmid That Reduces Cross-Packaging and ITR Promoter Activity in AAV Vector Preparations. Mol. Ther. Methods Clin. Dev. 2024, 32, 101295. [Google Scholar] [CrossRef]
- McCarty, D.M. Self-Complementary AAV Vectors; Advances and Applications. Mol. Ther. J. Am. Soc. Gene Ther. 2008, 16, 1648–1656. [Google Scholar] [CrossRef]
- Riedmayr, L.M.; Hinrichsmeyer, K.S.; Thalhammer, S.B.; Mittas, D.M.; Karguth, N.; Otify, D.Y.; Böhm, S.; Weber, V.J.; Bartoschek, M.D.; Splith, V.; et al. mRNA Trans-Splicing Dual AAV Vectors for (Epi)Genome Editing and Gene Therapy. Nat. Commun. 2023, 14, 6578. [Google Scholar] [CrossRef] [PubMed]
- McClements, M.E.; MacLaren, R.E. Adeno-Associated Virus (AAV) Dual Vector Strategies for Gene Therapy Encoding Large Transgenes. Yale J. Biol. Med. 2017, 90, 611–623. [Google Scholar]
- Duan, D. Lethal Immunotoxicity in High-Dose Systemic AAV Therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2023, 31, 3123–3126. [Google Scholar] [CrossRef]
- Srivastava, A. Rationale and Strategies for the Development of Safe and Effective Optimized AAV Vectors for Human Gene Therapy. Mol. Ther. Nucleic Acids 2023, 32, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Lek, A.; Wong, B.; Keeler, A.; Blackwood, M.; Ma, K.; Huang, S.; Sylvia, K.; Batista, A.R.; Artinian, R.; Kokoski, D.; et al. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne’s Muscular Dystrophy. N. Engl. J. Med. 2023, 389, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.; Fehse, B. How safe is gene therapy?: Second death after Duchenne therapy. Inn. Med. Heidelb. Ger. 2024, 65, 617–623. [Google Scholar] [CrossRef]
- Stone, D.; Aubert, M.; Jerome, K.R. Adeno-Associated Virus Vectors and Neurotoxicity—Lessons from Preclinical and Human Studies. Gene Ther. 2025, 32, 60–73. [Google Scholar] [CrossRef]
- Arjomandnejad, M.; Dasgupta, I.; Flotte, T.R.; Keeler, A.M. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2023, 37, 311–329. [Google Scholar] [CrossRef]
- Rabinowitz, J.; Chan, Y.K.; Samulski, R.J. Adeno-Associated Virus (AAV) versus Immune Response. Viruses 2019, 11, 102. [Google Scholar] [CrossRef]
- Dhungel, B.P.; Winburn, I.; Pereira, C.d.F.; Huang, K.; Chhabra, A.; Rasko, J.E.J. Understanding AAV Vector Immunogenicity: From Particle to Patient. Theranostics 2024, 14, 1260–1288. [Google Scholar] [CrossRef]
- Kang, L.; Jin, S.; Wang, J.; Lv, Z.; Xin, C.; Tan, C.; Zhao, M.; Wang, L.; Liu, J. AAV Vectors Applied to the Treatment of CNS Disorders: Clinical Status and Challenges. J. Control. Release Off. J. Control. Release Soc. 2023, 355, 458–473. [Google Scholar] [CrossRef]
- Piechnik, M.; Sawamoto, K.; Ohnishi, H.; Kawamoto, N.; Ago, Y.; Tomatsu, S. Evading the AAV Immune Response in Mucopolysaccharidoses. Int. J. Mol. Sci. 2020, 21, 3433. [Google Scholar] [CrossRef]
- Muhuri, M.; Maeda, Y.; Ma, H.; Ram, S.; Fitzgerald, K.A.; Tai, P.W.; Gao, G. Overcoming Innate Immune Barriers That Impede AAV Gene Therapy Vectors. J. Clin. Investig. 2021, 131, e143780. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, M.; Sun, J.; Feng, L.; Yang, M.; Sun, B.; Mao, L. Gene Therapy of Adeno-Associated Virus (AAV) Vectors in Preclinical Models of Ischemic Stroke. CNS Neurosci. Ther. 2023, 29, 3725–3740. [Google Scholar] [CrossRef] [PubMed]
- Okoreeh, A.K.; Bake, S.; Sohrabji, F. Astrocyte-Specific Insulin-like Growth Factor-1 Gene Transfer in Aging Female Rats Improves Stroke Outcomes. Glia 2017, 65, 1043–1058. [Google Scholar] [CrossRef]
- Yang, J.; He, W.; Gu, L.; Zhu, L.; Liang, T.; Liang, X.; Zhong, Q.; Zhang, R.; Nan, A.; Su, L. CircFOXP1 Alleviates Brain Injury after Acute Ischemic Stroke by Regulating STAT3/Apoptotic Signaling. Transl. Res. J. Lab. Clin. Med. 2023, 257, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Menzie-Suderam, J.M.; Modi, J.; Xu, H.; Bent, A.; Trujillo, P.; Medley, K.; Jimenez, E.; Shen, J.; Marshall, M.; Tao, R.; et al. Granulocyte-Colony Stimulating Factor Gene Therapy as a Novel Therapeutics for Stroke in a Mouse Model. J. Biomed. Sci. 2020, 27, 99. [Google Scholar] [CrossRef]
- Nyberg, W.A.; Ark, J.; To, A.; Clouden, S.; Reeder, G.; Muldoon, J.J.; Chung, J.-Y.; Xie, W.H.; Allain, V.; Steinhart, Z.; et al. An Evolved AAV Variant Enables Efficient Genetic Engineering of Murine T Cells. Cell 2023, 186, 446–460.e19. [Google Scholar] [CrossRef]
- Ramachandran, M.; Vaccaro, A.; van de Walle, T.; Georganaki, M.; Lugano, R.; Vemuri, K.; Kourougkiaouri, D.; Vazaios, K.; Hedlund, M.; Tsaridou, G.; et al. Tailoring Vascular Phenotype through AAV Therapy Promotes Anti-Tumor Immunity in Glioma. Cancer Cell 2023, 41, 1134–1151.e10. [Google Scholar] [CrossRef]
- Strecker, M.I.; Wlotzka, K.; Strassheimer, F.; Roller, B.; Ludmirski, G.; König, S.; Röder, J.; Opitz, C.; Alekseeva, T.; Reul, J.; et al. AAV-Mediated Gene Transfer of a Checkpoint Inhibitor in Combination with HER2-Targeted CAR-NK Cells as Experimental Therapy for Glioblastoma. Oncoimmunology 2022, 11, 2127508. [Google Scholar] [CrossRef]
- Ohba, K.; Mizukami, H. Protocol for Producing an Adeno-Associated Virus Vector by Controlling Capsid Expression Timing. STAR Protoc. 2023, 4, 102542. [Google Scholar] [CrossRef] [PubMed]
- Brimble, M.A.; Cheng, P.-H.; Winston, S.M.; Reeves, I.L.; Souquette, A.; Spence, Y.; Zhou, J.; Wang, Y.-D.; Morton, C.L.; Valentine, M.; et al. Preventing Packaging of Translatable P5-Associated DNA Contaminants in Recombinant AAV Vector Preps. Mol. Ther. Methods Clin. Dev. 2022, 24, 280–291. [Google Scholar] [CrossRef]
- van Lieshout, L.P.; Rubin, M.; Costa-Grant, K.; Ota, S.; Golebiowski, D.; Panico, T.; Wiberg, E.; Szymczak, K.; Gilmore, R.; Stanvick, M.; et al. A Novel Dual-Plasmid Platform Provides Scalable Transfection Yielding Improved Productivity and Packaging across Multiple AAV Serotypes and Genomes. Mol. Ther. Methods Clin. Dev. 2023, 29, 426–436. [Google Scholar] [CrossRef]
- Reus, J.B.; Trivino-Soto, G.S.; Wu, L.I.; Kokott, K.; Lim, E.S. SV40 Large T Antigen Is Not Responsible for the Loss of STING in 293T Cells but Can Inhibit cGAS-STING Interferon Induction. Viruses 2020, 12, 137. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, Y.; Qin, J.; Xie, D.; McNally, D.; Yoon, S. Enhanced ER Protein Processing Gene Expression Increases rAAV Yield and Full Capsid Ratio in HEK293 Cells. Appl. Microbiol. Biotechnol. 2024, 108, 459. [Google Scholar] [CrossRef]
- Doshi, J.; Couto, E.; Staiti, J.; Vandenberghe, L.H.; Zabaleta, N. E2A, VA RNA I, and L4-22k Adenoviral Helper Genes Are Sufficient for AAV Production in HEK293 Cells. Mol. Ther. Methods Clin. Dev. 2024, 32, 101376. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, B.; Zhu, X.; Li, J.; Xiao, X. A Novel Gene Expression Control System and Its Use in Stable, High-Titer 293 Cell-Based Adeno-Associated Virus Packaging Cell Lines. J. Virol. 2002, 76, 13015–13027. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Kuo, H.-J.; Lu, M.; Mahl, T.; Aslanidi, G.; Hu, W.-S. A Synthetic Platform for Developing Recombinant Adeno-Associated Virus Type 8 Producer Cell Lines. Biotechnol. Prog. 2025, 41, e70009. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Lu, M.; Irfanullah, E.; Soukup, M.; Schmidt, D.; Hu, W.-S. Development of an Inducible, Replication-Competent Assay Cell Line for Titration of Infectious Recombinant Adeno-Associated Virus Vectors. Hum. Gene Ther. 2023, 34, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.M.; Chen, D.; Barnard, G.C.; Shen, A. Recombinant Adeno-Associated Virus Production Evaluation in Chinese Hamster Ovary Cells. Biotechnol. Bioeng. 2024, 121, 395–402. [Google Scholar] [CrossRef]
- Nagy, A.; Chakrabarti, L.; Kurasawa, J.; Mulagapati, S.H.R.; Devine, P.; Therres, J.; Chen, Z.; Schmelzer, A.E. Engineered CHO Cells as a Novel AAV Production Platform for Gene Therapy Delivery. Sci. Rep. 2023, 13, 19210. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Peraramelli, S.; Luo, N.; Chen, A.; Dai, M.; Liu, F.; Yu, Y.; Leib, R.D.; Li, Y.; et al. Systematic Comparison of rAAV Vectors Manufactured Using Large-Scale Suspension Cultures of Sf9 and HEK293 Cells. Mol. Ther. J. Am. Soc. Gene Ther. 2024, 32, 74–83. [Google Scholar] [CrossRef]
- Mietzsch, M.; Casteleyn, V.; Weger, S.; Zolotukhin, S.; Heilbronn, R. OneBac 2.0: Sf9 Cell Lines for Production of AAV5 Vectors with Enhanced Infectivity and Minimal Encapsidation of Foreign DNA. Hum. Gene Ther. 2015, 26, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Mietzsch, M.; Hering, H.; Hammer, E.-M.; Agbandje-McKenna, M.; Zolotukhin, S.; Heilbronn, R. OneBac 2.0: Sf9 Cell Lines for Production of AAV1, AAV2, and AAV8 Vectors with Minimal Encapsidation of Foreign DNA. Hum. Gene Ther. Methods 2017, 28, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.T.; Lecomte, E.; Saleun, S.; Namkung, S.; Robin, C.; Weber, K.; Devine, E.; Blouin, V.; Adjali, O.; Ayuso, E.; et al. Human and Insect Cell-Produced Recombinant Adeno-Associated Viruses Show Differences in Genome Heterogeneity. Hum. Gene Ther. 2022, 33, 371–388. [Google Scholar] [CrossRef]
- Moreno, F.; Lip, F.; Rojas, H.; Anggakusuma. Development of an Insect Cell-Based Adeno-Associated Virus Packaging Cell Line Employing Advanced Rep Gene Expression Control System. Mol. Ther. Methods Clin. Dev. 2022, 27, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Merten, O.-W. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms 2024, 12, 384. [Google Scholar] [CrossRef]
- Liu, X.; Voulgaropoulou, F.; Chen, R.; Johnson, P.R.; Clark, K.R. Selective Rep-Cap Gene Amplification as a Mechanism for High-Titer Recombinant AAV Production from Stable Cell Lines. Mol. Ther. J. Am. Soc. Gene Ther. 2000, 2, 394–403. [Google Scholar] [CrossRef]
- Chadeuf, G.; Salvetti, A. Stable Producer Cell Lines for Adeno-Associated Virus (AAV) Assembly. Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5496. [Google Scholar] [CrossRef]
- El Andari, J.; Grimm, D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol. J. 2021, 16, e2000025. [Google Scholar] [CrossRef]
- Blessing, D.; Vachey, G.; Pythoud, C.; Rey, M.; Padrun, V.; Wurm, F.M.; Schneider, B.L.; Déglon, N. Scalable Production of AAV Vectors in Orbitally Shaken HEK293 Cells. Mol. Ther. Methods Clin. Dev. 2019, 13, 14–26. [Google Scholar] [CrossRef]
- de Los Milagros Bassani Molinas, M.; Beer, C.; Hesse, F.; Wirth, M.; Wagner, R. Optimizing the Transient Transfection Process of HEK-293 Suspension Cells for Protein Production by Nucleotide Ratio Monitoring. Cytotechnology 2014, 66, 493–514. [Google Scholar] [CrossRef]
- Dash, S.; Sharon, D.M.; Mullick, A.; Kamen, A.A. Only a Small Fraction of Cells Produce Assembled Capsids during Transfection-Based Manufacturing of Adeno-Associated Virus Vectors. Biotechnol. Bioeng. 2022, 119, 1685–1690. [Google Scholar] [CrossRef]
- Selvaraj, N.; Wang, C.-K.; Bowser, B.; Broadt, T.; Shaban, S.; Burns, J.; Saptharishi, N.; Pechan, P.; Golebiowski, D.; Alimardanov, A.; et al. Detailed Protocol for the Novel and Scalable Viral Vector Upstream Process for AAV Gene Therapy Manufacturing. Hum. Gene Ther. 2021, 32, 850–861. [Google Scholar] [CrossRef]
- Maurer, A.C.; Weitzman, M.D. Adeno-Associated Virus Genome Interactions Important for Vector Production and Transduction. Hum. Gene Ther. 2020, 31, 499–511. [Google Scholar] [CrossRef]
- Chiorini, J.A.; Afione, S.; Kotin, R.M. Adeno-Associated Virus (AAV) Type 5 Rep Protein Cleaves a Unique Terminal Resolution Site Compared with Other AAV Serotypes. J. Virol. 1999, 73, 4293–4298. [Google Scholar] [CrossRef]
- Wada, M.; Uchida, N.; Posadas-Herrera, G.; Hayashita-Kinoh, H.; Tsunekawa, Y.; Hirai, Y.; Okada, T. Large-Scale Purification of Functional AAV Particles Packaging the Full Genome Using Short-Term Ultracentrifugation with a Zonal Rotor. Gene Ther. 2023, 30, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Barbieri, E.; Shastry, S.; Menegatti, S.; Boi, C.; Carbonell, R.G. Purification of Adeno-Associated Virus (AAV) Serotype 2 from Spodoptera Frugiperda (Sf9) Lysate by Chromatographic Nonwoven Membranes. Membranes 2022, 12, 944. [Google Scholar] [CrossRef] [PubMed]
- Shastry, S.; Barbieri, E.; Minzoni, A.; Chu, W.; Johnson, S.; Stoops, M.; Pancorbo, J.; Gilleskie, G.; Ritola, K.; Crapanzano, M.S.; et al. Serotype-Agnostic Affinity Purification of Adeno-Associated Virus (AAV) via Peptide-Functionalized Chromatographic Resins. J. Chromatogr. A 2024, 1734, 465320. [Google Scholar] [CrossRef] [PubMed]
- Pechan, P.; Ardinger, J.; Ketavarapu, J.; Rubin, H.; Wadsworth, S.C.; Scaria, A. Aurintricarboxylic Acid Increases Yield of HSV-1 Vectors. Mol. Ther. Methods Clin. Dev. 2014, 1, 6. [Google Scholar] [CrossRef]
- Myskiw, C.; Deschambault, Y.; Jefferies, K.; He, R.; Cao, J. Aurintricarboxylic Acid Inhibits the Early Stage of Vaccinia Virus Replication by Targeting Both Cellular and Viral Factors. J. Virol. 2007, 81, 3027–3032. [Google Scholar] [CrossRef]
- Otsuki, A.; Patel, A.; Kasai, K.; Suzuki, M.; Kurozumi, K.; Chiocca, E.A.; Saeki, Y. Histone Deacetylase Inhibitors Augment Antitumor Efficacy of Herpes-Based Oncolytic Viruses. Mol. Ther. J. Am. Soc. Gene Ther. 2008, 16, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Lu, J.; Nguyen, N.B.; Zhang, A.; Healy, N.V.; Kshirsagar, R.; Ryll, T.; Huang, Y.-M. Addition of Valproic Acid to CHO Cell Fed-Batch Cultures Improves Monoclonal Antibody Titers. Mol. Biotechnol. 2014, 56, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Scarrott, J.M.; Johari, Y.B.; Pohle, T.H.; Liu, P.; Mayer, A.; James, D.C. Increased Recombinant Adeno-Associated Virus Production by HEK293 Cells Using Small Molecule Chemical Additives. Biotechnol. J. 2023, 18, e2200450. [Google Scholar] [CrossRef] [PubMed]
Generic Name | Brand Name | Company | Date of Approval | Serotype | Gene | Disease |
---|---|---|---|---|---|---|
Voretigene neparvovec-rzyl | LUXTURNA | Spark Therapeutics, Inc. | 19 December 2017 | AAV2 | RPE65 | Leber congenital amaurosis |
Onasemnogene abeparvovec-xioi | ZOLGENSMA | Novartis Gene Therapies, Inc. | 24 May 2019 | AAV9 | SMN1 | Spinal muscular atrophy |
Etranacogene dezaparvovec-drlb | HEMGENIX | CSL Behring LLC | 22 November 2022 | AAV5 | Factor IX | Hemophilia B |
Valoctocogene roxaparvovec-rvox | ROCTAVIAN | BioMarin Pharmaceutical Inc. | 29 June 2023 | AAV5 | Factor VIII | Hemophilia A |
Fidanacogene elaparvovec-dzkt | BEQVEZ * | Pfizer, Inc. | 26 April 2024 | AAVrh74var | Factor IX | Hemophilia B |
Delandistrogene moxeparvovec-rokl | ELEVIDYS | Sarepta Therapeutics, Inc. | 20 June 2024 | AAVrh74 | Micro-dystrophin | Duchenne muscular dystrophy |
Eladocagene exuparvovec-tneq | KEBILIDI (Upstaza) | PTC Therapeutics | 13 November 2024 | AAV2 | DDC | Aromatic L amino acid decarboxylase (AADC) deficiency |
Vector | Packaging Capacity | Genome Type | Advantages | Limitations |
---|---|---|---|---|
γ Retroviruses | 8 kb | ssRNA | 1. Capable of stable expression [11]. 2. Relatively large genome capacity. | 1. Capable of infecting only dividing cells [12]. 2. Integration into the genome primarily in the transcription initiation region [12]. 3. Retrovirus integration can lead to insertional mutagenesis, causing genotoxicity in cells. [13]. |
Lentiviruses | 8 kb | ssRNA | 1. Capable of transducing both dividing and non-dividing cells efficiently [14]. 2. Can be modified for selective delivery to lymphocytes [15]. 3. Relatively large genome capacity. | 1. Integration into the genome, often near oncogenes, leading to insertional mutagenesis and the development of lymphomas [12]. 2. Provoking an immune response, which also limits transduction [16]. |
Adenoviruses | <7.5 kb (1st gen.) <14 kb (2nd gen.) | dsDNA | 1. High-capacity adenoviral vectors can transfer a genome up to 37 kb [17]. 2. Do not integrate into the genome, remain as episomes, and efficiently transduce cells [16]. 3. Transduce both dividing and non-dividing cells [18]. | 1. Inducing strong immune response and severe inflammatory processes [16]. 2. Many people have pre-existing immunity to adenoviruses, with up to 90% immunity to certain serotypes. [19]. |
Herpesviruses | >30 kb | dsDNA | 1. Capable of carrying very large and multiple transgenes [20]. 2. Capable of infecting host cells without integration into the genome [20]. 3. HSV-1 has tropism for certain neuronal cells [21]. | 1. The smallest number of studies and publications on the use of this virus, as a vector for gene therapy, compared to other delivery systems. 2. Some virus strains may exhibit toxicity [22]. |
AAVs | ~4.5 kb | ssDNA | 1. Capable of transducing both resting and dividing cells [23]. 2. Different serotypes exhibit tissue- and organ-specificity [24]. 3. The vector remains as an episome, without causing insertional mutagenesis [25]. 4. Express transgenes at levels similar to those at the time of administration [26]. 5. Have the highest number of publications and research, making it the most extensively studied. | 1. Relatively small insertion size. 2. Immunogenic upon repeated administration or high-dose therapy [27,28]. |
Serotype | Primary Receptors | Co-Receptors | Tissue Tropism in Humans |
---|---|---|---|
AAV1 | N-linked sialic acid | AAV receptor (AAVR) | CNS, retina, pancreas, skeletal muscle |
AAV2 | heparan sulfate proteoglycan | FGFR1, LamR, CD9, Tetraspanin, αVβ5 and α5β1 integrins | Retina |
AAV3 | heparan sulfate proteoglycan | FGFR1, HGFR, LamR | Liver |
AAV4 | O-linked sialic acid | Unknown | CNS, Lung |
AAV5 | N-linked sialic acid | PDGFR | CNS, retina, kidney, pancreas, liver |
AAV6 | heparan sulfate proteoglycan, N-linked sialic acid | EGFR | Skeletal muscle |
AAV7 | Unknown | Unknown | Skeletal muscle |
AAV8 | Unknown | LamR | CNS, heart, liver, retina |
AAV9 | terminal N-linked galactose | putative integrin, LamR | CNS, heart |
Drug Name | Disease | Clinical Trial Phase | Vector | Estimated Study Completion Date |
---|---|---|---|---|
JAG201, USA | Phelan-McDermid syndrome, SHANK3 haploinsufficiency | Phase 2 | AAV9 | 2031-06 |
SNUG01, China | Amyotrophic lateral sclerosis (ALS) | Early phase 1 | AAV9 | 2029-10-15 |
AAV5-hRKp.RPGR | X-linked pigmentary retinitis | Phase 2 | AAV5 | 2030-10-24 |
BBM-D101, China | Duchenne muscular dystrophy | Early phase 1 | rAAV * | 2030-07-31 |
GT-UGT1A1-AAV8-02, Russia | Crigler-Najjar syndrome type I | Phase 2 | AAV8 | 2029-11-01 |
FLT201, USA | Gaucher disease type 1 | Phase 2 | AAVS3 | 2029-05 |
EXG110, China | Fabry disease | - | rAAV * | 2027-04-09 |
JWK008, China | Mucopolysaccharidosis type I | Phase 1 | AAV5 | 2029-06-22 |
GC301, China | Pompe disease | Phase 2 | AAV9 | 2026-12 |
FBX-101, USA | Krabbe disease | Observational study | AAVrh.10 | 2029-12 |
Delandistrogene Moxeparvovec, USA | Duchenne muscular dystrophy | Phase 1 | rAAVrh74 | 2026-09-30 |
SCG0106, China | Diabetic macular edema | Phase 1 | rAAV * | 2026-01 |
TN-401, USA | Arrhythmogenic right ventricular cardiomyopathy (ARVC) | Phase 1 | AAV9 | 2029-10-01 |
SRD-001, USA | Dilated cardiomyopathy associated with Duchenne muscular dystrophy | Phase 1 | AAV1 | 2030-02 |
GS-100, USA | NGLY1 deficiency | Phase 2 | AAV9 | 2028-01-31 |
SGT-003, USA | Duchenne muscular dystrophy | Phase 2 | AAV-SLB101 | 2031-05-06 |
JWK-007, China | Duchenne muscular dystrophy | Phase 1 | rAAVrh74 | 2028-12-31 |
BBM-H803, China | Hemophilia A | Phase 2 | rAAV * | 2030-06-30 |
AMT-162, USA | Amyotrophic lateral sclerosis (ALS) | Phase 2 | rAAVrh10 | 2031-03-30 |
GSL222, USA | Hemophilia B | Phase 3 | AAV5 | 2028-10 |
SCG0106, USA | Neovascular age-related macular degeneration | Phase 2 | rAAV * | 2026-01-30 |
GC304, China | Familial hypertriglyceridemia | Phase 1 | AAV5 | 2028-12 |
ICM-203, Australia | Knee osteoarthritis | Phase 2 | rAAV5.2 | 2026-11 |
AGTC-501, USA | X-linked pigmentary retinitis | Phase 3 | AAV2 | 2029-10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldavskii, D.; Gilazieva, Z.; Fattakhova, A.; Solovyeva, V.; Issa, S.; Sufianov, A.; Sufianova, G.; Rizvanov, A. AAV-Based Gene Therapy: Opportunities, Risks, and Scale-Up Strategies. Int. J. Mol. Sci. 2025, 26, 8282. https://doi.org/10.3390/ijms26178282
Moldavskii D, Gilazieva Z, Fattakhova A, Solovyeva V, Issa S, Sufianov A, Sufianova G, Rizvanov A. AAV-Based Gene Therapy: Opportunities, Risks, and Scale-Up Strategies. International Journal of Molecular Sciences. 2025; 26(17):8282. https://doi.org/10.3390/ijms26178282
Chicago/Turabian StyleMoldavskii, Daniil, Zarema Gilazieva, Alisa Fattakhova, Valeriya Solovyeva, Shaza Issa, Albert Sufianov, Galina Sufianova, and Albert Rizvanov. 2025. "AAV-Based Gene Therapy: Opportunities, Risks, and Scale-Up Strategies" International Journal of Molecular Sciences 26, no. 17: 8282. https://doi.org/10.3390/ijms26178282
APA StyleMoldavskii, D., Gilazieva, Z., Fattakhova, A., Solovyeva, V., Issa, S., Sufianov, A., Sufianova, G., & Rizvanov, A. (2025). AAV-Based Gene Therapy: Opportunities, Risks, and Scale-Up Strategies. International Journal of Molecular Sciences, 26(17), 8282. https://doi.org/10.3390/ijms26178282