Chemical Constituents from Osmanthus fragrans var. aurantiacus Makino with Their In Vitro and In Silico Studies Target Anti-Inflammation by Suppressing ERK 1/2 MAPK Signaling
Abstract
1. Introduction
2. Results
2.1. Bioactivities Guided Isolation of Constituents from O. fragrans Leaves
2.2. Investigation of Chemical Constituents Using GNPS-FBMN Approach
2.3. Antioxidative Effects of Compounds (1–18)
2.4. Anti-Inflammatory Effects of Isolated Compounds
2.5. Suppression of iNOS and COX-2 Enzymatic Proteins
2.6. Compound 8 Suppressed ERRK 1/2 MAPK Signaling
2.7. Molecular Docking Analysis
2.8. Molecular Dynamics Simulation Analysis
3. Discussion
4. Materials and Methods
4.1. General Procedures
4.2. Extraction and Separation of Compounds
Chemical Information of Compounds
4.3. Biological Assays
4.3.1. Antioxidative Assays
4.3.2. Cell Culture and Viability
4.3.3. NO Production Determination
4.3.4. Measurement of IL-6 and TNF-α Production
4.3.5. Western Blotting
4.4. Molecular Docking
4.5. Molecular Dynamics Simulation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Farah, C.; Michel, L.Y.M.; Balligand, J.-L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shahriar, S.M.S.; Cordon, B.; Ma, B.; Xie, J. Nitric oxide: Physiological functions, delivery, and biomedical applications. Adv. Sci. 2023, 10, 2303259. [Google Scholar] [CrossRef]
- Lee, D.-G.; Choi, J.-S.; Yeon, S.-W.; Cui, E.-J.; Park, H.-J.; Yoo, J.-S.; Chung, I.-S.; Baek, N.-I. Secoiridoid glycoside from the flowers of Osmanthus fragrans var. aurantiacus Makino inhibited the activity of β-secretase. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 371–374. [Google Scholar] [CrossRef]
- Han, S.; Lim, S.-L.; Kim, H.; Choi, H.; Lee, M.Y.; Shim, S.-Y.; Le, D.D.; Ha, I.J.; Lee, M.; Lee, S.-G. Ethyl acetate fraction of Osmanthus fragrans var. aurantiacus and its triterpenoids suppress proliferation and survival of colorectal cancer cells by inhibiting NF-κB and COX2. J. Ethnopharmacol. 2024, 319, 117362. [Google Scholar] [CrossRef]
- Deng, Q.-Q.; Wang, N.; Dong, Z.-Y.; Bai, J.-X.; Bai, J.-Q.; Wang, X.-P. Extraction and purification, synthesis, structure-activity relationships, pharmacological effects, and mechanisms of Phillyrin: A review. Chem. Biodivers. 2025, 22, e202402898. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Luan, F.; Bao, Y.; Peng, X.; Rao, Z.; Tang, Q.; Zeng, N. Traditional uses, phytochemical constituents and pharmacological properties of Osmanthus fragrans: A review. J. Ethnopharmacol. 2022, 293, 115273. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-Y.; Jeong, D.-E.; Lee, M. Bioactivity-guided extract optimization of Osmanthus fragrans var. aurantiacus leaves and anti-inflammatory activities of Phillyrin. Plants 2021, 10, 1545. [Google Scholar] [CrossRef]
- Mantiniotou, M.; Athanasiadis, V.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Therapeutic capabilities of triterpenes and triterpenoids in Immune and Inflammatory Processes: A Review. Compounds 2025, 5, 2. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. Potential medicinal application of phillygenin and atractylon in medicine as drug candidates with their molecular mechanism. Food Biosci. 2024, 62, 105075. [Google Scholar] [CrossRef]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.-F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Le, D.D.; Han, S.; Yu, J.; Ahn, J.; Kim, C.-K.; Lee, M. Iridoid derivatives from Vitex rotundifolia L. f. with their anti-inflammatory activity. Phytochemistry 2023, 210, 113649. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-R.; Moon, H.T.; Lee, D.G.; Woo, E.-R. A new lignan glycoside from the stem bark of Styrax japonica s. et Z. Arch. Pharmacal Res. 2007, 30, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Wang, Q.; Sun, C.-Z.; Yu, T.-Y.; Yan, X.-J.; Li, J.; Wei, J.; Li, C.; Pei, Y.-H. Two new furofuran lignan glycoside derivatives from the fruit of Forsythia suspensa. J. Asian Nat. Prod. Res. 2020, 22, 803–809. [Google Scholar] [CrossRef]
- Shao, S.-Y.; Yang, Y.-N.; Feng, Z.-M.; Jiang, J.-S.; Zhang, P.-C. An efficient method for determining the relative configuration of furofuran lignans by 1H NMR spectroscopy. J. Nat. Prod. 2018, 81, 1023–1028. [Google Scholar] [CrossRef]
- Li, C.; Yao, Z.-H.; Qin, Z.-F.; Zhang, J.-B.; Cao, R.-Y.; Dai, Y.; Yao, X.-S. Isolation and identification of phase I metabolites of phillyrin in rats. Fitoterapia 2014, 97, 92–97. [Google Scholar] [CrossRef]
- Yu, J.; Xie, J.; Sun, M.; Xiong, S.; Xu, C.; Zhang, Z.; Li, M.; Li, C.; Lin, L. Plant-derived caffeic acid and its derivatives: An overview of their NMR data and biosynthetic pathways. Molecules 2024, 29, 1625. [Google Scholar] [CrossRef]
- Huang, Z.; Dostal, L.; Rosazza, J.P. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J. Biol. Chem. 1993, 268, 23954–23958. [Google Scholar] [CrossRef]
- Liu, J.; Nakamura, S.; Xu, B.; Matsumoto, T.; Ohta, T.; Fujimoto, K.; Ogawa, K.; Fukaya, M.; Miyake, S.; Yoshikawa, M.; et al. Chemical structures of constituents from the flowers of Osmanthus fragrans var. aurantiacus. J. Nat. Med. 2015, 69, 135–141. [Google Scholar] [CrossRef]
- Inouye, H.; Inoue, K.; Nishioka, T.; Kaniwa, M. Two new iridoid glucosides from Osmanthus fragrans. Phytochemistry 1975, 14, 2029–2032. [Google Scholar] [CrossRef]
- Mwakalukwa, R.; Amen, Y.; Nagata, M.; Shimizu, K. Postprandial hyperglycemia lowering effect of the isolated compounds from olive mill wastes–An inhibitory activity and kinetics studies on α-glucosidase and α-amylase enzymes. ACS Omega 2020, 5, 20070–20079. [Google Scholar] [CrossRef]
- Guo, J.; Tang, J.-K.; Wang, B.-F.; Yan, W.-R.; Li, T.; Guo, X.-J.; Zhang, L.; Wang, T.; Sun, Q.-Y.; Zhang, L.-W. Phillygenin from Forsythia suspensa leaves exhibits analgesic potential and anti-inflammatory activity in carrageenan-induced paw edema in mice. J. Food Biochem. 2022, 46, e14460. [Google Scholar] [CrossRef]
- Fuentes-Rios, D.; Cepero, A.; García-Castro, M.; Contreras-Cáceres, R.; López-Romero, J.M.; Luque, C.; Cabeza, L.; Melguizo, C.; Prados, J. Synthesis, solubility and antitumor activity of maslinic acid derivatives. Eur. J. Med. Chem. Rep. 2022, 4, 100032. [Google Scholar] [CrossRef]
- Masullo, M.; Montoro, P.; Autore, G.; Marzocco, S.; Pizza, C.; Piacente, S. Quali-quantitative determination of triterpenic acids of Ziziphus jujuba fruits and evaluation of their capability to interfere in macrophages activation inhibiting NO release and iNOS expression. Food Res. Int. 2015, 77, 109–117. [Google Scholar] [CrossRef]
- Le, D.D.; Nguyen, D.H.; Ma, E.S.; Lee, J.H.; Min, B.S.; Choi, J.S.; Woo, M.H. PTP1B inhibitory and anti-inflammatory properties of constituents from Eclipta prostrata L. Biol. Pharm. Bull. 2021, 44, 298–304. [Google Scholar] [CrossRef]
- Ahn, K.-S.; Hahm, M.S.; Park, E.J.; Lee, H.-K.; Kim, I.-H. Corosolic acid isolated from the fruit of Crataegus pinnatifida var. psilosa is a protein kinase C inhibitor as well as a cytotoxic agent. Planta Med. 1998, 64, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.-Q.; Park, E.J.; Luyengi, L.; Hawthorne, M.E.; Mehta, R.G.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of Eugenia sandwicensis with potential cancer chemopreventive activity. Phytochemistry 2001, 58, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Thuy, T.T.; Thi, T.L.N.; Hoa, N.T.T.; Thi, C.B.; Duc, Q.T.; Thao, D.T.; Thi, H.A.N.; Minh, Q.P.; Delfino, D.V.; Khac Vu, T. Novel trans-caffeate hydrazide derivatives: Synthesis, inhibition of nitric oxide (NO) production and molecular docking studies. Nat. Prod. Res. 2024, 38, 3964–3971. [Google Scholar] [CrossRef] [PubMed]
- Le, D.D.; Min, K.H.; Lee, M. Antioxidant and anti-inflammatory capacities of fractions and constituents from Vicia tetrasperma. Antioxidants 2023, 12, 1044. [Google Scholar] [CrossRef]
- Lee, D.-G.; Lee, S.-M.; Bang, M.-H.; Park, H.-J.; Lee, T.-H.; Kim, Y.-H.; Kim, J.-Y.; Baek, N.-I. Lignans from the flowers of Osmanthus fragrans var. aurantiacus and their inhibition effect on NO production. Arch. Pharmacal Res. 2011, 34, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gu, T.; Lu, Y.; Xu, Y.; Gan, R.-Y.; Ng, S.B.; Sun, Q.; Peng, Y. Edible Osmanthus fragrans flowers: Aroma and functional components, beneficial functions, and applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 10055–10068. [Google Scholar] [CrossRef]
- Murakami, A.; Ohigashi, H. Targeting NOX, INOS and COX-2 in inflammatory cells: Chemoprevention using food phytochemicals. Int. J. Cancer 2007, 121, 2357–2363. [Google Scholar] [CrossRef]
- Zhang, Y.; Brovkovych, V.; Brovkovych, S.; Tan, F.; Lee, B.-S.; Sharma, T.; Skidgel, R.A. Dynamic receptor-dependent activation of inducible nitric-oxide synthase by ERK-mediated phosphorylation of Ser745*. J. Biol. Chem. 2007, 282, 32453–32461. [Google Scholar] [CrossRef]
- Batarfi, W.A.; Yunus, M.H.; Hamid, A.A.; Lee, Y.T.; Maarof, M. Hydroxytyrosol: A promising therapeutic agent for mitigating inflammation and apoptosis. Pharmaceutics 2024, 16, 1504. [Google Scholar] [CrossRef]
- Kim, H.K. Role of ERK/MAPK signalling pathway in anti-inflammatory effects of Ecklonia cava in activated human mast cell line-1 cells. Asian Pac. J. Trop. Med. 2014, 7, 703–708. [Google Scholar] [CrossRef]
- Le, D.D.; Jang, Y.S.; Truong, V.; Dinh, T.; Dang, T.; Yu, S.; Lee, M. Anti-inflammatory effects and metabolomic analysis of Ilex rotunda extracted by supercritical fluid extraction. Int. J. Mol. Sci. 2024, 25, 11965. [Google Scholar] [CrossRef] [PubMed]
- Le, D.D.; Truong, V.; Dang, T.; Yu, S.; Dinh, T.; Nguyen, P.T.; Lee, M. Triterpenoids from Ilex rotunda and their anti-inflammatory effects by interfering with NF-κB and MAPK activation. Arch. Pharm. 2025, 358, e12003. [Google Scholar] [CrossRef]
- Subedi, L.; Le, D.D.; Kim, E.; Phuyal, S.; Bamjan, A.D.; Truong, V.; Kim, N.A.; Shim, J.-H.; Seo, J.B.; Oh, S.-J.; et al. Sulforaphane-rich Broccoli sprout extract promotes hair regrowth in an androgenetic alopecia mouse model via enhanced dihydrotestosterone metabolism. Int. J. Mol. Sci. 2025, 26, 7467. [Google Scholar] [CrossRef]
1 | 4 | 9 | ||||
---|---|---|---|---|---|---|
Position | δH (mult., J = Hz) | δC (150 MHz) | δH (mult., J = Hz) | δC (150 MHz) | δH (mult., J = Hz) | δC (150 MHz) |
1 | - | 134.5 | 5.50 (d, 7.7) | 96.3 | - | 137.6 |
2 | 6.75 (s) | 154.4 | - | - | 7.03 (d, 2.0) | 111.6 |
3 | - | 105.5 | 7.58 (d, 1.2) | 154.4 | - | 151.1 |
4 | - | 135.9 | - | 109.6 | - | 147.6 |
5 | - | 105.5 | 3.08 (dddd, 11.7, 7.2, 4.7, 1.3) | 28.2 | 7.15 (d, 8.3) | 118.6 |
6 | 6.75 (s) | 154.4 | 2.51 (dd, 16.5, 11.4) 2.86 (ddd, 16.5, 4.7) | 34.6 | 6.93 (dd, 8.3, 2.0) | 119.3 |
7 | 6.55 (d, 15.8) | 131.3 | - | 174.7 | 4.48 (d, 6.8) | 89.1 |
8 | 6.33 (dt, 5.6, 15.8) | 130.1 | 4.49 (m) | 74.7 | 2.94 (m) | 55.8 |
9 | 4.22 (dd, 1.7, 5.6) | 63.0 | 2.14 (q, 7.0) | 41.9 | 4.15 (dd, 9.3, 1.5) 3.88 (m) | 72.1 |
10 | - | - | 1.51 (d, 6.4) | 21.7 | - | - |
11 | - | - | - | 168.3 | - | - |
1′ | 4.87 (d, 7.7) | 103.4 | 4.70 (d, 7.9) | 100.7 | - | 132.8 |
2′ | 3.21 (m) | 75.8 | 3.21 (dd, 6.8, 1.9) | 75.8 | 7.01 (d, 1.8) | 110.9 |
3′ | 3.15 (m) | 77.9 | 3.33 (m) | 78.6 | 150.4 | |
4′ | 3.18 (m) | 71.4 | 3.24 (m) | 71.7 | 149.6 | |
5′ | 3.21 (m) | 77.9 | 77.9 | 6.94 (m) * | 112.9 | |
6′ | 3.78 (dd, 2.4, 11.9) 3.66 (dd, 5.3, 12.0) | 62.6 | 3.92 (dd, 11.9, 2.2) 3.63 (dd, 11.9, 6.8) | 62.9 | 6.94 (m) * | 118.1 |
7′ | - | - | - | - | 4.89 (d, 5.9) | 83.4 |
8′ | - | - | - | - | 3.41 (m) | 51.3 |
9′ | - | - | - | - | 3.80 (m) 3.28 (dd, 9.3, 7.9) | 70.7 |
1′′ | - | - | - | - | 4.88 (d, 7.4) | 102.9 |
2′′ | - | - | - | - | 3.45–3.53 (m) | 74.9 |
3′′ | - | - | - | - | 3.45–3.53 (m) | 78.2 |
4′′ | - | - | - | - | 2.94 (m) | 71.4 |
5′′ | - | - | - | - | 3.45–3.53 (m) | 77.9 |
6′′ | - | - | - | - | 3.87 (m) 3.69 (m) | 62.5 |
2-OCH3 | 3.86 (s) | 57.0 | - | - | - | - |
3-OCH3 | - | - | - | - | 3.87 (s) | 56.8 |
3′-OCH3 | - | - | - | - | 3.85 (s) | 56.6 |
4′-OCH3 | - | - | - | - | 3.83 (s) | 56.5 |
6-OCH3 | 3.86 (s) | 57.0 | - | - | - | - |
11-OCH3 | - | - | - | 51.8 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, D.; Dang, T.; Truong, V.; Dinh, T.; Yu, S.; Lee, S.-G.; Lee, M. Chemical Constituents from Osmanthus fragrans var. aurantiacus Makino with Their In Vitro and In Silico Studies Target Anti-Inflammation by Suppressing ERK 1/2 MAPK Signaling. Int. J. Mol. Sci. 2025, 26, 8421. https://doi.org/10.3390/ijms26178421
Le D, Dang T, Truong V, Dinh T, Yu S, Lee S-G, Lee M. Chemical Constituents from Osmanthus fragrans var. aurantiacus Makino with Their In Vitro and In Silico Studies Target Anti-Inflammation by Suppressing ERK 1/2 MAPK Signaling. International Journal of Molecular Sciences. 2025; 26(17):8421. https://doi.org/10.3390/ijms26178421
Chicago/Turabian StyleLe, Ducdat, Thinhulinh Dang, Vinhquang Truong, Thientam Dinh, Soojung Yu, Seok-Geun Lee, and Mina Lee. 2025. "Chemical Constituents from Osmanthus fragrans var. aurantiacus Makino with Their In Vitro and In Silico Studies Target Anti-Inflammation by Suppressing ERK 1/2 MAPK Signaling" International Journal of Molecular Sciences 26, no. 17: 8421. https://doi.org/10.3390/ijms26178421
APA StyleLe, D., Dang, T., Truong, V., Dinh, T., Yu, S., Lee, S.-G., & Lee, M. (2025). Chemical Constituents from Osmanthus fragrans var. aurantiacus Makino with Their In Vitro and In Silico Studies Target Anti-Inflammation by Suppressing ERK 1/2 MAPK Signaling. International Journal of Molecular Sciences, 26(17), 8421. https://doi.org/10.3390/ijms26178421