Deriving the A/B Cells Policy as a Robust Multi-Object Cell Pipeline for Time-Lapse Microscopy
Abstract
1. Introduction
2. Results and Discussion
2.1. A/B CellTracker
2.2. A/B CellAnalyser
2.3. A/B Cell Collection: Description and Metadata
3. Materials and Methods
3.1. Bone Marrow MSC Isolation and Culture
3.2. RNA Extraction and qRT-PCR
3.3. Time-Lapse Data and Cell Segmentation
3.4. Time-Stamped and Time-Dependent Feature Analysis
3.5. Comprehensive Quantitative Profiling of Cell Migration Dynamics
3.6. Integrated Non-Parametric Analysis: Bartlett-Corrected and Permutation Friedman Tests for Autocorrelated Cell Tracking Time Series
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MSC | Mesenchymal stem cell |
YOLO | You Only Look Once |
SOTA | State of the Art |
IoU | Intersection over Union |
FBS | Fetal bovine serum |
bmMSCs | Mouse bone marrow MSCs |
ISCT | International Society for Cellular Therapy |
mmSC | Mouse muscle SC |
MA | Mean average |
CI | Confidential interval |
MSD | Mean square displacement |
References
- A/B Cells Policy. Available online: https://github.com/ElijahBiocinth/ABCellPolicy (accessed on 1 January 2025).
- Sharma, O.; Lee, H.; Patel, A.; Kim, J.; Gonzales, M.; Turner, D.; Ivanov, S.; Brown, C.; Ahmed, R.; Wang, Y.; et al. Evaluating feature extraction in ovarian cancer cell line co-cultures using deep neural networks. Commun. Biol. 2025, 8, 303. [Google Scholar] [CrossRef] [PubMed]
- Larin, I.; Karabelsky, A. Riemannian Manifolds for Biological Imaging Applications Based on Unsupervised Learning. J. Imaging 2025, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Dodina, M.; Gurtsieva, D.; Karabelsky, A.; Minskaia, E. Evaluation of mesenchymal stem cells as an in vitro model for inherited retinal diseases. Front. Cell Dev. Biol. 2024, 12, 1455140. [Google Scholar] [CrossRef]
- Panferov, E.; Smirnova, N.; Ivanova, A.; Kozlov, V.; Orlova, T.; Petrova, M.; Karpov, P.; Egorov, D.; Volkov, A.; Nikitin, S.; et al. Induced Pluripotent (iPSC) and Mesenchymal (MSC) Stem Cells for In Vitro Disease Modeling and Regenerative Medicine. Int. J. Mol. Sci. 2025, 26, 5617. [Google Scholar] [CrossRef] [PubMed]
- Margiana, R.; Effendi, Y.; Hidayat, R.; Arifin, M.; Suryadi, H.; Putra, D.; Pratama, F.; Wijaya, A.; Nurrahman, A.; Kurniawan, M.; et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022, 13, 366. [Google Scholar] [CrossRef]
- Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 2018, 18, e264. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Li, Y.; Zhao, Y.; Wu, Z.; Zhang, H.; Zhou, L.; Wang, Q.; Lin, J.; Sun, T.; et al. Mesenchymal stem cells and their microenvironment. Stem Cell Res. Ther. 2022, 13, 429. [Google Scholar] [CrossRef]
- Ning, K.; Guo, J.; Zhang, L.; Zhao, Y.; Xu, H.; Wang, J.; Zhang, H.; Chen, L.; Fang, J.; Liu, Z.; et al. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Mol. Metab. 2022, 58, 101450. [Google Scholar] [CrossRef]
- Reynolds, P.M.; Pedersen, R.H.; Riehle, M.O.; Gadegaard, N. Controlling fluid flow to improve cell seeding uniformity. PLoS ONE 2018, 13, e0207211. [Google Scholar] [CrossRef]
- Costa, L.A.; Eiro, N.; Fraile, M.; Gonzalez, L.O.; Saa, J.; Garcia-Portabella, P.; Vega, B.; Vizoso, F.J. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: Implications for further clinical uses. Cell. Mol. Life Sci. 2021, 78, 447–467. [Google Scholar] [CrossRef]
- Maličev, E.; Jazbec, K. An overview of mesenchymal stem cell heterogeneity and concentration. Pharmaceuticals 2024, 17, 350. [Google Scholar] [CrossRef]
- Česnik, A.B.; Švajger, U. The issue of heterogeneity of MSC-based advanced therapy medicinal products—A review. Front. Cell Dev. Biol. 2024, 12, 1400347. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.C.; Banerjee, A.; Paterson, C.; Williams, S.; Davidson, S.; MacDonald, K.; O’Connor, M.; Kumar, R.; Baxter, J.; McEwan, A.; et al. Media matters: Culture medium-dependent hypervariable phenotype of mesenchymal stromal cells. Stem Cell Res. Ther. 2023, 14, 363. [Google Scholar] [CrossRef]
- Tonarova, P.; Cejkova, S.; Krystofova, J.; Krystof, V. The impact of various culture conditions on human mesenchymal stromal cells metabolism. Stem Cells Int. 2021, 2021, 6659244. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T.; Wada, N.; Furuichi, T.; Takeda, S.; Nishimura, R.; Noda, T.; Akiyama, H.; Yoneda, T. Functional regulatory mechanisms underlying bone marrow mesenchymal stem cell senescence during cell passages. Cell Biochem. Biophys. 2021, 79, 321–336. [Google Scholar] [CrossRef]
- Kim, S.-N.; Kwon, H.-J.; Im, S.-W.; Shin, Y.J.; Jo, Y.; Han, S.-H.; Kim, H.-S.; Park, H.-S.; Lee, S.Y. Culturing at low cell density delays cellular senescence of human bone marrow-derived mesenchymal stem cells in long-term cultures. Int. J. Stem Cells 2021, 14, 103–111. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Wang, C.; Zhang, J.; Zhang, F.; Wu, G.; Zhou, Z.; Zhou, Y.; Chen, X.; Xu, H. Different culture method changing CD105 expression in amniotic fluid MSCs without affecting differentiation ability or immune function. J. Cell. Mol. Med. 2020, 24, 4212–4222. [Google Scholar] [CrossRef]
- The Cell Tracking Challenge. Available online: https://celltrackingchallenge.net/2d-datasets/ (accessed on 22 August 2025).
- Prasad, A.; Alizadeh, E. Cell form and function: Interpreting and controlling the shape of adherent cells. Trends Biotechnol. 2019, 37, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.-S.; Lee, C.-C.; Chang, W.-C.; Lee, K.-C.; Hsu, C.-L.; Lin, C.-F.; Yeh, J.-A. Simultaneous assessment of cell morphology and adhesion using aluminum nanoslit-based plasmonic biosensing chips. Sci. Rep. 2019, 9, 7204. [Google Scholar] [CrossRef]
- Tegtmeyer, M.; Baumann, D.; Mukherjee, A.; Iriondo, M.; Hennig, H.; Hasenauer, J.; Rajewsky, N.; Taruttis, F.; Klose, M.; Theis, F.J.; et al. High-dimensional phenotyping to define the genetic basis of cellular morphology. Nat. Commun. 2024, 15, 347. [Google Scholar] [CrossRef]
- Wiggins, L.; Watson, O.; Witten, S.; Rajan, S.; Neumann, B.; Hughes, R.O.; Chessel, A.; French, A.P.; Fink, T.; Lowe, A.R.; et al. The CellPhe toolkit for cell phenotyping using time-lapse imaging and pattern recognition. Nat. Commun. 2023, 14, 1854. [Google Scholar] [CrossRef]
- Giese, W.; Schuster, F.; Borst, A.; Müller, R.; Martin, M.; Sato, S.; Heisenberg, C.-P.; Hufnagel, L.; Tada, M.; Brusch, L.; et al. Polarity-JaM: An image analysis toolbox for cell polarity, junction and morphology quantification. Nat. Commun. 2025, 16, 1474. [Google Scholar] [CrossRef]
- Sheng, G. The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev. Biol. 2015, 15, 44. [Google Scholar] [CrossRef]
- Pincus, Z.; Theriot, J.A. Comparison of quantitative methods for cell-shape analysis. J. Microsc. 2007, 227, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.; Costa, C.M.; Cunha, A.L.; Teixeira, V.H.; Dias, A.C.; Oliveira, P.F.; Fardilha, M.; Silva, B.M. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J. Tissue Eng. Regen. Med. 2016, 10, 539–553. [Google Scholar] [CrossRef]
- Durande, M.; Balasubramaniam, V.; Labouesse, M.; Graner, F.; Delanoë-Ayari, H.; Rieu, J.-P. Fast determination of coarse-grained cell anisotropy and size in epithelial tissue images using Fourier transform. Phys. Rev. E 2019, 99, 062401. [Google Scholar] [CrossRef] [PubMed]
- Booth-Gauthier, E.A.; Alcoser, T.A.; Yang, G.; Dahl, K.N. Hutchinson–Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr. Biol. 2013, 5, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Becker, M.L.; Willits, R.K. Quantification of cell migration: Metrics selection to model application. Front. Cell Dev. Biol. 2023, 11, 1155882. [Google Scholar] [CrossRef]
- Maity, D.; Sivakumar, N.; Kamat, P.; Zamponi, N.; Min, C.; Du, W.; Jayatilaka, H.; Johnston, A.; Starich, B.; Agrawal, A.; et al. Profiling Dynamic Patterns of Single-Cell Motility. Adv. Sci. 2024, 11, 2400918. [Google Scholar] [CrossRef]
- Deng, X.; Sarkar, R.; Labruyère, E.; Olivo-Marin, J.-C.; Srivastava, A. Dynamic shape modeling to analyze modes ofmigration during cell motility. arXiv 2021, arXiv:2106.05617. [Google Scholar] [CrossRef]
- Dieterich, P.; Klages, R.; Preuss, R.; Schwab, A. Anomalous dynamics of cell migration. Proc. Natl. Acad. Sci. USA 2008, 105, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Selmeczi, D.; Mosler, S.; Hagedorn, P.H.; Larsen, N.B.; Flyvbjerg, H. Cell motility as persistent random motion: Theories from experiments. Biophys. J. 2005, 89, 912–931. [Google Scholar] [CrossRef]
- Jerison, E.R.; Quake, S.R. Heterogeneous T cell motility behaviors emerge from a coupling between speed and turning in vivo. eLife 2020, 9, e53933. [Google Scholar] [CrossRef]
- Lau, D.; Garçon, F.; Chandra, A.; Lechermann, L.M.; Aloj, L.; Chilvers, E.R.; Corrie, P.G.; Okkenhaug, K.; Gallagher, F.A. Intravital imaging of adoptive T-cell morphology, mobility and trafficking following immune checkpoint inhibition in a mouse melanoma model. Front. Immunol. 2020, 11, 1514. [Google Scholar] [CrossRef]
- Comes, M.C.; Casti, P.; Mencattini, A.; Di Giuseppe, D.; Mermet-Meillon, F.; De Ninno, A.; Parrini, M.C.; Businaro, L.; Di Natale, C.; Martinelli, E.; et al. The influence of spatial and temporal resolutions on the analysis of cell-cell interaction: A systematic study for time-lapse microscopy applications. Sci. Rep. 2019, 9, 6789. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.D.; Choi, W.; Yoon, T.-H.; Lee, K.J. Zigzag turning preference of freely crawling cells. PLoS ONE 2011, 6, e20255. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Xu, R.; Yu, H.; Ma, H.; Chen, Y. A machine learning approach to discover migration modes and transition dynamics of heterogeneous dendritic cells. Front. Immunol. 2023, 14, 1129600. [Google Scholar] [CrossRef]
- Dong, T.X.; Othy, S.; Jairaman, A.; Skupsky, J.; Zavala, A.; Parker, I.; Dynes, J.L.; Cahalan, M.D. Intermittent Ca2+ signals mediated by Orai1 regulate basal T cell motility. Elife 2017, 6, e27827. [Google Scholar] [CrossRef]
- Leal-Egaña, A.; Letort, G.; Martiel, J.-L.; Christ, A.F.; Vignaud, T.; Roelofs, M.; Juhem, A.; Riveline, D. The size-speed-force relationship governs migratory cell response to tumorigenic factors. Mol. Biol. Cell 2017, 28, 1612–1621. [Google Scholar] [CrossRef]
- Tian, C.; Yang, C.; Spencer, S.L. EllipTrack: A global-local cell-tracking pipeline for 2D fluorescence time-lapse microscopy. Cell Rep. 2020, 32, 107957. [Google Scholar] [CrossRef]
- Fotos, J.S.; Patel, V.P.; Karin, N.J. Automated time-lapse microscopy and high-resolution tracking of cell migration. Cytotechnology 2006, 51, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Toscano, E.; De Angelis, F.; Comes, M.C.; Schiattarella, C.; Mencattini, A.; Di Giuseppe, D.; Martinelli, E.; Di Natale, C.; Primiano, A.; Palmieri, V.; et al. Methods and computational tools to study eukaryotic cell migration in vitro. Front. Cell Dev. Biol. 2024, 12, 1385991. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.S. On the theoretical specification and sampling properties of autocorrelated time-series. Suppl. J. R. Stat. Soc. 1946, 8, 27–41. [Google Scholar] [CrossRef]
Gene Name | F Primer | R Primer |
---|---|---|
CD29 | GGACGCTTACTGCAGGAAAGAG | ACAGTCACAKGCRCTGCCAGTG |
CD34 | GGAGCCACCAGAGCTAYTCC | CCTGGCCTCCACCRTTCTCC |
CD44 | CCTCGTCACGTCCAACACCTCC | TCGATGGTGGAGCCGCTGC |
CD73 | CCTGTGGTCCAGGCCTATG | GCTTTGATGGTCGCATCTTCAG |
CD105 | CGCTTCAGCTTCCTCCTCCG | CACCACGGGCTCCCGCTTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larin, I.; Panferov, E.; Dodina, M.; Shaykhutdinova, D.; Larina, S.; Minskaia, E.; Karabelsky, A. Deriving the A/B Cells Policy as a Robust Multi-Object Cell Pipeline for Time-Lapse Microscopy. Int. J. Mol. Sci. 2025, 26, 8455. https://doi.org/10.3390/ijms26178455
Larin I, Panferov E, Dodina M, Shaykhutdinova D, Larina S, Minskaia E, Karabelsky A. Deriving the A/B Cells Policy as a Robust Multi-Object Cell Pipeline for Time-Lapse Microscopy. International Journal of Molecular Sciences. 2025; 26(17):8455. https://doi.org/10.3390/ijms26178455
Chicago/Turabian StyleLarin, Ilya, Egor Panferov, Maria Dodina, Diana Shaykhutdinova, Sofia Larina, Ekaterina Minskaia, and Alexander Karabelsky. 2025. "Deriving the A/B Cells Policy as a Robust Multi-Object Cell Pipeline for Time-Lapse Microscopy" International Journal of Molecular Sciences 26, no. 17: 8455. https://doi.org/10.3390/ijms26178455
APA StyleLarin, I., Panferov, E., Dodina, M., Shaykhutdinova, D., Larina, S., Minskaia, E., & Karabelsky, A. (2025). Deriving the A/B Cells Policy as a Robust Multi-Object Cell Pipeline for Time-Lapse Microscopy. International Journal of Molecular Sciences, 26(17), 8455. https://doi.org/10.3390/ijms26178455