A Comprehensive Review of the Bovine Immune Response to Pathogens
Abstract
1. Introduction
2. Bovine Immune System
2.1. Innate Immune Response
Cytokines | Function |
---|---|
IL-1α, IL1-β | Proinflammatory Leukocyte adhesion and migration, APPs induction Promotes Th2 cytokine and IFN-γ production |
IL-2 | B and T cell proliferation Enhance NK cell function |
IL-4 | B and CD8+ cell proliferation, Th2 response activation Enhances MHC-II expression Stimulates IgE and IgG production |
IL-5 | B cell proliferation and maturation Stimulates IgA and IgM production |
IL-6 | Proinflammatory Th2 response, Th17 cells, APPs induction, B cell differentiation into plasmatic cells, IgA production Anti-inflammatory: inhibits some activities of TNF-α and IL-1, promotes IL-10 |
IL-7 | B and T cell growth factor |
IL-8 | Proinflammatory |
IL-10 | Anti-inflammatory (inhibits proinflammatory cytokines) Suppresses macrophages and DCs |
IL-11 | Proinflammatory APPs induction |
IL-12 | Anti-inflammatory NK cell and phagocyte activation Th1 response activation |
IL-17A-F | Proinflammatory Cytokine/chemokine inhibitors (IL-1, -6, -8, -21, TNF-β, MCP-1) |
IFN-α/β | Proinflammatory Antiviral activity, NK cell activation |
IFN-γ | Proinflammatory Antiviral activity, macrophage and Th1 response activation Increases neutrophil/monocyte function and MHC-I and MHC-II expression Inhibits Th2 response, suppresses IgE production |
TGF-β | Immunosuppressor, Treg induction Inhibits lymphocyte and macrophage production. Promotes Th17 differentiation |
TNF-α/β | Proinflammatory Neutrophil, macrophage and lymphocyte activation, APPs induction IL-1, IL-6, IL-8 production |
Chemokines | Regulate leukocyte recruitment and migration |
2.1.1. Pathogen Recognition
2.1.2. Local Inflammation and Cellular Recruiting
2.1.3. Effector Phase
2.2. Adaptive Immune Response
2.2.1. Antigen Recognition
2.2.2. Activation and Proliferation of Lymphocytes
Subtype | Differentiation Induction | Cytokines Produced | Function/Activation | References |
---|---|---|---|---|
Th1 | IL-12, IFN-γ | IFN-γ, IL-2, TNF-α | Macrophages, CD8+ | [69,70] |
Th2 | IL-4 | IL-4, IL-5, IL-13, IL-6, IL-10, TNF-α, IL-9, IL-2 | Eosinophils, mastocytes, B cells | [69,70] |
Th17 | TGF-β, IL-6 | IL-17A, IL-17F, IL-22, IL-21 | Neutrophils | [69,70] |
Tfh | IL-21 | IL-21 | B cells, Antibodies | [69] |
Treg | TGF-β | IL-10, TGF-β, IL-35 | Immunomodulation CD25 and FoxP3 expression | [69] |
2.2.3. Immune Memory (Trained Immunity)
3. Immune Responses to Pathogens
3.1. Viral Infections
3.2. Bacterial Infections
3.3. Parasitic Infections
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OECD | Organization for Economic Co-operation and Development |
FAO | Food and Agriculture Organization |
TLR | Toll-like receptor |
PAMP | Pathogen-associated Molecular Patterns |
NK | Natural killer |
DC | Dendritic cell |
MAIT | mucosa-associated invariant T cells |
Mϕ | macrophages |
PRR | pattern recognition receptor |
LPS | bacterial lipopolysaccharides |
IFN | Interferon |
IL | Interleukin |
APP | Acute phase protein |
MHC | Major Histocompatibility Complex |
Ig | Immunoglobulin |
TNF | Tumor Necrosis Factor |
MCP | Monocyte Chemoattractant Protein |
TGF | Transforming Growth Factor |
NLR | NOD-like receptor |
RIG-I | retinoic acid-inducible gene I |
RLR | retinoic acid-inducible gene I (RIG-I)-like receptor |
IRF-3 | interferon regulatory factor 3 |
ROS | reactive oxygen species |
LT | Lethal toxin |
CRP | C-reactive protein |
SAA | serum amyloid A |
Hp | haptoglobin |
MBL | mannose-binding lectin |
MAC | membrane attack complex |
LTi | lymphoid tissue inductors |
ILC | Innate lymphoid cells |
BoLA | Bovine Leukocyte Antigen |
TCR | T cell receptor |
MR1 | Major Histocompatibility Complex related 1 |
MAIT | mucosa-associated invariant T-cells |
SAg | superantigen |
CD | Cluster Differentiation |
TCM | central-memory T cells |
TEM | effector memory T cells |
TRM | tissue-resident memory T cells |
GC | germinal centers |
ILC | innate lymphoid cell |
References
- FAO. Dairy Market Review: Overview of Global Dairy Market Developments; FAO: Rome, Italy, 2024. [Google Scholar]
- Hemme, T.; Otte, J. Status and Prospects for Smallholder Milk Production a Global Perspective; FAO: Rome, Italy, 2010. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook 2022–2031; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Baldwin, C.L.; Damani-Yokota, P.; Yirsaw, A.; Loonie, K.; Teixeira, A.F.; Gillespie, A. Special Features of Γδ T Cells in Ruminants. Mol. Immunol. 2021, 134, 161–169. [Google Scholar] [CrossRef]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute Phase Proteins in Ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef]
- Seabury, C.M.; Seabury, P.M.; Decker, J.E.; Schnabel, R.D.; Taylor, J.F.; Womack, J.E. Diversity and Evolution of 11 Innate Immune Genes in Bos taurus taurus and Bos taurus indicus Cattle. Proc. Natl. Acad. Sci. USA 2010, 107, 151–156. [Google Scholar] [CrossRef]
- Tizard, I.R. Veterinary Immunology, 11th ed.; W B Saunders Co., Ltd.: Philadelphia, PA, USA, 2024; ISBN 978-0-443-10975-1. [Google Scholar]
- Vlasova, A.N.; Saif, L.J. Bovine Immunology: Implications for Dairy Cattle. Front. Immunol. 2021, 12, 643206. [Google Scholar] [CrossRef]
- Watts, K.M.; Fodor, C.; Beninger, C.; Lahiri, P.; Arrazuria, R.; De Buck, J.; Knight, C.G.; Orsel, K.; Barkema, H.W.; Cobo, E.R. A Differential Innate Immune Response in Active and Chronic Stages of Bovine Infectious Digital Dermatitis. Front. Microbiol. 2018, 9, 1586. [Google Scholar] [CrossRef]
- Reid, C.; Beynon, C.; Kennedy, E.; O’Farrelly, C.; Meade, K.G. Bovine Innate Immune Phenotyping via a Standardized Whole Blood Stimulation Assay. Sci. Rep. 2021, 11, 17227. [Google Scholar] [CrossRef]
- Rupp, R.; Boichard, D. Genetics of Resistance to Mastitis in Dairy Cattle. Vet. Res. 2003, 34, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Nair, A.; Patidar, A.; Dandapat, J.; Sarkar, A.; Saha, B. A Primer on Cytokines. Cytokine 2021, 145, 155458. [Google Scholar] [CrossRef]
- Farhat, K.; Riekenberg, S.; Jung, G.; Wiesmüller, K.-H.; Jungi, T.W.; Ulmer, A.J. Identification of Full Length Bovine TLR1 and Functional Characterization of Lipopeptide Recognition by Bovine TLR2/1 Heterodimer. Vet. Res. 2010, 41, 34. [Google Scholar] [CrossRef] [PubMed]
- Kwong, L.S.; Parsons, R.; Patterson, R.; Coffey, T.J.; Thonur, L.; Chang, J.-S.; Russell, G.; Haig, D.; Werling, D.; Hope, J.C. Characterisation of Antibodies to Bovine Toll-like Receptor (TLR)-2 and Cross-Reactivity with Ovine TLR2. Vet. Immunol. Immunopathol. 2011, 139, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Arslan, K. Polymorphisms of TLR1, TLR4 and SLC11A1 Genes in Some Cattle Breeds Reared in Turkey. J. Agric. Sci. 2018, 24, 547–553. [Google Scholar] [CrossRef]
- Ruiz-Larrañaga, O.; Manzano, C.; Iriondo, M.; Garrido, J.M.; Molina, E.; Vazquez, P.; Juste, R.A.; Estonba, A. Genetic Variation of Toll-like Receptor Genes and Infection by Mycobacterium avium ssp. paratuberculosis in Holstein-Friesian Cattle. J. Dairy Sci. 2011, 94, 3635–3641. [Google Scholar] [CrossRef]
- Villena, J.; Aso, H.; Rutten, V.P.M.G.; Takahashi, H.; van Eden, W.; Kitazawa, H. Immunobiotics for the Bovine Host: Their Interaction with Intestinal Epithelial Cells and Their Effect on Antiviral Immunity. Front. Immunol. 2018, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.; Wang, J.; Ma, Y.; Chen, T.; Ma, M.; Ullah, Q.; Khan, I.M.; Khan, A.; Cao, Z.; Liu, S. Genetic Polymorphisms in Immune- and Inflammation-Associated Genes and Their Association with Bovine Mastitis Resistance/Susceptibility. Front. Immunol. 2023, 14, 1082144. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Netea, M.G.; Wijmenga, C.; O’Neill, L.A.J. Genetic Variation in Toll-like Receptors and Disease Susceptibility. Nat. Immunol. 2012, 13, 535–542. [Google Scholar] [CrossRef]
- Novakovic, B.; Habibi, E.; Wang, S.-Y.; Arts, R.J.W.; Davar, R.; Megchelenbrink, W.; Kim, B.; Kuznetsova, T.; Kox, M.; Zwaag, J.; et al. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 2016, 167, 1354–1368.e14. [Google Scholar] [CrossRef]
- Badami, S.; Thanislass, J.; Barathiraja, S.; Anitha, T.; Upadhyaya, I.; Kumar Mukhopadhyay, H. Identification of Single Nucleotide Variations in the Toll-like Receptor 9 (TLR9) Gene and Its Association to Mastitis Susceptibility in Dairy Cattle. Biol. Rhythm Res. 2019, 50, 887–896. [Google Scholar] [CrossRef]
- Su, S.-B.; Tao, L.; Deng, Z.-P.; Chen, W.; Qin, S.-Y.; Jiang, H.-X. TLR10: Insights, Controversies and Potential Utility as a Therapeutic Target. Scand. J. Immunol. 2021, 93, e12988. [Google Scholar] [CrossRef]
- Kanneganti, T.-D.; Lamkanfi, M.; Núñez, G. Intracellular NOD-like Receptors in Host Defense and Disease. Immunity 2007, 27, 549–559. [Google Scholar] [CrossRef]
- Cui, J.; Li, Y.; Zhu, L.; Liu, D.; Songyang, Z.; Wang, H.Y.; Wang, R.-F. NLRP4 Negatively Regulates Type I Interferon Signaling by Targeting the Kinase TBK1 for Degradation via the Ubiquitin Ligase DTX4. Nat. Immunol. 2012, 13, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Zimmermann, A.G.; Roberts, R.A.; Zhang, L.; Swanson, K.V.; Wen, H.; Davis, B.K.; Allen, I.C.; Holl, E.K.; Ye, Z.; et al. The Innate Immune Sensor NLRC3 Attenuates Toll-like Receptor Signaling via Modification of the Signaling Adaptor TRAF6 and Transcription Factor NF-κB. Nat. Immunol. 2012, 13, 823–831. [Google Scholar] [CrossRef]
- Kowalinski, E.; Lunardi, T.; McCarthy, A.A.; Louber, J.; Brunel, J.; Grigorov, B.; Gerlier, D.; Cusack, S. Structural Basis for the Activation of Innate Immune Pattern-Recognition Receptor RIG-I by Viral RNA. Cell 2011, 147, 423–435. [Google Scholar] [CrossRef]
- da Silva Barcelos, L.; Ford, A.K.; Frühauf, M.I.; Botton, N.Y.; Fischer, G.; Maggioli, M.F. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024, 16, 1753. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, X.; Dunker, W.; Song, Y.; Karijolich, J. RIG-I like Receptor Sensing of Host RNAs Facilitates the Cell-Intrinsic Immune Response to KSHV Infection. Nat. Commun. 2018, 9, 4841. [Google Scholar] [CrossRef]
- Vrentas, C.E.; Schaut, R.G.; Boggiatto, P.M.; Olsen, S.C.; Sutterwala, F.S.; Moayeri, M. Inflammasomes in Livestock and Wildlife: Insights into the Intersection of Pathogens and Natural Host Species. Vet. Immunol. Immunopathol. 2018, 201, 49–56. [Google Scholar] [CrossRef]
- Vrentas, C.E.; Boggiatto, P.M.; Olsen, S.C.; Leppla, S.H.; Moayeri, M. Characterization of the NLRP1 Inflammasome Response in Bovine Species. Innate Immun. 2020, 26, 301–311. [Google Scholar] [CrossRef]
- Escobar-Chavarría, O.; Benitez-Guzman, A.; Jiménez-Vázquez, I.; Carrisoza-Urbina, J.; Arriaga-Pizano, L.; Huerta-Yépez, S.; Baay-Guzmán, G.; Gutiérrez-Pabello, J.A. Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages. Cells 2023, 12, 2079. [Google Scholar] [CrossRef]
- Saco, Y.; Bassols, A. Acute Phase Proteins in Cattle and Swine: A Review. Vet. Clin. Pathol. 2023, 52 (Suppl. S1), 50–63. [Google Scholar] [CrossRef] [PubMed]
- Eckersall, P.D.; Bell, R. Acute Phase Proteins: Biomarkers of Infection and Inflammation in Veterinary Medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Horadagoda, N.U.; Knox, K.M.; Gibbs, H.A.; Reid, S.W.; Horadagoda, A.; Edwards, S.E.; Eckersall, P.D. Acute Phase Proteins in Cattle: Discrimination between Acute and Chronic Inflammation. Vet. Rec. 1999, 144, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Hsiao, H.-C.; Wu, Y.-L.; Lin, J.-H.; Lee, Y.-P.; Fung, H.-P.; Chen, H.-H.; Chen, Y.-H.; Chu, R.-M. Serum C-Reactive Protein in Dairy Herds. Can. J. Vet. Res. 2003, 67, 102–107. [Google Scholar] [PubMed]
- Dilda, F.; Pisani, L.F.; Rahman, M.M.; Modina, S.; Tessaro, I.; Sartorelli, P.; Ceciliani, F.; Lecchi, C. Distribution of Acute Phase Proteins in the Bovine Forestomachs and Abomasum. Vet. J. 2012, 192, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Kemper, C.; Köhl, J. Back to the Future—Non-Canonical Functions of Complement. Semin. Immunol. 2018, 37, 1–3. [Google Scholar] [CrossRef]
- Minutti, C.M.; Jackson-Jones, L.H.; García-Fojeda, B.; Knipper, J.A.; Sutherland, T.E.; Logan, N.; Ringqvist, E.; Guillamat-Prats, R.; Ferenbach, D.A.; Artigas, A.; et al. Local Amplifiers of IL-4Rα–Mediated Macrophage Activation Promote Repair in Lung and Liver. Science 2017, 356, 1076–1080. [Google Scholar] [CrossRef]
- Rainard, P. The Complement in Milk and Defense of the Bovine Mammary Gland against Infections. Vet. Res. 2003, 34, 647–670. [Google Scholar] [CrossRef]
- Rus, H.; Cudrici, C.; Niculescu, F. The Role of the Complement System in Innate Immunity. Immunol. Res. 2005, 33, 103–112. [Google Scholar] [CrossRef]
- Tabel, H. Alternative Pathway of Complement in Ruminants: Role in Infection. Vet. Immunol. Immunopathol. 1996, 54, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Heesterbeek, D.A.C.; Angelier, M.L.; Harrison, R.A.; Rooijakkers, S.H.M. Complement and Bacterial Infections: From Molecular Mechanisms to Therapeutic Applications. J. Innate Immun. 2018, 10, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Danev, N.; Harman, R.M.; Sipka, A.S.; Oliveira, L.; Huntimer, L.; Van de Walle, G.R. The Secretomes of Bovine Mammary Epithelial Cell Subpopulations Differentially Modulate Macrophage Function. Vet. Q. 2025, 45, 1–14. [Google Scholar] [CrossRef]
- Flynn, J.L.; Chan, J. Immunology of Tuberculosis. Annu. Rev. Immunol. 2001, 19, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Dewangan, G.; Hirpurkar, S.D.; Giri, D.; Kashyap, D. Assessment of Innate Immunity by Phagocytic Activity in Non-Descript and Sahiwal Cattle in Chhattisgarh. Vet. World 2014, 7, 943–947. [Google Scholar] [CrossRef]
- Gondaira, S.; Nishi, K.; Fujiki, J.; Iwano, H.; Watanabe, R.; Eguchi, A.; Hirano, Y.; Higuchi, H.; Nagahata, H. Innate Immune Response in Bovine Neutrophils Stimulated with Mycoplasma bovis. Vet. Res. 2021, 52, 58. [Google Scholar] [CrossRef] [PubMed]
- Zanna, M.Y.; Yasmin, A.R.; Omar, A.R.; Arshad, S.S.; Mariatulqabtiah, A.R.; Nur-Fazila, S.H.; Mahiza, M.I.N. Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species. Int. J. Mol. Sci. 2021, 22, 8044. [Google Scholar] [CrossRef]
- Balan, S.; Saxena, M.; Bhardwaj, N. Dendritic Cell Subsets and Locations. Int. Rev. Cell Mol. Biol. 2019, 348, 1–68. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, J. Properties of Immature and Mature Dendritic Cells: Phenotype, Morphology, Phagocytosis, and Migration. RSC Adv. 2019, 9, 11230–11238. [Google Scholar] [CrossRef]
- Yago, T.; Tada, A.; Kubo, S.; Oda, H.; Iwabuchi, S.; Tanaka, M.; Hashimoto, S. Bovine Lactoferrin Enhances Toll-like Receptor 7 Response in Plasmacytoid Dendritic Cells and Modulates Cellular Immunity. Int. J. Mol. Sci. 2024, 25, 13369. [Google Scholar] [CrossRef]
- Swiecki, M.; Colonna, M. The Multifaceted Biology of Plasmacytoid Dendritic Cells. Nat. Rev. Immunol. 2015, 15, 471–485. [Google Scholar] [CrossRef]
- Boysen, P.; Olsen, I.; Berg, I.; Kulberg, S.; Johansen, G.M.; Storset, A.K. Bovine CD2-/NKp46+ Cells Are Fully Functional Natural Killer Cells with a High Activation Status. BMC Immunol. 2006, 7, 10. [Google Scholar] [CrossRef]
- Annunziato, F.; Romagnani, C.; Romagnani, S. The 3 Major Types of Innate and Adaptive Cell-Mediated Effector Immunity. J. Allergy Clin. Immunol. 2015, 135, 626–635. [Google Scholar] [CrossRef]
- McGill, J.L.; Sacco, R.E. Γδ T Cells and the Immune Response to Respiratory Syncytial Virus Infection. Vet. Immunol. Immunopathol. 2016, 181, 24–29. [Google Scholar] [CrossRef]
- Bacon, F. Introduction to the Immune Response. In Primer to the Immune Response, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 3–20. [Google Scholar] [CrossRef]
- Amorena, B.; Stone, W.H. Bovine Lymphocyte Antigens (BoLA): A Serologic, Genetic and Histocompatibility Analysis. Tissue Antigens 1980, 16, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Holling, T.M.; Schooten, E.; van Den Elsen, P.J. Function and Regulation of MHC Class II Molecules in T-Lymphocytes: Of Mice and Men. Hum. Immunol. 2004, 65, 282–290. [Google Scholar] [CrossRef]
- Takeshima, S.-N.; Giovambattista, G.; Okimoto, N.; Matsumoto, Y.; Rogberg-Muñoz, A.; Acosta, T.J.; Onuma, M.; Aida, Y. Characterization of Bovine MHC Class II DRB3 Diversity in South American Holstein Cattle Populations. Tissue Antigens 2015, 86, 419–430. [Google Scholar] [CrossRef]
- Ordoñez, D.; Bohórquez, M.D.; Avendaño, C.; Patarroyo, M.A. Comparing Class II MHC DRB3 Diversity in Colombian Simmental and Simbrah Cattle Across Worldwide Bovine Populations. Front. Genet. 2022, 13, 772885. [Google Scholar] [CrossRef]
- Nayak, S.S.; Panigrahi, M.; Kumar, H.; Rajawat, D.; Sharma, A.; Bhushan, B.; Dutt, T. Evidence for Selective Sweeps in the MHC Gene Repertoire of Various Cattle Breeds. Anim. Biotechnol. 2023, 34, 4167–4173. [Google Scholar] [CrossRef] [PubMed]
- Vasoya, D.; Oliveira, P.S.; Muriel, L.A.; Tzelos, T.; Vrettou, C.; Morrison, W.I.; de Miranda Santos, I.K.F.; Connelley, T. High Throughput Analysis of MHC-I and MHC-DR Diversity of Brazilian Cattle Populations. HLA 2021, 98, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Van Rhijn, I.; Koets, A.P.; Im, J.S.; Piebes, D.; Reddington, F.; Besra, G.S.; Porcelli, S.A.; van Eden, W.; Rutten, V.P.M.G. The Bovine CD1 Family Contains Group 1 CD1 Proteins, but No Functional CD1d. J. Immunol. 2006, 176, 4888–4893. [Google Scholar] [CrossRef] [PubMed]
- Edmans, M.D.; Connelley, T.K.; Jayaraman, S.; Vrettou, C.; Vordermeier, M.; Mak, J.Y.W.; Liu, L.; Fairlie, D.P.; Maze, E.A.; Chrun, T.; et al. Identification and Phenotype of MAIT Cells in Cattle and Their Response to Bacterial Infections. Front. Immunol. 2021, 12, 627173. [Google Scholar] [CrossRef]
- Hong, S.C.; Waterbury, G.; Janeway, C.A. Different Superantigens Interact with Distinct Sites in the Vbeta Domain of a Single T Cell Receptor. J. Exp. Med. 1996, 183, 1437–1446. [Google Scholar] [CrossRef]
- Wilson, G.J.; Tuffs, S.W.; Wee, B.A.; Seo, K.S.; Park, N.; Connelley, T.; Guinane, C.M.; Morrison, W.I.; Fitzgerald, J.R. Bovine Staphylococcus aureus Superantigens Stimulate the Entire T Cell Repertoire of Cattle. Infect. Immun. 2018, 86, e00505-18. [Google Scholar] [CrossRef]
- Guzman, E.; Hope, J.; Taylor, G.; Smith, A.L.; Cubillos-Zapata, C.; Charleston, B. Bovine Γδ T Cells Are a Major Regulatory T Cell Subset. J. Immunol. 2014, 193, 208–222. [Google Scholar] [CrossRef]
- Tanaka, S.; Aso, H.; Miyazawa, K.; Nagai, Y.; Watanabe, K.; Ohwada, S.; Kobayashi, J.; Yamaguchi, T. Differential Cytokine Gene Expression in CD4+ and CD8+ T Cell Subsets of Calves. Vet. Immunol. Immunopathol. 2007, 118, 84–91. [Google Scholar] [CrossRef]
- Lee, G.R. Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization. Immune Netw. 2023, 23, e4. [Google Scholar] [CrossRef]
- Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of Effector CD4 T Cell Populations. Annu. Rev. Immunol. 2010, 28, 445–489. [Google Scholar] [CrossRef]
- Morrison, W.I.; Davis, W.C. Differentiation Antigens Expressed Predominantly on CD4− CD8− T Lymphocytes (WC1, WC2). Vet. Immunol. Immunopathol. 1991, 27, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Hedges, J.F.; Cockrell, D.; Jackiw, L.; Meissner, N.; Jutila, M.A. Differential mRNA Expression in Circulating Gammadelta T Lymphocyte Subsets Defines Unique Tissue-Specific Functions. J. Leukoc. Biol. 2003, 73, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Zlatina, K.; Galuska, S.P. Immunoglobulin Glycosylation—An Unexploited Potential for Immunomodulatory Strategies in Farm Animals. Front. Immunol. 2021, 12, 753294. [Google Scholar] [CrossRef] [PubMed]
- Dunkelberger, J.R.; Song, W.-C. Complement and Its Role in Innate and Adaptive Immune Responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef]
- Roche, A.M.; Richard, A.L.; Rahkola, J.T.; Janoff, E.N.; Weiser, J.N. Antibody Blocks Acquisition of Bacterial Colonization through Agglutination. Mucosal Immunol. 2015, 8, 176–185. [Google Scholar] [CrossRef]
- Burke, M.J.; Stockley, P.G.; Boyes, J. Broadly Neutralizing Bovine Antibodies: Highly Effective New Tools against Evasive Pathogens? Viruses 2020, 12, 473. [Google Scholar] [CrossRef]
- Chen, W.; Frank, M.E.; Jin, W.; Wahl, S.M. TGF-β Released by Apoptotic T Cells Contributes to an Immunosuppressive Milieu. Immunity 2001, 14, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Gitlin, A.D.; Shulman, Z.; Nussenzweig, M.C. Clonal Selection in the Germinal Centre by Regulated Proliferation and Hypermutation. Nature 2014, 509, 637–640. [Google Scholar] [CrossRef]
- Sallusto, F.; Lenig, D.; Förster, R.; Lipp, M.; Lanzavecchia, A. Two Subsets of Memory T Lymphocytes with Distinct Homing Potentials and Effector Functions. Nature 1999, 401, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Masopust, D.; Soerens, A.G. Tissue-Resident T Cells and Other Resident Leukocytes. Annu. Rev. Immunol. 2019, 37, 521–546. [Google Scholar] [CrossRef] [PubMed]
- Beura, L.K.; Fares-Frederickson, N.J.; Steinert, E.M.; Scott, M.C.; Thompson, E.A.; Fraser, K.A.; Schenkel, J.M.; Vezys, V.; Masopust, D. CD4+ Resident Memory T Cells Dominate Immunosurveillance and Orchestrate Local Recall Responses. J. Exp. Med. 2019, 216, 1214–1229. [Google Scholar] [CrossRef]
- Roy, K.; Chakraborty, M.; Kumar, A.; Manna, A.K.; Roy, N.S. The NFκB Signaling System in the Generation of B-Cell Subsets: From Germinal Center B Cells to Memory B Cells and Plasma Cells. Front. Immunol. 2023, 14, 1185597. [Google Scholar] [CrossRef]
- Pérez-Pérez, L.; Laidlaw, B.J. Polarization of the Memory B-Cell Response. J. Leukoc. Biol. 2025, 117, qiae228. [Google Scholar] [CrossRef]
- Tomayko, M.M.; Allman, D. What B Cell Memories Are Made Of. Curr. Opin. Immunol. 2019, 57, 58–64. [Google Scholar] [CrossRef]
- Pietrzak, H.M.; Ioannidis, L.J.; Hansen, D.S. IgM+ Memory B Cells Induced in Response to Plasmodium berghei Adopt a Germinal Centre B Cell Phenotype during Secondary Infection. Parasitology 2020, 147, 994–998. [Google Scholar] [CrossRef]
- Vuscan, P.; Kischkel, B.; Joosten, L.A.B.; Netea, M.G. Trained Immunity: General and Emerging Concepts. Immunol. Rev. 2024, 323, 164–185. [Google Scholar] [CrossRef]
- Fol, M.; Karpik, W.; Zablotni, A.; Kulesza, J.; Kulesza, E.; Godkowicz, M.; Druszczynska, M. Innate Lymphoid Cells and Their Role in the Immune Response to Infections. Cells 2024, 13, 335. [Google Scholar] [CrossRef]
- Thompson, M.R.; Kaminski, J.J.; Kurt-Jones, E.A.; Fitzgerald, K.A. Pattern Recognition Receptors and the Innate Immune Response to Viral Infection. Viruses 2011, 3, 920–940. [Google Scholar] [CrossRef]
- Taggenbrock, R.L.R.E.; van Gisbergen, K.P.J.M. ILC1: Development, Maturation, and Transcriptional Regulation. Eur. J. Immunol. 2023, 53, 2149435. [Google Scholar] [CrossRef]
- Gómez-Villamandos, J.; Pedrera, M.; Molina Hernandez, V.; Risalde, M.; Sanchez-Cordon, P.; Ruiz-Villamor, E. Respuesta Inmunitaria En La Diarrea Vírica Bovina. In Anales de la Real Academia de Ciencias Veterinarias de Andalucía Oriental 21, 85-104 (2008); RACVAO: Granada, Spain, 2013. [Google Scholar]
- Pang, F.; Long, Q.; Wei, M. Immune Evasion Strategies of Bovine Viral Diarrhea Virus. Front. Cell. Infect. Microbiol. 2023, 13, 1282526. [Google Scholar] [CrossRef]
- Gershwin, L.J. Immunology of Bovine Respiratory Syncytial Virus Infection of Cattle. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 253–257. [Google Scholar] [CrossRef]
- Hägglund, S.; Näslund, K.; Svensson, A.; Lefverman, C.; Enül, H.; Pascal, L.; Siltenius, J.; Holzhauer, M.; Delabouglise, A.; Österberg, J.; et al. Longitudinal Study of the Immune Response and Memory Following Natural Bovine Respiratory Syncytial Virus Infections in Cattle of Different Age. PLoS ONE 2022, 17, e0274332. [Google Scholar] [CrossRef]
- Aguayo-Hiraldo, P.I.; Arasaratnam, R.J.; Tzannou, I.; Kuvalekar, M.; Lulla, P.; Naik, S.; Martinez, C.A.; Piedra, P.A.; Vera, J.F.; Leen, A.M. Characterizing the Cellular Immune Response to Parainfluenza Virus 3. J. Infect. Dis. 2017, 216, 153–161. [Google Scholar] [CrossRef]
- Basaraba, R.J.; Brown, P.R.; Laegreid, W.W.; Silflow, R.M.; Evermann, J.F.; Leid, R.W. Suppression of Lymphocyte Proliferation by Parainfluenza Virus Type 3-Infected Bovine Alveolar Macrophages. Immunology 1993, 79, 179–188. [Google Scholar]
- Li, L.; Li, P.; Chen, A.; Li, H.; Liu, Z.; Yu, L.; Hou, X. Quantitative Proteomic Analysis Shows Involvement of the P38 MAPK Pathway in Bovine Parainfluenza Virus Type 3 Replication. Virol. J. 2022, 19, 116. [Google Scholar] [CrossRef]
- Nuijten, P.; Cleton, N.; van der Loop, J.; Makoschey, B.; Pulskens, W.; Vertenten, G. Early Activation of the Innate Immunity and Specific Cellular Immune Pathways after Vaccination with a Live Intranasal Viral Vaccine and Challenge with Bovine Parainfluenza Type 3 Virus. Vaccines 2022, 10, 104. [Google Scholar] [CrossRef]
- Aida, Y.; Murakami, H.; Takagashi, M.; Takeshima, S. Mechanisms of Pathogenesis Induced by Bovine Leukemia Virus as a Model for Human T-Cell Leukemia Virus. Front. Microbiol. 2013, 4, 328. [Google Scholar] [CrossRef]
- Cuesta, L.M.; Liron, J.P.; Nieto Farias, M.V.; Dolcini, G.L.; Ceriani, M.C. Effect of Bovine Leukemia Virus (BLV) Infection on Bovine Mammary Epithelial Cells RNA-Seq Transcriptome Profile. PLoS ONE 2020, 15, e0234939. [Google Scholar] [CrossRef]
- Frie, M.C.; Droscha, C.J.; Greenlick, A.E.; Coussens, P.M. MicroRNAs Encoded by Bovine Leukemia Virus (BLV) Are Associated with Reduced Expression of B Cell Transcriptional Regulators in Dairy Cattle Naturally Infected with BLV. Front. Vet. Sci. 2017, 4, 245. [Google Scholar] [CrossRef]
- Frie, M.C.; Coussens, P.M. Bovine Leukemia Virus: A Major Silent Threat to Proper Immune Responses in Cattle. Vet. Immunol. Immunopathol. 2015, 163, 103–114. [Google Scholar] [CrossRef]
- Ladera Gómez, M.E.; Nieto Farias, M.V.; Vater, A.; Ceriani, M.C.; Dolcini, G.L. Study of the Proviral Load Levels and mRNA Expression of Cytokines in Peripheral Blood Mononuclear Cells and Somatic Milk Cells in Cattle with Different BLV Infection Profiles. Vet. Ital. 2023, 59, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Marin-Flamand, E.; Araiza-Hernandez, D.M.; Vargas-Ruiz, A.; Rangel-Rodríguez, I.C.; González-Tapia, L.A.; Ramírez-Álvarez, H.; Hernández-Balderas, R.J.; García-Camacho, L.A. Relationship of Persistent Lymphocytosis, Antibody Titers, and Proviral Load with Expression of Interleukin-12, Interferon-γ, Interleukin-2, Interleukin-4, Interleukin-10, and Transforming Growth Factor-β in Cows Infected with Bovine Leukemia Virus from a High-Prevalence Dairy Complex. Can. J. Vet. Res. 2022, 86, 269–285. [Google Scholar] [PubMed]
- Petersen, M.I.; Suarez Archilla, G.; Miretti, M.M.; Trono, K.G.; Carignano, H.A. Whole-Transcriptome Analysis of BLV-Infected Cows Reveals Downregulation of Immune Response Genes in High Proviral Loads Cows. Front. Vet. Sci. 2025, 12, 1550646. [Google Scholar] [CrossRef]
- Medina, G.N.; Segundo, F.D.-S.; Stenfeldt, C.; Arzt, J.; de los Santos, T. The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Front. Microbiol. 2018, 9, 2644. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, X.; Zhang, D.; Hou, J.; Xu, G.; Sheng, C.; Choudhury, S.M.; Zhu, Z.; Li, D.; Zhang, K.; et al. Molecular Mechanisms of Immune Escape for Foot-and-Mouth Disease Virus. Pathogens 2020, 9, 729. [Google Scholar] [CrossRef]
- Drew, C.P.; Heller, M.C.; Mayo, C.; Watson, J.L.; MacLachlan, N.J. Bluetongue Virus Infection Activates Bovine Monocyte-Derived Macrophages and Pulmonary Artery Endothelial Cells. Vet. Immunol. Immunopathol. 2010, 136, 292–296. [Google Scholar] [CrossRef]
- Rojas, J.M.; Avia, M.; Martín, V.; Sevilla, N. Inhibition of the IFN Response by Bluetongue Virus: The Story So Far. Front. Microbiol. 2021, 12, 692069. [Google Scholar] [CrossRef]
- Yang, J.-L.; Chang, C.-Y.; Yen, W.C.-W.; Yen, L.H.-C.; Wang, C.-C.; Wang, F.-I. Type I Hypersensitivity Is Induced in Cattle PBMC during Bluetongue Virus Taiwan Isolate Infection. Vet. Immunol. Immunopathol. 2020, 226, 110071. [Google Scholar] [CrossRef] [PubMed]
- Fay, P.C.; Wijesiriwardana, N.; Munyanduki, H.; Sanz-Bernardo, B.; Lewis, I.; Haga, I.R.; Moffat, K.; van Vliet, A.H.M.; Hope, J.; Graham, S.P.; et al. The Immune Response to Lumpy Skin Disease Virus in Cattle Is Influenced by Inoculation Route. Front. Immunol. 2022, 13, 1051008. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wang, S.; Yao, K.; Ren, S.; Cheng, P.; Qu, M.; Ma, X.; Gao, X.; Yin, X.; Wang, X.; et al. Lumpy Skin Disease Virus ORF127 Protein Suppresses Type I Interferon Responses by Inhibiting K63-Linked Ubiquitination of Tank Binding Kinase 1. FASEB J. 2024, 38, e23467. [Google Scholar] [CrossRef] [PubMed]
- Suwankitwat, N.; Bhakha, K.; Molee, L.; Songkasupa, T.; Puangjinda, K.; Chamchoy, T.; Arjkumpa, O.; Nuansrichay, B.; Srisomrun, S.; Pongphitcha, P.; et al. Long-Term Monitoring of Immune Response to Recombinant Lumpy Skin Disease Virus in Dairy Cattle from Small-Household Farms in Western Thailand. Comp. Immunol. Microbiol. Infect. Dis. 2023, 99, 102008. [Google Scholar] [CrossRef]
- Jones, C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front. Immunol. 2019, 10, 1008. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, J.; Kang, J.; Wang, Z.; Xu, X.; Wu, F. Bovine Herpesvirus-1 gE Protein Inhibits IFN-β Production to Enhance Replication by Promoting MAVS Ubiquitination and Interfering with the Interaction between IRF3 and CBP/P300. Vet. Microbiol. 2023, 287, 109899. [Google Scholar] [CrossRef]
- Sun, F.; Ma, W.; Wang, H.; He, H. Tegument Protein UL3 of Bovine Herpesvirus 1 Suppresses Antiviral IFN-I Signaling by Targeting STING for Autophagic Degradation. Vet. Microbiol. 2024, 291, 110031. [Google Scholar] [CrossRef]
- Araibi, E.H.; Marchetti, B.; Ashrafi, G.H.; Campo, M.S. Downregulation of Major Histocompatibility Complex Class I in Bovine Papillomas. J. Gen. Virol. 2004, 85, 2809–2814. [Google Scholar] [CrossRef]
- De Falco, F.; Cutarelli, A.; Gentile, I.; Cerino, P.; Uleri, V.; Catoi, A.F.; Roperto, S. Bovine Delta Papillomavirus E5 Oncoprotein Interacts with TRIM25 and Hampers Antiviral Innate Immune Response Mediated by RIG-I-Like Receptors. Front. Immunol. 2021, 12, 658762. [Google Scholar] [CrossRef]
- Grubman, M.J.; Baxt, B. Foot-and-Mouth Disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [PubMed]
- Gillet, N.; Florins, A.; Boxus, M.; Burteau, C.; Nigro, A.; Vandermeers, F.; Balon, H.; Bouzar, A.-B.; Defoiche, J.; Burny, A.; et al. Mechanisms of Leukemogenesis Induced by Bovine Leukemia Virus: Prospects for Novel Anti-Retroviral Therapies in Human. Retrovirology 2007, 4, 18. [Google Scholar] [CrossRef]
- Bannerman, D.D.; Paape, M.J.; Lee, J.-W.; Zhao, X.; Hope, J.C.; Rainard, P. Escherichia coli and Staphylococcus aureus Elicit Differential Innate Immune Responses Following Intramammary Infection. Clin. Diagn. Lab. Immunol. 2004, 11, 463–472. [Google Scholar] [CrossRef]
- Bougarn, S.; Cunha, P.; Harmache, A.; Fromageau, A.; Gilbert, F.B.; Rainard, P. Muramyl Dipeptide Synergizes with Staphylococcus aureus Lipoteichoic Acid to Recruit Neutrophils in the Mammary Gland and to Stimulate Mammary Epithelial Cells. Clin. Vaccine Immunol. 2010, 17, 1797–1809. [Google Scholar] [CrossRef]
- Di Mauro, S.; Filipe, J.; Facchin, A.; Roveri, L.; Addis, M.F.; Monistero, V.; Piccinini, R.; Sala, G.; Pravettoni, D.; Zamboni, C.; et al. The Secretome of Staphylococcus aureus Strains with Opposite Within-Herd Epidemiological Behavior Affects Bovine Mononuclear Cell Response. Vet. Res. 2023, 54, 120. [Google Scholar] [CrossRef] [PubMed]
- Engler, C.; Renna, M.S.; Beccaria, C.; Silvestrini, P.; Pirola, S.I.; Pereyra, E.A.L.; Baravalle, C.; Camussone, C.M.; Monecke, S.; Calvinho, L.F.; et al. Differential Immune Response to Two Staphylococcus aureus Strains with Distinct Adaptation Genotypes after Experimental Intramammary Infection of Dairy Cows. Microb. Pathog. 2022, 172, 105789. [Google Scholar] [CrossRef]
- Griesbeck-Zilch, B.; Meyer, H.H.D.; Kühn, C.H.; Schwerin, M.; Wellnitz, O. Staphylococcus aureus and Escherichia coli Cause Deviating Expression Profiles of Cytokines and Lactoferrin Messenger Ribonucleic Acid in Mammary Epithelial Cells. J. Dairy Sci. 2008, 91, 2215–2224. [Google Scholar] [CrossRef] [PubMed]
- Günther, J.; Petzl, W.; Bauer, I.; Ponsuksili, S.; Zerbe, H.; Schuberth, H.-J.; Brunner, R.M.; Seyfert, H.-M. Differentiating Staphylococcus aureus from Escherichia coli Mastitis: S. Aureus Triggers Unbalanced Immune-Dampening and Host Cell Invasion Immediately after Udder Infection. Sci. Rep. 2017, 7, 4811. [Google Scholar] [CrossRef]
- Lara-Zárate, L.; López-Meza, J.E.; Ochoa-Zarzosa, A. Staphylococcus aureus Inhibits Nuclear Factor Kappa B Activation Mediated by Prolactin in Bovine Mammary Epithelial Cells. Microb. Pathog. 2011, 51, 313–318. [Google Scholar] [CrossRef]
- Medina-Estrada, I.; Alva-Murillo, N.; López-Meza, J.E.; Ochoa-Zarzosa, A. Non-Classical Effects of Prolactin on the Innate Immune Response of Bovine Mammary Epithelial Cells: Implications during Staphylococcus aureus Internalization. Microb. Pathog. 2015, 89, 43–53. [Google Scholar] [CrossRef]
- Noli Truant, S.; Redolfi, D.M.; Sarratea, M.B.; Malchiodi, E.L.; Fernández, M.M. Superantigens, a Paradox of the Immune Response. Toxins 2022, 14, 800. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhang, Z.; Hu, J.; Yu, Y.; Wang, J.; Liu, Y.; Liu, J. Staphylococcus aureus Promotes Its Intracellular Survival by Inhibiting Rab11-Rab11FIP4-Mediated Vesicle Trafficking. Vet. Microbiol. 2024, 293, 110091. [Google Scholar] [CrossRef]
- Ying, Y.-T.; Yang, J.; Tan, X.; Liu, R.; Zhuang, Y.; Xu, J.-X.; Ren, W.-J. Escherichia coli and Staphylococcus aureus Differentially Regulate Nrf2 Pathway in Bovine Mammary Epithelial Cells: Relation to Distinct Innate Immune Response. Cells 2021, 10, 3426. [Google Scholar] [CrossRef]
- Bochniarz, M.; Hahaj-Siembida, A.; Krajewska-Wędzina, M.; Osińska, M.; Tracz, A.; Trościańczyk, A.; Brodzki, P.; Krakowski, L.; Kosior-Korzecka, U.; Nowakiewicz, A. Cytokine Inflammatory Response in Dairy Cows with Mastitis Caused by Streptococcus agalactiae. J. Vet. Res. 2024, 68, 115–121. [Google Scholar] [CrossRef]
- Leghari, A.; Sabir, R.; Laghari, S.; Khand, F.M.; Chandio, M.A.; Magsi, A.S.; Bhutto, K.U.R.; Hassan, M.F.; Lakho, S.A.; Lin, H.; et al. Comparative Analysis of Streptococcus agalactiae Serotypes Ia and II Isolates from China and Pakistan in a Murine Model: A Focus on Pathogenesis and Immune Response. Microb. Pathog. 2024, 191, 106675. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska-Sabat, A.M.; Kirsanova, E.; Klopp, C.; Solberg, T.R.; Heringstad, B.; Østerås, O.; Boysen, P.; Olsaker, I. Transcription Profiling of Monocyte-Derived Macrophages Infected In Vitro With Two Strains of Streptococcus agalactiae Reveals Candidate Pathways Affecting Subclinical Mastitis in Cattle. Front. Genet. 2019, 10, 689. [Google Scholar] [CrossRef]
- Ma, F.; Yang, S.; Wang, G.; Zhou, M.; Zhang, J.; Deng, B.; Yin, W.; Wang, H.; Lu, Y.; Fan, H. Effect of Multiplicity of Infection on the Evasion of Neutrophil Killing by Streptococcus agalactiae Isolated from Clinical Mastitis Bovine. Vet. Microbiol. 2022, 270, 109450. [Google Scholar] [CrossRef] [PubMed]
- Barquero-Calvo, E.; Chaves-Olarte, E.; Weiss, D.S.; Guzmán-Verri, C.; Chacón-Díaz, C.; Rucavado, A.; Moriyón, I.; Moreno, E. Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection. PLoS ONE 2007, 2, e631. [Google Scholar] [CrossRef]
- Campos, P.C.; Gomes, M.T.R.; Guimarães, E.S.; Guimarães, G.; Oliveira, S.C. TLR7 and TLR3 Sense Brucella abortus RNA to Induce Proinflammatory Cytokine Production but They Are Dispensable for Host Control of Infection. Front. Immunol. 2017, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Cirl, C.; Wieser, A.; Yadav, M.; Duerr, S.; Schubert, S.; Fischer, H.; Stappert, D.; Wantia, N.; Rodriguez, N.; Wagner, H.; et al. Subversion of Toll-like Receptor Signaling by a Unique Family of Bacterial Toll/Interleukin-1 Receptor Domain–Containing Proteins. Nat. Med. 2008, 14, 399–406. [Google Scholar] [CrossRef]
- Forestier, C.; Deleuil, F.; Lapaque, N.; Moreno, E.; Gorvel, J.P. Brucella abortus Lipopolysaccharide in Murine Peritoneal Macrophages Acts as a Down-Regulator of T Cell Activation. J. Immunol. 2000, 165, 5202–5210. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, E.S.; Gomes, M.T.R.; Campos, P.C.; Mansur, D.S.; Dos Santos, A.A.; Harms, J.; Splitter, G.; Smith, J.A.; Barber, G.N.; Oliveira, S.C. Brucella abortus Cyclic Dinucleotides Trigger STING-Dependent Unfolded Protein Response That Favors Bacterial Replication. J. Immunol. 2019, 202, 2671–2681. [Google Scholar] [CrossRef]
- Li, X.; He, Y. Caspase-2-Dependent Dendritic Cell Death, Maturation, and Priming of T Cells in Response to Brucella abortus Infection. PLoS ONE 2012, 7, e43512. [Google Scholar] [CrossRef]
- Pascual, D.W.; Goodwin, Z.I.; Bhagyaraj, E.; Hoffman, C.; Yang, X. Activation of Mucosal Immunity as a Novel Therapeutic Strategy for Combating Brucellosis. Front. Microbiol. 2022, 13, 1018165. [Google Scholar] [CrossRef]
- Rittig, M.G.; Kaufmann, A.; Robins, A.; Shaw, B.; Sprenger, H.; Gemsa, D.; Foulongne, V.; Rouot, B.; Dornand, J. Smooth and Rough Lipopolysaccharide Phenotypes of Brucella Induce Different Intracellular Trafficking and Cytokine/Chemokine Release in Human Monocytes. J. Leukoc. Biol. 2003, 74, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, S.P.; Marchesini, M.I.; Lelouard, H.; Fugier, E.; Jolly, G.; Balor, S.; Muller, A.; Lapaque, N.; Demaria, O.; Alexopoulou, L.; et al. Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1. PLoS Pathog. 2008, 4, e21. [Google Scholar] [CrossRef] [PubMed]
- Corbeil, L.B. Host Immune Response to Histophilus somni. Curr. Top. Microbiol. Immunol. 2016, 396, 109–129. [Google Scholar] [CrossRef]
- Gomis, S.M.; Godson, D.L.; Wobeser, G.A.; Potter, A.A. Effect of Haemophilus Somnus on Nitric Oxide Production and Chemiluminescence Response of Bovine Blood Monocytes and Alveolar Macrophages. Microb. Pathog. 1997, 23, 327–333. [Google Scholar] [CrossRef]
- Hellenbrand, K.M.; Forsythe, K.M.; Rivera-Rivas, J.J.; Czuprynski, C.J.; Aulik, N.A. Histophilus Somni Causes Extracellular Trap Formation by Bovine Neutrophils and Macrophages. Microb. Pathog. 2013, 54, 67–75. [Google Scholar] [CrossRef]
- Howard, M.D.; Boone, J.H.; Buechner-Maxwell, V.; Schurig, G.G.; Inzana, T.J. Inhibition of Bovine Macrophage and Polymorphonuclear Leukocyte Superoxide Anion Production by Haemophilus Somnus. Microb. Pathog. 2004, 37, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Gallagher, I.J.; Kaliszewska, A.; Zhang, C.; Abejide, O.; Gallagher, M.P.; Werling, D.; Glass, E.J. Live and Inactivated Salmonella enterica Serovar Typhimurium Stimulate Similar but Distinct Transcriptome Profiles in Bovine Macrophages and Dendritic Cells. Vet. Res. 2016, 47, 46. [Google Scholar] [CrossRef] [PubMed]
- Lawhon, S.D.; Khare, S.; Rossetti, C.A.; Everts, R.E.; Galindo, C.L.; Luciano, S.A.; Figueiredo, J.F.; Nunes, J.E.S.; Gull, T.; Davidson, G.S.; et al. Role of SPI-1 Secreted Effectors in Acute Bovine Response to Salmonella enterica Serovar Typhimurium: A Systems Biology Analysis Approach. PLoS ONE 2011, 6, e26869. [Google Scholar] [CrossRef]
- Pan, D.; Rostagno, M.H.; Ebner, P.D.; Eicher, S.D. Differential Innate Immune Responses of Bovine Peripheral Blood Leukocytes to Salmonella enterica Serovars Dublin, Typhimurium, and Enteritidis. Vet. Immunol. Immunopathol. 2015, 165, 14–21. [Google Scholar] [CrossRef]
- Vohra, P.; Vrettou, C.; Hope, J.C.; Hopkins, J.; Stevens, M.P. Nature and Consequences of Interactions between Salmonella enterica Serovar Dublin and Host Cells in Cattle. Vet. Res. 2019, 50, 99. [Google Scholar] [CrossRef]
- Campos-Múzquiz, L.G.; Méndez-Olvera, E.T.; Martínez, M.P.; Martínez-Gómez, D. Campylobacter Fetus Induced Proinflammatory Response in Bovine Endometrial Epithelial Cells. Pol. J. Microbiol. 2021, 70, 99–106. [Google Scholar] [CrossRef]
- Corbeil, L.B.; Corbeil, R.R.; Winter, A.J. Bovine Venereal Vibriosis: Activity of Inflammatory Cells in Protective Immunity. Am. J. Vet. Res. 1975, 36, 403–406. [Google Scholar] [CrossRef]
- Ayalew, S.; Murdock, B.K.; Snider, T.A.; Confer, A.W. Mannheimia haemolytica IgA-Specific Proteases. Vet. Microbiol. 2019, 239, 108487. [Google Scholar] [CrossRef]
- Berggren, K.A.; Baluyut, C.S.; Simonson, R.R.; Bemrick, W.J.; Maheswaran, S.K. Cytotoxic Effects of Pasteurella haemolytica on Bovine Neutrophils. Am. J. Vet. Res. 1981, 42, 1383–1388. [Google Scholar] [CrossRef]
- Li, J.; Clinkenbeard, K.D.; Ritchey, J.W. Bovine CD18 Identified as a Species Specific Receptor for Pasteurella haemolytica Leukotoxin. Vet. Microbiol. 1999, 67, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Ritchey, J.W.; Confer, A.W. Mannheimia haemolytica: Bacterial-Host Interactions in Bovine Pneumonia. Vet. Pathol. 2011, 48, 338–348. [Google Scholar] [CrossRef]
- Iovane, G.; Pagnini, P.; Galdiero, M.; Cipollaro de l’Ero, G.; Vitiello, M.; D’Isanto, M.; Marcatili, A. Role of Pasteurella multocida Porin on Cytokine Expression and Release by Murine Splenocytes. Vet. Immunol. Immunopathol. 1998, 66, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Periasamy, S.; Praveena, P.E.; Singh, N. Effects of Pasteurella multocida Lipopolysaccharides on Bovine Leukocytes. Microb. Pathog. 2018, 119, 225–232. [Google Scholar] [CrossRef]
- Roier, S.; Fenninger, J.C.; Leitner, D.R.; Rechberger, G.N.; Reidl, J.; Schild, S. Immunogenicity of Pasteurella multocida and Mannheimia haemolytica Outer Membrane Vesicles. Int. J. Med. Microbiol. 2013, 303, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, Z.; Ran, J.; Peng, L.; Wu, X.; Ye, C.; Dong, C.; Peng, Y.; Fang, R. The Critical Role of Potassium Efflux and Nek7 in Pasteurella multocida-Induced NLRP3 Inflammasome Activation. Front. Microbiol. 2022, 13, 849482. [Google Scholar] [CrossRef] [PubMed]
- Blum, S.E.; Heller, E.D.; Jacoby, S.; Krifucks, O.; Leitner, G. Comparison of the Immune Responses Associated with Experimental Bovine Mastitis Caused by Different Strains of Escherichia coli. J. Dairy Res. 2017, 84, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhou, E.; Liu, Z.; Li, F.; Liang, D.; Liu, B.; Song, X.; Zhao, F.; Fen, X.; Li, D.; et al. Staphylococcus aureus and Escherichia coli Elicit Different Innate Immune Responses from Bovine Mammary Epithelial Cells. Vet. Immunol. Immunopathol. 2013, 155, 245–252. [Google Scholar] [CrossRef]
- Goulart, D.B.; Mellata, M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front. Microbiol. 2022, 13, 928346. [Google Scholar] [CrossRef]
- Hurst, S.M.; Flossdorf, D.A.L.; Koralagamage Don, R.; Pernthaner, A. Selective IgG Binding to the LPS Glycolipid Core Found in Bovine Colostrum, or Milk, during Escherichia coli Mastitis Influences Endotoxin Function. Innate Immun. 2024, 30, 96–118. [Google Scholar] [CrossRef]
- Kerro Dego, O.; Oliver, S.P.; Almeida, R.A. Host-Pathogen Gene Expression Profiles during Infection of Primary Bovine Mammary Epithelial Cells with Escherichia coli Strains Associated with Acute or Persistent Bovine Mastitis. Vet. Microbiol. 2012, 155, 291–297. [Google Scholar] [CrossRef]
- Menge, C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins 2020, 12, 607. [Google Scholar] [CrossRef]
- Opgenorth, J.; Mayorga, E.J.; Abeyta, M.A.; Goetz, B.M.; Rodriguez-Jimenez, S.; Freestone, A.D.; McGill, J.L.; Baumgard, L.H. Intravenous Lipopolysaccharide Challenge in Early- versus Mid-Lactation Dairy Cattle. I: The Immune and Inflammatory Responses. J. Dairy Sci. 2024, 107, 6225–6239. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, S.; Liu, B.; Mao, W.; Gong, P.; Guo, L.; Wu, J.; Zhao, Y.; Wang, Y.; Hasi, S.; et al. Dual Roles of the TLR2/TLR4/NLRP3-H-PGDS-PGD2 Axis in Regulating the Inflammatory Response in Escherichia coli-Infected Bovine Bone Marrow-Derived Macrophages and Endometrial Tissue. Theriogenology 2025, 239, 117374. [Google Scholar] [CrossRef] [PubMed]
- Molinari, P.C.C.; Nally, J.E.; Bromfield, J.J. Bovine Endometrial Cells Do Not Mount an Inflammatory Response to Leptospira. Reprod. Fertil. 2021, 2, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, J.; Ezepha, C.; Aymée, L.; Lilenbaum, W. Cellular Inflammatory Response in the Bovine Uterus by Leptospira Infection May Be Related to Embryo Death and Subfertility. Microb. Pathog. 2023, 185, 106449. [Google Scholar] [CrossRef]
- Varma, V.P.; Bankala, R.; Kumar, A.; Gawai, S.; Faisal, S.M. Differential Modulation of Innate Immune Response by Lipopolysaccharide of Leptospira. Open Biol. 2023, 13, 230101. [Google Scholar] [CrossRef]
- Wilson-Welder, J.H.; Frank, A.T.; Hornsby, R.L.; Olsen, S.C.; Alt, D.P. Interaction of Bovine Peripheral Blood Polymorphonuclear Cells and Leptospira Species; Innate Responses in the Natural Bovine Reservoir Host. Front. Microbiol. 2016, 7, 1110. [Google Scholar] [CrossRef]
- Askar, H.; Chen, S.; Hao, H.; Yan, X.; Ma, L.; Liu, Y.; Chu, Y. Immune Evasion of Mycoplasma bovis. Pathogens 2021, 10, 297. [Google Scholar] [CrossRef]
- Baz, A.A.; Chen, S.; Hao, H.; Jin, X.; Lan, S.; Li, Z.; Jin, S.; Zhang, Y.; Chu, Y. Macrophage Extracellular Traps Are Induced by Mycoplasma bovis in Bovine Macrophages through NADPH Oxidase/ROS-Dependent Manner and Their Antibacterial Efficacy. FASEB J. 2024, 38, e70238. [Google Scholar] [CrossRef]
- Gondaira, S.; Higuchi, H.; Iwano, H.; Nishi, K.; Nebu, T.; Nakajima, K.; Nagahata, H. Innate Immune Response of Bovine Mammary Epithelial Cells to Mycoplasma bovis. J. Vet. Sci. 2018, 19, 79–87. [Google Scholar] [CrossRef]
- Gondaira, S.; Nishi, K.; Iwano, H.; Fujiki, J.; Watanabe, R.; Eguchi, A.; Hirano, Y.; Higuchi, H.; Nagahata, H. Transcriptome Analysis of Mycoplasma bovis Stimulated Bovine Peripheral Blood Mononuclear Cells. Vet. Immunol. Immunopathol. 2021, 232, 110166. [Google Scholar] [CrossRef]
- Imaizumi, N.; Gondaira, S.; Kamioka, M.; Sugiura, T.; Eguchi, A.; Nishi, K.; Fujiki, J.; Iwano, H.; Higuchi, H. Innate Immune Response of Bovine Mammary Epithelial Cells in Mycoplasma bovis Mastitis Using an in Vitro Model of Bovine Mammary Gland Infection. J. Vet. Med. Sci. 2024, 86, 712–720. [Google Scholar] [CrossRef]
- Nishi, K.; Hirano, Y.; Sato, A.; Eguchi, A.; Matsuda, K.; Toda, M.; Watanabe, T.; Iwasaki, T.; Takahashi, N.; Hosotani, M.; et al. Effects of Intra-Articular Inoculation with Mycoplasma Bovis on Immunological Responses in Calf Joints. Vet. Immunol. Immunopathol. 2022, 244, 110364. [Google Scholar] [CrossRef]
- Pollock, J.M.; McNair, J.; Welsh, M.D.; Girvin, R.M.; Kennedy, H.E.; Mackie, D.P.; Neill, S.D. Immune Responses in Bovine Tuberculosis. Tuberculosis 2001, 81, 103–107. [Google Scholar] [CrossRef]
- Waters, W.R.; Palmer, M.V.; Thacker, T.C.; Davis, W.C.; Sreevatsan, S.; Coussens, P.; Meade, K.G.; Hope, J.C.; Estes, D.M. Tuberculosis Immunity: Opportunities from Studies with Cattle. Clin. Dev. Immunol. 2011, 2011, 768542. [Google Scholar] [CrossRef] [PubMed]
- McGill, J.L.; Sacco, R.E.; Baldwin, C.L.; Telfer, J.C.; Palmer, M.V.; Waters, W.R. The Role of Gamma Delta T Cells in Immunity to Mycobacterium bovis Infection in Cattle. Vet. Immunol. Immunopathol. 2014, 159, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Lyashchenko, K.P.; Vordermeier, H.M.; Waters, W.R. Memory B Cells and Tuberculosis. Vet. Immunol. Immunopathol. 2020, 221, 110016. [Google Scholar] [CrossRef]
- Blanco, F.C.; Gravisaco, M.J.; Bigi, M.M.; García, E.A.; Marquez, C.; McNeil, M.; Jackson, M.; Bigi, F. Identifying Bacterial and Host Factors Involved in the Interaction of Mycobacterium bovis with the Bovine Innate Immune Cells. Front. Immunol. 2021, 12, 674643. [Google Scholar] [CrossRef]
- Nava-Vargas, A.; Milián-Suazo, F.; Cantó-Alarcón, G.J.; Gutiérrez-Pabello, J.A.; Nava-Vargas, A.; Milián-Suazo, F.; Cantó-Alarcón, G.J.; Gutiérrez-Pabello, J.A. Intracellular Survival of Mycobacterium bovis Strains with High and Low Frequency in Cattle Populations in a Bovine Macrophage Model. Rev. Mex. Cienc. Pecu. 2021, 12, 487–502. [Google Scholar] [CrossRef]
- Blanco, F.C.; Bigi, M.M.; García, E.A.; Elola, M.T.; Vázquez, C.L.; Bigi, F. A Transcriptional Analysis of Cattle Immune Cells Reveals a Central Role of Type 1 Interferon in the In Vitro Innate Immune Response against Mycobacterium bovis. Pathogens 2023, 12, 1159. [Google Scholar] [CrossRef] [PubMed]
- Shu, D.; Heiser, A.; Wedlock, D.N.; Luo, D.; de Lisle, G.W.; Buddle, B.M. Comparison of Gene Expression of Immune Mediators in Lung and Pulmonary Lymph Node Granulomas from Cattle Experimentally Infected with Mycobacterium bovis. Vet. Immunol. Immunopathol. 2014, 160, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Quevillon, E.-L.; Díaz, F.; Jaramillo, L.; Lascurain, R.; Gutiérrez-Pabello, J.A.; Castañeda, F.A.; Arriaga, C.; Pérez, R.; González, X.E. Comparison of Immune Peripheral Blood Cells in Tuberculin Reactor Cattle That Are Seropositive or Seronegative for Mycobacterium bovis Antigens. Vet. Immunol. Immunopathol. 2013, 153, 194–201. [Google Scholar] [CrossRef]
- Corbel, M.; Alton, G.; Banai, M.; Díaz, R.; Dranovskaia, B.; Elberg, S.; Garin-Bastuji, B.; Kolar, J.; Mantovani, A.; Mousa, A.; et al. Brucellosis in Humans and Animals; World Health Organization: Geneva, Switzerland, 2006; ISBN 978-92-4-154713-0. [Google Scholar]
- Brown, W.C.; McElwain, T.F.; Ruef, B.J.; Suarez, C.E.; Shkap, V.; Chitko-McKown, C.G.; Tuo, W.; Rice-Ficht, A.C.; Palmer, G.H. Babesia bovis Rhoptry-Associated Protein 1 Is Immunodominant for T Helper Cells of Immune Cattle and Contains T-Cell Epitopes Conserved among Geographically Distant B. bovis Strains. Infect. Immun. 1996, 64, 3341–3350. [Google Scholar] [CrossRef] [PubMed]
- Estes, D.M.; Brown, W.C. Type 1 and Type 2 Responses in Regulation of Ig Isotype Expression in Cattle. Vet. Immunol. Immunopathol. 2002, 90, 1–10. [Google Scholar] [CrossRef]
- Gimenez, G.; Magalhães, K.G.; Belaunzarán, M.L.; Poncini, C.V.; Lammel, E.M.; Gonzalez Cappa, S.M.; Bozza, P.T.; Isola, E.L.D. Lipids from Attenuated and Virulent Babesia bovis Strains Induce Differential TLR2-Mediated Macrophage Activation. Mol. Immunol. 2010, 47, 747–755. [Google Scholar] [CrossRef]
- Gimenez, G.; Belaunzarán, M.L.; Poncini, C.V.; Blanco, F.C.; Echaide, I.; Zamorano, P.I.; Lammel, E.M.; González Cappa, S.M.; Isola, E.L.D. Babesia bovis: Lipids from Virulent S2P and Attenuated R1A Strains Trigger Differential Signalling and Inflammatory Responses in Bovine Macrophages. Parasitology 2013, 140, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Goff, W.L.; Johnson, W.C.; Tuo, W.; Valdez, R.A.; Parish, S.M.; Barrington, G.M.; Davis, W.C. Age-Related Innate Immune Response in Calves to Babesia bovis Involves IL-12 Induction and IL-10 Modulation. Ann. N. Y. Acad. Sci. 2002, 969, 164–168. [Google Scholar] [CrossRef]
- Behrendt, J.H.; Hermosilla, C.; Hardt, M.; Failing, K.; Zahner, H.; Taubert, A. PMN-Mediated Immune Reactions against Eimeria bovis. Vet. Parasitol. 2008, 151, 97–109. [Google Scholar] [CrossRef]
- Conejeros, I.; López-Osorio, S.; Zhou, E.; Velásquez, Z.D.; Del Río, M.C.; Burgos, R.A.; Alarcón, P.; Chaparro-Gutiérrez, J.J.; Hermosilla, C.; Taubert, A. Glycolysis, Monocarboxylate Transport, and Purinergic Signaling Are Key Events in Eimeria bovis-Induced NETosis. Front. Immunol. 2022, 13, 842482. [Google Scholar] [CrossRef]
- Sühwold, A.; Hermosilla, C.; Seeger, T.; Zahner, H.; Taubert, A. T Cell Reactions of Eimeria bovis Primary and Challenge-Infected Calves. Parasitol. Res. 2010, 106, 595–605. [Google Scholar] [CrossRef]
- Taubert, A.; Hermosilla, C.; Sühwold, A.; Zahner, H. Antigen-Induced Cytokine Production in Lymphocytes of Eimeria bovis Primary and Challenge Infected Calves. Vet. Immunol. Immunopathol. 2008, 126, 309–320. [Google Scholar] [CrossRef]
- Najera, J.; Berry, M.M.; Ramirez, A.D.; Reyes, B.R.; Angel, A.; Jellyman, J.K.; Mercer, F. Bovine Neutrophils Kill the Sexually-Transmitted Parasite Tritrichomonas foetus Using Trogocytosis. Vet. Res. Commun. 2024, 48, 865–875. [Google Scholar] [CrossRef]
- Singh, B.N.; Lucas, J.J.; Hayes, G.R.; Kumar, I.; Beach, D.H.; Frajblat, M.; Gilbert, R.O.; Sommer, U.; Costello, C.E. Tritrichomonas foetus Induces Apoptotic Cell Death in Bovine Vaginal Epithelial Cells. Infect. Immun. 2004, 72, 4151–4158. [Google Scholar] [CrossRef]
- Soto, P.; Parma, A.E. The Immune Response in Cattle Infected with Tritrichomonas foetus. Vet. Parasitol. 1989, 33, 343–348. [Google Scholar] [CrossRef]
- Benavides, J.; Katzer, F.; Maley, S.W.; Bartley, P.M.; Cantón, G.; Palarea-Albaladejo, J.; Purslow, C.A.; Pang, Y.; Rocchi, M.S.; Chianini, F.; et al. High Rate of Transplacental Infection and Transmission of Neospora caninum Following Experimental Challenge of Cattle at Day 210 of Gestation. Vet. Res. 2012, 43, 83. [Google Scholar] [CrossRef]
- Almería, S.; Serrano-Pérez, B.; López-Gatius, F. Immune Response in Bovine Neosporosis: Protection or Contribution to the Pathogenesis of Abortion. Microb. Pathog. 2017, 109, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Flynn, R.J.; Marshall, E.S. Parasite Limiting Macrophages Promote IL-17 Secretion in Naive Bovine CD4+ T-Cells during Neospora caninum Infection. Vet. Immunol. Immunopathol. 2011, 144, 423–429. [Google Scholar] [CrossRef]
- Maldonado Rivera, J.E.; Hecker, Y.P.; Burucúa, M.M.; Cirone, K.M.; Cheuquepán, F.A.; Fiorani, F.; Dorsch, M.A.; Colque, L.A.; Cantón, G.J.; Marin, M.S.; et al. Innate and Humoral Immune Parameters at Delivery in Colostrum and Calves from Heifers Experimentally Infected with Neospora caninum. Mol. Immunol. 2021, 132, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Tuo, W.; Davis, W.C.; Fetterer, R.; Jenkins, M.; Boyd, P.C.; Gasbarre, L.C.; Dubey, J.P. Establishment of Neospora caninum Antigen-Specific T Cell Lines of Primarily CD4 T Cells. Parasite Immunol. 2004, 26, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gong, P.; Zhang, X.; Li, S.; Lu, X.; Zhao, C.; Yu, Q.; Wei, Z.; Yang, Y.; Liu, Q.; et al. NLRP3 Inflammasome Participates in Host Response to Neospora caninum Infection. Front. Immunol. 2018, 9, 1791. [Google Scholar] [CrossRef]
- Connick, K.; Lalor, R.; Murphy, A.; Oneill, S.; Zalat, R.; El Shanawany, E. Cryptosporidium parvum Oocytic Antigen Induces Dendrtic Cell Maturation That Suppresses Th2 Cytokines When Co-Cultured with CD4+ Cells. Iraqi J. Vet. Sci. 2023, 37, 515–523. [Google Scholar] [CrossRef]
- Muñoz-Caro, T.; Lendner, M.; Daugschies, A.; Hermosilla, C.; Taubert, A. NADPH Oxidase, MPO, NE, ERK1/2, P38 MAPK and Ca2+ Influx Are Essential for Cryptosporidium parvum-Induced NET Formation. Dev. Comp. Immunol. 2015, 52, 245–254. [Google Scholar] [CrossRef]
- Wyatt, C.R.; Lindahl, S.; Austin, K.; Kapil, S.; Branch, J. Response of T Lymphocytes from Previously Infected Calves to Recombinant Cryptosporidium parvum P23 Vaccine Antigen. J. Parasitol. 2005, 91, 1239–1242. [Google Scholar] [CrossRef]
- Yang, Z.; Fu, Y.; Gong, P.; Zheng, J.; Liu, L.; Yu, Y.; Li, J.; Li, H.; Yang, J.; Zhang, X. Bovine TLR2 and TLR4 Mediate Cryptosporidium parvum Recognition in Bovine Intestinal Epithelial Cells. Microb. Pathog. 2015, 85, 29–34. [Google Scholar] [CrossRef]
- Li, R.W.; Hou, Y.; Li, C.; Gasbarre, L.C. Localized Complement Activation in the Development of Protective Immunity against Ostertagia ostertagi Infections in Cattle. Vet. Parasitol. 2010, 174, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Mendez, J.; Sun, D.; Tuo, W.; Xiao, Z. Bovine Neutrophils Form Extracellular Traps in Response to the Gastrointestinal Parasite Ostertagia ostertagi. Sci. Rep. 2018, 8, 17598. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Si, H.; Wu, S.-W.; Mendez, J.O.; Zarlenga, D.; Tuo, W.; Xiao, Z. Characterization of IL-10-Producing Neutrophils in Cattle Infected with Ostertagia ostertagi. Sci. Rep. 2019, 9, 20292. [Google Scholar] [CrossRef] [PubMed]
- Bąska, P.; Zawistowska-Deniziak, A.; Zdziarska, A.M.; Wasyl, K.; Wiśniewski, M.; Cywińska, A.; Klockiewicz, M.; Januszkiewicz, K.; Wędrychowicz, H. Fasciola hepatica—The Pilot Study of in Vitro Assessing Immune Response against Native and Recombinant Antigens of the Fluke. Acta Parasitol. 2013, 58, 453–462. [Google Scholar] [CrossRef]
- Trivilin, L.O.; de Sousa, D.R.; Nunes, L.d.C.; Martins, I.V.F. Imnunophenotyping of inflammatory response in liver of the naturally and chronically infected cattle by Fasciola hepatica. Braz. J. Vet. Med. 2013, 35, 41–47. [Google Scholar]
- Brown, W.C.; Davis, W.C.; Dobbelaere, D.A.; Rice-Ficht, A.C. CD4+ T-Cell Clones Obtained from Cattle Chronically Infected with Fasciola hepatica and Specific for Adult Worm Antigen Express Both Unrestricted and Th2 Cytokine Profiles. Infect. Immun. 1994, 62, 818–827. [Google Scholar] [CrossRef]
- Mendes, E.A.; Mendes, T.A.d.O.; dos Santos, S.L.; Menezes-Souza, D.; Bartholomeu, D.C.; Martins, I.V.F.; Silva, L.M.; Lima, W.d.S. Expression of IL-4, IL-10 and IFN-γ in the Liver Tissue of Cattle That Are Naturally Infected with Fasciola hepatica. Vet. Parasitol. 2013, 195, 177–182. [Google Scholar] [CrossRef]
- Holmgren, S.; Hagberg Gustavsson, M.; Lundén, A.; Wattrang, E. Cytokine mRNA Expression in Bronchoalveolar Lavage Cells during Dictyocaulus viviparus Infection in Calves. Parasite Immunol. 2014, 36, 78–86. [Google Scholar] [CrossRef]
- Johnson, D.R.; Sales, J.; Matthews, J.B. Local Cytokine Responses in Dictyocaulus viviparus Infection. Vet. Parasitol. 2005, 128, 309–318. [Google Scholar] [CrossRef]
- Kooyman, F.N.J.; Ploeger, H.W.; Höglund, J.; VAN Putten, J.P.M. Differential N-Glycan- and Protein-Directed Immune Responses in Dictyocaulus viviparus-Infected and Vaccinated Calves. Parasitology 2007, 134, 269–279. [Google Scholar] [CrossRef]
- Cabanelas, E.; Panadero, R.; Baumman, A.; Alves, M.P.; Summerfield, A.; García-Dios, D.; Díaz, P.; Remesar, S.; Fernández, G.; Morrondo, M.P.; et al. Cytokine Expression in Bovine PBMC Cultures Stimulated with Hypoderma lineatum Antigens. Vet. Parasitol. 2020, 283, 109165. [Google Scholar] [CrossRef]
- Dacal, V.; Colwell, D.D.; López, C.; Pérez, V.; Vázquez, L.; Cienfuegos, S.; Díaz, P.; Morrondo, P.; Díez-Baños, P.; Panadero, R. Local and Systemic Cytokine Responses during Larval Penetration in Cattle Experimentally Infested with Hypoderma lineatum (Diptera: Oestridae). Vet. Immunol. Immunopathol. 2009, 131, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Dacal, V.; López, C.; Colwell, D.D.; Vázquez, L.; Díaz, P.; Morrondo, P.; Díez, P.; Panadero, R. Immunohistochemical Characterization of Inflammatory Cells in the Skin of Cattle Undergoing Repeated Infestations with Hypoderma lineatum (Diptera: Oestridae) Larvae. J. Comp. Pathol. 2011, 145, 282–288. [Google Scholar] [CrossRef] [PubMed]
- López, C.; Colwell, D.D.; Panadero, R.; Paz, A.; Pérez, J.; Morrondo, P.; Díez, P.; Cascallana, J.L.; Santamaría, V.; Bravo, A. Skin Immune Responses in Cattle after Primary and Secondary Infections with Hypoderma lineatum (Diptera: Oestridae) Larvae. Vet. Immunol. Immunopathol. 2005, 108, 285–294. [Google Scholar] [CrossRef]
- Panadero, R.; López, C.; Vázquez, L.; Díaz, P.; Pérez, A.; Cabanelas, E.; Morrondo, P.; Díez-Baños, P. Effect of Reinfestations on Systemic Immune Responses in Cattle Naturally Infested by Hypoderma Sp. (Diptera: Oestridae). Vet. Parasitol. 2013, 193, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.; Jackson, L.; de Vos, A.; Jorgensen, W. Babesiosis of Cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef]
- Brown, W.C.; Logan, K.S.; Wagner, G.G.; Tetzlaff, C.L. Cell-Mediated Immune Responses to Babesia bovis Merozoite Antigens in Cattle Following Infection with Tick-Derived or Cultured Parasites. Infect. Immun. 1991, 59, 2418–2426. [Google Scholar] [CrossRef]
- Muñoz-Caro, T.; Mena Huertas, S.J.; Conejeros, I.; Alarcón, P.; Hidalgo, M.A.; Burgos, R.A.; Hermosilla, C.; Taubert, A. Eimeria bovis-Triggered Neutrophil Extracellular Trap Formation Is CD11b-, ERK 1/2-, P38 MAP Kinase- and SOCE-Dependent. Vet. Res. 2015, 46, 23. [Google Scholar] [CrossRef]
- Gómez-Muñoz, M.T.; Canals-Caballero, A.; Almeria, S.; Pasquali, P.; Zarlenga, D.S.; Gasbarre, L.C. Inhibition of Bovine T Lymphocyte Responses by Extracts of the Stomach Worm Ostertagia ostertagi. Vet. Parasitol. 2004, 120, 199–214. [Google Scholar] [CrossRef]
Type | Site | Function | Serum (mg/mL) |
---|---|---|---|
IgM | Secondary lymphoid organs | Primary response to pathogens Complement fixation Virus neutralization Bacteria agglutination | 2.5–4.0 |
IgG | Spleen Lymph nodes Bone marrow | Secondary response to pathogens Neonatal immunity | 17–27 |
IgA | Body surfaces | Mucosal immunity Proteolysis protection Virus/bacteria neutralization | 0.1–0.5 |
IgE | Body surfaces | Parasitic response | |
IgD | Attached to B cells | Regulatory response |
Type | Viral Agent | Immune Response | References |
---|---|---|---|
RNA | Bovine Viral Diarrhea Virus (BVDV) Cytopathic (cp) Non-cytopathic (ncp) | Increased TLR3, type I IFN, and IL-12 mRNA in monocytes 1 h post-infection (ncp), and TLR7 mRNA in monocytes 24 h post-infection (ncp, cp). IFN-β production via activation of IRF1, IRF7, and NF-κB. Proliferation of CD4+ and CD8+. Decreased MHC-I, MHC-II, and CD86 expression on Mo-DCs (ncp) and monocytes (cp). Modulation of PRRs; inhibition of type I IFN via Npro, Erns, NS4B, and DDIT3; suppression of APC function and MHC expression; alteration of NF-κB; autophagy/apoptosis induction (Cytopathic BVDV); evasion of innate and adaptive immunity. | [91] |
Bovine Respiratory Syncytial Virus (BRSV) | γδ T cells response through TLR3 and TLR7 ligands; production of chemokines CCL2 and CCL3. Inhibition of CD8+ T cells and IFN-γ responses by promoting Th2 polarization and IgE production. Long-lasting humoral immunity but weak mucosal and no detectable T cell responses. Immunity evasion via NS1/NS2 inhibition of type I IFN, NF-κB sequestration, Th2/IL-17 polarization, DC dysfunction, and secretion of decoy G protein (sG), which suppresses effective CD8+ and Th1 responses. | [28,55,92,93] | |
Bovine Parainfluenza Virus Type 3 (BPIV-3) | CD4+ and CD8+ cells and Th1 cytokine production. TNFα, IL1β and IL6 upregulation upon infection. Infected alveolar macrophages suppress lymphocyte proliferation via cell contact and abortive infection, impairing adaptive immune response. Activation of p38 MAPK via MKK3 upregulation in host cells, enhancing viral replication and contributing to immunosuppression. | [94,95,96,97] | |
Bovine Leukemia Virus (BLV) | CD5+ IgM+ B cells transformation via Tax; evasion of CTL responses by limiting Tax expression. Cytokine imbalance, T cell exhaustion, altered B cell and monocyte function, reduced antibody and phagocytic responses, impaired MHC-II response. Suppression of IgM production via downregulation of BLIMP1 and BCL6 in IgM+ B cells. Alteration of type I IFN signaling and antiviral gene expression in mammary epithelial cells. Treg/Breg-driven immune suppression in cows with persistent lymphocytosis. Cytokine expression alteration in blood and milk; high proviral load in PBMCs (peripheral blood mononuclear cells) associated with lower IL-12/IL-6 and increased IL-10, contributing to mastitis susceptibility. Immune suppression and upregulation of proliferation genes. | [98,99,100,101,102,103,104] | |
Foot-and-Mouth Disease Virus (FMDV) | Immune evasion via structural proteins (VP0–VP4) targeting IRF3, VISA, JAK–STAT and autophagy. Immune evasion via non-structural proteins (Lpro, 2B/3A/3C) that degrade PRRs and block IFN, NF-κB, autophagy and JAK–STAT signaling. | [105,106] | |
Bluetongue Virus (BTV) | Induction of type I IFN and TNF-α, IL-1β, IL-8, CCL2 and E-selectin. Induction of Th2 immune response (IL-4, IgE) in PBMCs. Suppression of innate and Th1 cytokines (TNF-α, IFN-γ, IL-12). Inhibition of type I IFN signaling via NS3/NS4/VP3. | [107,108,109] | |
DNA | Lumpy Skin Disease Virus (LSDV) | IFN-γ production and neutralizing antibodies (IgM followed by IgG). Activation of CD4+ and CD8+. Increased IFN-γ, TNF-α, decreased IL-10. ORF127 inhibits IFN-β via TBK1 (less ubiquitination and phosphorylation); blocks cGAS-STING. | [110,111,112] |
Bovine herpesvirus type 1 (BoHV-1) | Antibodies (anti-gB/gC/gD/gH), CD8+ activation, inflammasome formation. Inhibition of IFN responses, CD8+ and CD4+ T cell function and cell-mediated immunity. bICP0 inhibits IFN-β via IRF3 degradation and disrupts PML bodies. bICP27 reduces IFN-β1/β3 expression via TBK1-STING interference. gG binds chemokines, impairs immune cell trafficking. gN blocks TAP and impairs MHC-I presentation. VP8 inhibits STAT1 nuclear translocation and blocks IFN-γ/α/β signaling. Inhibition of IFN-β, promoting MAVS ubiquitination and impairing relation between IRF3 and CBP/p300. Tegument protein UL3 inhibits type I IFN by promoting STING degradation; enhanced ATG101 expression; strengthens ATG101–STING interaction. | [113,114,115] | |
Bovine Papillomavirus (BPV) | RIG-I and MDA5 activation; MAVS-TBK1-IRF3 signaling and type I IFN production. MHC-I, TRIM25, RIG-I, MDA5 and Sec13 downregulation through E5, reducing IRF3 activation and type I IFN response. | [116,117] |
Type | Bacterial Agent | Immune Response | References |
---|---|---|---|
Gram + | Mycobacterium bovis | Th1 response, macrophage activation, NO production, γδ T response, IgG2 production. Upregulation of IL-1α, IL-1β, IL-10, IL-17α, TNF-α, IFN-γ, IL1R1, TLR2, TLR4, IRF5 and Arg1. Downregulation of MHC-II and IL-4. Inhibition of phagosome-lysosome fusion. Memory B cells of IgM, IgG, and IgA isotypes. iNOS, IL-22, and IFN-γ expression in bovine PBMC cultures. Mb04-303 (avirulent strain) induces type I IFN signaling, greater phagosome membrane damage. Shift from Th1 to Th2 response, CD8+ reduction, atypical memory B cells. KEAP1-NFE2L2 pathway downregulation, impairing antigen presentation, inflammasome activity and reducing IL-1β production. | [119,120,121,122,123,124,125,126,127,128] |
Staphylococcus aureus | TLR-2 activation, IL-1β, IL-6, IL-8 and TNF-α production. Mild IL-1β, IL-12 and IFN-γ production and no TNF-α or IL-8 in milk. NF-κB pathway involvement in mammary epithelial cells. SAgs activate 5-20% of T cells by binding to MHC II and TCR Vβ regions, triggering massive Th1/Th17 cytokine production; APCs stimulation; MAIT, γδ T, NK, B and MAST cells activation. Possible modulation of APCs via TLR2/NOD1 pathways. GTB/ST8 strain secretomes enhance PBMC promotes IL-1β, STAT1 and miR-155-5p expression. NF-κB inhibition, reducing TNF-α, TAP, NO and PRL signaling. Decreased α5β1 integrin levels, reduced immune response via PRL, AP-1 inhibition. IκB/NF-κB signaling inhibition via wnt/β-catenin activation; promotion of cytoskeletal rearrangement through Rho GTPases. Impairs Nrf2 activation via p62/SQSTM1 phosphorylation. A persistent strain showed delayed inflammation, reduced early cytokine release (IL-1β, IL-6) and promoted IgG2 response. SAgs promote IL-10, PD-L1, IDO and induce apoptosis in monocytes/macrophages via TNF-α; impaired γδ/MAIT responses, neutrophil and complement function without T cell activation. GTS/ST398 strain secretome drastically reduces PBMC viability. Disruption of late endosomes and lysosomes through an effector of Rab11. | [120,121,122,123,124,125,126,127,128,129,130] | |
Streptococcus agalactiae | Upregulation of granulocyte adhesion (ST103) and Th1/Th2 cell activation (ST12). ROS and NETs production at low multiplicity of infection. IL-1β, IL-8, IL-12β, and TNF-α production in milk, local immune response in udder. Downregulation of phagosome formation (ST103) and complement activation (ST12). Suppression of ROS, NETs, and neutrophil necrosis at high multiplicity of infection; immune evasion via cytotoxicity. IL-10 and TGF-β activation. | [131,132,133,134] | |
Gram − | Brucella abortus | MIP-1α/β, IL-8, and RANTES upregulated. TLR2, TLR4 and TLR9 activation. IFN-γ, IL-12, and TNF- α secretion, macrophage activity via ROS/RNS, and naive CD4 T cell stimulation; DCs maturation dependent on caspase-2 and TLR6. DCs activation via TLR7 (IL-12) and TLR3/TLR7 (IL-6, IP-10), promoting MPK/NF-κB and type I IFN activation. Production of low-endotoxic LPS to escape TLR4. TNF-α suppression early in infection reduced PAMP expression. Decreased TLR-dependent response. DCs maturation inhibition via TLR2 interference. UPR via STING and c-di-GMP, promoting IFN-β. Phagolysosome fusion evasion via VirB; production of low-endotoxic LPS to escape TLR4; TcpB production to inhibit NF-κB; caspase degradation; reduced IL-1β; MHC-I and MHC-II inhibition. | [135,136,137,138,139,140,141,142,143] |
Histophilus somni | Neutrophil and macrophage extracellular traps (ETs) formation. IgG2 production; limited cell-mediated immunity. Resistance to NO levels. Inhibits superoxide anion (O2−) produced by alveolar macrophages and neutrophils. May escape ETs through degradation via DNases. LOS, Ig-binding proteins, MOMP, and other OMPs interfere with immune detection and phagocyte inhibition; induce macrophage death; and cause antigenic variation. | [144,145,146,147] | |
Salmonella spp. | S. Typhimurium in the bovine intestinal mucosa activates various signaling pathways, including MAPK, mTOR, and TGF-β. Increased CD14 and CD18, phagocytosis, and oxidative burst in neutrophils and monocytes upon exposure to different serovars. Cytokine production differs among serovars: highest TNF-α in S. Enteritidis and S. Typhimurium; IL-8 in S. Dublin. DCs and macrophages are key players in the immune response, although macrophages exhibit a stronger inflammatory response (IL-1β, IL-6) compared to DCs. S. Dublin-infected cells show elevated levels of MHCII and CD40. | [148,149,150,151] | |
Campylobacter spp. | Neutrophil surface activity and phagocytosis enhanced by IgG. Transient proinflammatory response (IL-1β, IL-8); increased IFN-γ over time. Lack of IgA-mediated opsonization and TNF-α response. | [152,153] | |
Mannheimia haemolytica | Macrophage and neutrophil activation via LPS and leukotoxin (LKT); increased TNF-α, IL-1β, IL-6, IL-8, PG, and NO; membrane proteins like PlpE, and OmpA contribute to immune activation. LKT binds to CD18 receptor and has a cytolytic effect on leukocytes. Phagocytosis and lysis inhibition; LPS-LKT complexes enhance cytotoxicity; neutrophil suppression via OMPs; leukocyte modulation via metabolites; IgG1 hydrolysis. Bacterial IgA1 and IgA2 proteases cleave bovine IgA. | [154,155,156,157] | |
Pasteurella multocida | LPS detection via TLR4; NF-κB activation; IL-1α, IL-6, TNF-α, IFN-γ, and IL-12 production. TLR4 and NF-κB activation, TNF-α, IL-1β, IL-8, and NO production, neutrophil/macrophage recruitment, IgA and IgG response. NETs formation; iNOS induced in lung cells. IgA and IgG proteases, capsule interference with phagocytosis and complement, LPS/LKT mediated leukocyte lysis. LPS can trigger leukocyte lysis via mitochondrial dysfunction and caspase activation. | [158,159,160,161] | |
Escherichia coli | TNF-α, IL-1β, IL-8, IL-12, IFN-γ and IL-10 production; early neutrophil and complement activation (C5a); augmented sCD14 and LBP; TLR4-mediated signaling. Strong TLR2/4 upregulation, NF-κB activation, and cytokine release (TNF-α, IL-1β, IL-6, IL-8). Strain-dependent differences in cytokine production (TNF-α, IL-6, IL-17). Gb3/CD77 receptor expression in lymphocytes and epithelial cells. Neutrophil recruitment; APPs secretion. TNF-α, IL-6, MCP-1, MIP-1α/β, IP-10, LBP, Hp, and SAA production. Unlike milk, colostrum LPS-IgG complexes inhibit LPS endotoxic activity and ROS production. Recognition via TLR2, TLR4, and NLRP3; MAPK and NF-κB activation; PGD2 and IL production. IL-10 limits TNF-α and IFN-γ; sCD14+ LBP enhances detection but also regulates response. Chronic infection implies reduced IRF1, CD83, IL-1α, IL-6, IL-8 and CCL20 expression than acute infection. TLR4 downregulation; strain-specific immune modulation. Shiga toxins (Stx) bind to Gb3+ cells, blunt T cell activation. | [120,162,163,164,165,166,167,168,169] | |
Leptospira spp. | NETs formation; ROS, RNS, IL-1β, IL-8, MIP-1α and TNF production. LPS stimulates IL-1β, TNF-α and NO-mediated apoptosis. High IL-6 levels in infected uterine tissues. Does not trigger TLR-mediated inflammation in endometrial cells. TLR2 activation (not TLR4); inflammasome activation without causing pyroptosis. | [170,171,172,173] | |
Lacks cell wall | Mycoplasma bovis | Moderate IL-1β, IL-6, IL-8, TNF-α, TLR2 and TLR4 upregulation in bMECs. Humoral and cell-mediated immunity; increased CD4+, CD8+ and γδ T-cells and B cell proliferation; IgG1 and IgA production; mixed Th1/Th2 profile; high IL-2, IL-4, IL-12 and low IFN-γ. Increased IL-36A, IL-27, IFN-γ, IL-17, BATF and SLAMF1/7 transcription in PBMCs. Increased IL-1β, IL-6, IL-8, IL-12p40, and IL-17A expression in synovial tissues and fluid. Macrophage METs via NADPH oxidase-dependent ROS production. Weaken Th1 response; altered cytokine production; opsonization evasion; biofilm formation; Ig degrading proteins (MIB/MIP); phagocyte impairment and TLR interference; TNF-α and IFN-γ suppression; suboptimal IL-1 response. MET formation leads to cell lysis independent of apoptosis. | [174,175,176,177,178,179] |
Type | Agent | Immune Response | References |
---|---|---|---|
Protozoa | Babesia bovis | Macrophage activation via IFN-γ and parasite derived products, NO production. IgG2 antibodies production via IFN-γ. RAP-1 (rhoptry-associated protein 1) induces strong B and T cell responses, produces IFN-γ and a dominant Th1 response. Early activation of IL-12 and IFN-γ transcripts in the spleen in calves; this response is delayed in adults, which showed IL-10 expression. High CD8+ T cell expression in the spleens of both calves and adults. Attenuated R1A strains activate macrophages via TLR2, COX-2 expression, and proinflammatory cytokines. VP2 strains may evade innate immunity by suppressing macrophage activation. | [190,191,192,193,194] |
Eimeria spp. | Polymorphonuclear neutrophils (PMN) interact with sporozoites via engulfment or filopodia and upregulate proinflammatory genes (IL-6, TNF-α, iNOS, MCP-1, GROα). PMN triggers NET formation (enhanced by CD11b expression), oxidative burst, and phagocytosis. Increased transcription of IL-8, IP-10, and IL-12. CD4+ and CD8+ are involved. γδ T cells also participate, especially during primary infection. Upregulation of IFN-γ and IL-2 (CD4+) during primary infection. | [195,196,197,198] | |
Tritrichomonas foetus | IgG2 antibodies present in serum, IgG1 antibodies in vaginal mucus. Neutrophils rapidly kill the parasite via trogocytosis. Apoptosis induction in bovine vaginal epithelial cells via cysteine protease 30 (CP30) release. | [199,200,201] | |
Neospora caninum | Th1 response with IFN-γ and IL-17 production. This response is reduced during pregnancy. NLRP3 inflammasome activation with production of IL-1β and IL-18. CD4+, CD8+, γδ T, and NK cells involvement. IgG antibodies observed in infected heifers and their colostrum. BMAP28 is in peripheral blood mononuclear cells, colostrum, and umbilical cord. TLR7 and IL-10 expression in the umbilical cord. IgG2 in calves after taking the colostrum. | [202,203,204,205,206,207] | |
Cryptosporidium parvum | Upregulation of TLR2 and TLR4 upon infection. NF-κB activation and production of IL-6, IL-8, IL-10, IL-12, and TNF-α. Enhanced expression of TLR4, CD80, CD86, and MHC-II in DCs, promoting a Th1 response with IFN-γ and IgG2 production. NETs formation in neutrophils, involving NADPH oxidase, neutrophil elastase, and myeloperoxidase. | [208,209,210,211] | |
Helminths | Ostertagia ostertagi | IL-4 and IL-1β upregulation. Neutrophils release NETs and produce IL-10. Products from the L4 can suppress T cell activation. | [212,213,214] |
Fasciola hepatica | Th2 response with IL-4 and IL-5 production, and an increase in eosinophils. Altered cytokine profiles, including reduced IFN-γ and TNF-α in monocytes and macrophages. Greater infiltration of CD3+ T cells, CD79α+ B cells, and IgG+ plasma cells in the left hepatic lobe. | [215,216,217,218] | |
Dictyocaulus viviparus | Specific antibody response, including IgG1 and IgE. Upregulation of IL-2, IL-4, IL-5, IL-10, IL-12p35, IL-13 and IFN-γ. | [219,220,221] | |
Arthropods | Hypoderma lineatum | CD4+ T cells are predominant during primary infestation; CD8+ and CD3+ T cells increase at 48 h post-infection (hpi). Both Th1 and Th2 cytokines are involved. IL-4 levels increase in reinfested individuals. IFN-γ increases at 6 hpi, while IL-10 peaks at 48 hpi. Hypodermin B (HB) reduces IFN-γ expression and stimulates IL-10. IgG1 production (especially in presence of warbles); IgG2 and IgM levels show irregular patterns. | [222,223,224,225,226] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesta, A.; Marín-García, P.J.; Llobat, L. A Comprehensive Review of the Bovine Immune Response to Pathogens. Int. J. Mol. Sci. 2025, 26, 8461. https://doi.org/10.3390/ijms26178461
Lesta A, Marín-García PJ, Llobat L. A Comprehensive Review of the Bovine Immune Response to Pathogens. International Journal of Molecular Sciences. 2025; 26(17):8461. https://doi.org/10.3390/ijms26178461
Chicago/Turabian StyleLesta, Ana, Pablo Jesús Marín-García, and Lola Llobat. 2025. "A Comprehensive Review of the Bovine Immune Response to Pathogens" International Journal of Molecular Sciences 26, no. 17: 8461. https://doi.org/10.3390/ijms26178461
APA StyleLesta, A., Marín-García, P. J., & Llobat, L. (2025). A Comprehensive Review of the Bovine Immune Response to Pathogens. International Journal of Molecular Sciences, 26(17), 8461. https://doi.org/10.3390/ijms26178461