Tracing the Invasion of Takecallis nigroantennatus (Hemiptera, Aphididae) on Cold-Hardy Bamboo Fargesia Using Mitochondrial COI Data
Abstract
1. Introduction
2. Results
2.1. Distributional Patterns and Potential Plant–Insect Time Lag
2.2. Molecular Phylogeny and Network Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. DNA Isolation, Amplification and Sequencing
4.3. Sequence Edition and Alignment
4.4. Phylogenetic Analysis and Haplotype Network Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, H.R.; Mathakia, R.; Mangroliya, U.R.; Mandaliya, V.B. Sustainable bamboo: Technological innovations and patent insights for a greener future. Adv. Bamboo Sci. 2025, 10, 100127. [Google Scholar] [CrossRef]
- Lucas, S. Non-Invasive, Cold-Hardy Clumping Bamboos: The Genus Fargesia. Comb. Proc. Int. Plant Propagators’ Soc. 2009, 59, 454–460. [Google Scholar]
- van der Palen, J. Jiuzhaigou—Der “Rote Bambus”. Gartenpraxis 2004, 6, 29–33. [Google Scholar]
- Gielis, J.; Oprins, J. Identifying new Fargesia introductions and predicting their cold hardiness using AFLP markers. In Proceedings of the VIII World Bamboo Congress, Rio De Janeiro, Brazil, 13–18 November 2007; Volume 6–56, pp. 1–12. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids of the World’s Plants: An Online Identification and Information Guide. Available online: https://www.aphidsonworldsplants.info (accessed on 12 May 2025).
- Wieczorek, K.; Sawka-Gądek, N. DNA barcoding and molecular phylogenetics revealed a new cryptic bamboo aphid species of the genus Takecallis (Hemiptera: Aphididae). Appl. Sci. 2023, 13, 7798. [Google Scholar] [CrossRef]
- Wieczorek, K.; Ball, K.; Durak, R.; Borowiak-Sobkowiak, B. New alien and invasive bamboo aphid species of the genus Takecallis (Hemiptera: Aphididae) recorded in Poland—Morphological and molecular identity. J. Plant Prot. Res. 2024, 64, 69–76. [Google Scholar] [CrossRef]
- Borowiak-Sobkowiak, B.; Raut, A.; Durak, R.; Wieczorek, K. Takecallis nigroantennatus Wieczorek (Hemiptera: Aphididae)—Implications of the ability to holocycle and overwintering of eggs on the spread of a potentially invasive bamboo aphid species. Acta Sci. Pol. Hortorum Cultus 2024, 23, 55–69. [Google Scholar] [CrossRef]
- Hulme, P.E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 2021, 4, 666–679. [Google Scholar] [CrossRef]
- Hinsley, A.; Hughes, A.C.; van Valkenburg, J.; Stark, T.; van Delft, J.; Sutherland, W.; Petrovan, S.O. Understanding the environmental and social risks from the international trade in ornamental plants. BioScience 2025, 75, 222–239. [Google Scholar] [CrossRef] [PubMed]
- Fenn-Moltu, G.; Ollier, S.; Caton, B.; Liebhold, A.M.; Nahrung, H.; Pureswaran, D.S.; Turner, R.M.; Yamanaka, T.; Bertelsmeier, C. Alien insect dispersal mediated by the global movement of commodities. Ecol. Appl. 2022, 33, e2721. [Google Scholar] [CrossRef] [PubMed]
- Bertelsmeier, C.; Bonnamour, A.; Brockerhoff, E.G.; Pyšek, P.; Skuhrovec, J.; Richardson, D.M.; Liebhold, A.M. Global proliferation of nonnative plants is a major driver of insect invasions. BioScience 2024, 74, 770–781. [Google Scholar] [CrossRef]
- Couer d’Acier, A.; Perez Hidalgo, N.; Petrović-Obradović, O. Aphids (Hemiptera, Aphididae) Chapter 9.2. BioRisk 2010, 4, 435–474. [Google Scholar] [CrossRef]
- Wieczorek, K.; Chłond, D. The first detection of the alien species: Green-peach aphid Myzus (Nectarosiphon) persicae (Insecta, Hemiptera, Aphididae) in the Svalbard archipelago. Polar Biol. 2019, 42, 1947–1951. [Google Scholar] [CrossRef]
- Wieczorek, K.; Chłond, D. Hop-on, hop-off: The first record of the alien species crescent-marked lily aphid (Neomyzus circumflexus) in Greenland. Polar Res. 2020, 39, 3710. [Google Scholar] [CrossRef]
- Kanturski, M.; Lee, Y.; Depa, Ł. New records of the alien aphid species Tinocallis (Sappocallis) takachihoensis in central and northern Europe (Hemiptera, Aphididae, Calaphidinae). ZooKeys 2018, 730, 1–17. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, K.; Bugaj-Nawrocka, A.; Borowiak-Sobkowiak, B.; Endrestøl, A.; Ravn, H.P.; Solarz, W.; Durak, R. Adapting to change: Exploring the distribution dynamics of the alien and potentially invasive aphid Cinara curvipes in the context of global warming. Eur. Zool. J. 2025, 92, 258–279. [Google Scholar] [CrossRef]
- Lesieur, V.; Lombaert, E.; Guillemaud, T.; Courtial, B.; Strong, W.; Roques, A.; Auger-Rozenberg, M.-A. The rapid spread of Leptoglossus occidentalis in Europe: A bridgehead invasion. J. Pest Sci. 2019, 92, 189–200. [Google Scholar] [CrossRef]
- Sun, X.; Tao, J.; Roques, A.; Luo, Y. Invasion history of Sirex noctilio based on COI sequence: The first six years in China. Insects 2020, 11, 111. [Google Scholar] [CrossRef]
- Gariepy, T.D.; Musolin, D.L.; Konjević, A.; Karpun, N.N.; Zakharchenko, V.Y.; Zhuravleva, E.N.; Tavella, L.; Bruin, A.; Haye, T. Diversity and distribution of COI haplotypes of the brown marmorated stink bug, Halyomorpha halys, along the eastern front of its invasive range in Eurasia. NeoBiota 2021, 68, 53–77. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Wang, S.; Jiang, K.; Zhou, J.; Zhu, R.; Gao, C.; Bu, W.; Xue, H. Out of East Asia: Early warning of the possible invasion of the important bean pest stalk-eyed seed bug Chauliops fallax. Insects 2023, 14, 433. [Google Scholar] [CrossRef] [PubMed]
- Dlugosch, K.M.; Parker, I.M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 2007, 17, 431–449. [Google Scholar] [CrossRef]
- Kołodziejczyk, J.; Fijarczyk, A.; Porth, I.; Robakowski, P.; Vella, N.; Vella, A.; Kloch, A.; Biedrzycka, A. Genomic investigations of successful invasions: The picture emerging from recent studies. Biol. Rev. Camb. Philos. Soc. 2025, 100, 1396–1418. [Google Scholar] [CrossRef]
- Reaser, J.K.; Burgiel, S.W.; Kirkey, J.; Brantley, K.A.; Veatch, S.D.; Burgos-Rodríguez, J. The early detection of and rapid response (EDRR) to invasive species: A conceptual framework and federal capacities assessment. Biol. Invasions 2020, 22, 1–19. [Google Scholar] [CrossRef]
- Sandercock, B.K.; Davey, M.L.; Endrestøl, A.; Blaalid, R.; Fossøy, F.; Hegre, H.; Majaneva, M.A.M.; Often, A.; Åström, J.; Jacobsen, R.M. Designing a surveillance program for early detection of alien plants and insects in Norway. Biol. Invasions 2023, 25, 917–936. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Turner, R.M.; Bartlett, C.R.; Bertelsmeier, C.; Blake, R.E.; Brockerhoff, E.G.; Causton, C.; Matsunaga, J.N.; Mckamey, S.H.; Nahrung, H.F.; et al. Why so many Hemiptera invasions? Divers. Distrib. 2024, 30, 313911. [Google Scholar] [CrossRef]
- Figueroa, C.; Simon, J.C.; Le Gallic, J.F.; Prunier-Leterme, N.; Briones, L.M.; Dedryver, C.-A.; Niemeyer, H.M. Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae. Heredity 2005, 95, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Nibouche, S.; Fartek, B.; Mississipi, S.; Delatte, H.; Reynaud, B.; Costet, L. Low genetic diversity in Melanaphis sacchari aphid populations at the worldwide scale. PLoS ONE 2014, 9, e106067. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.S.; Mondor, E.B. Evidence for an invasive aphid “superclone”: Extremely low genetic diversity in oleander aphid (Aphis nerii) populations in the southern United States. PLoS ONE 2011, 6, e17524. [Google Scholar] [CrossRef]
- Dransfield, R.D.; Brightwell, R. Takecallis nigroantennata. Influential Points. 2025. Available online: https://influentialpoints.com/Gallery/Takecallis_nigroantennata_hardy-bamboo_aphid.htm (accessed on 26 May 2025).
- MacLachlan, M.J.; Liebhold, A.M.; Yamanaka, T.; Springborn, M.R. Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 2021, 7, eabj1012. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Bensasson, D.; Zhang, D.X.; Hartl, D.L.; Hewitt, G.M. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 2001, 16, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Buhay, J.E.; Whiting, M.F.; Crandall, K.A. Many species in one: DNA barcoding overestimates species numbers when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 2008, 105, 13486–13491. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.-I.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Li, Q.; Deng, J.; Chen, C.; Zeng, L.; Lin, X.; Cheng, Z.; Qiao, G.; Huang, X. DNA barcoding subtropical aphids and implications for population differentiation. Insects 2019, 11, 11. [Google Scholar] [CrossRef]
- Coeur D’acier, A.; Cruaud, A.; Artige, E.; Genson, G.; Clamens, A.-L.; Pierre, E.; Hudaverdian, S.; Simon, J.-C.; Jousselin, E.; Rasplus, J.-Y. DNA barcoding and the associated PhylAphidB@se website for the identification of European aphids (Insecta: Hemiptera: Aphididae). PLoS ONE 2014, 9, e97620. [Google Scholar] [CrossRef]
- Gwiazdowski, R.A.; Foottit, R.G.; Maw, H.E.; Hebert, P.D. The Hemiptera (Insecta) of Canada: Constructing a reference library of DNA barcodes. PLoS ONE 2015, 10, e0125635. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.; Ratnasingham, S.; Zakharov, E.V.; Telfer, A.C.; Levesque-Beaudin, V.; Milton, M.A.; Pedersen, S.; Jannetta, P.; deWaard, J.R. Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150333. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, W.; Kanturski, M.; Foottit, R.G.; Akimoto, S.I.; Lee, S. Cryptic diversity of the subfamily Calaphidinae (Hemiptera: Aphididae) revealed by comprehensive DNA barcoding. PLoS ONE 2017, 12, e0176582. [Google Scholar] [CrossRef] [PubMed]
p-Distance | Standard Error | |
---|---|---|
T. nigroantennatus | 0 | 0 |
T. taiwana | 0.002 | 0.0004 |
T. sasae | 0 | 0 |
T. arundicolens | 0.0372 | 0.0055 |
T. arundinariae | 0.005 | 0.0015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieczorek, K.; Chłond, D.; Durak, R.; Elliot, M.; Endrestøl, A.; Van der Palen, J.; Borowiak-Sobkowiak, B.; Sawka-Gądek, N. Tracing the Invasion of Takecallis nigroantennatus (Hemiptera, Aphididae) on Cold-Hardy Bamboo Fargesia Using Mitochondrial COI Data. Int. J. Mol. Sci. 2025, 26, 8608. https://doi.org/10.3390/ijms26178608
Wieczorek K, Chłond D, Durak R, Elliot M, Endrestøl A, Van der Palen J, Borowiak-Sobkowiak B, Sawka-Gądek N. Tracing the Invasion of Takecallis nigroantennatus (Hemiptera, Aphididae) on Cold-Hardy Bamboo Fargesia Using Mitochondrial COI Data. International Journal of Molecular Sciences. 2025; 26(17):8608. https://doi.org/10.3390/ijms26178608
Chicago/Turabian StyleWieczorek, Karina, Dominik Chłond, Roma Durak, Matt Elliot, Anders Endrestøl, Jos Van der Palen, Beata Borowiak-Sobkowiak, and Natalia Sawka-Gądek. 2025. "Tracing the Invasion of Takecallis nigroantennatus (Hemiptera, Aphididae) on Cold-Hardy Bamboo Fargesia Using Mitochondrial COI Data" International Journal of Molecular Sciences 26, no. 17: 8608. https://doi.org/10.3390/ijms26178608
APA StyleWieczorek, K., Chłond, D., Durak, R., Elliot, M., Endrestøl, A., Van der Palen, J., Borowiak-Sobkowiak, B., & Sawka-Gądek, N. (2025). Tracing the Invasion of Takecallis nigroantennatus (Hemiptera, Aphididae) on Cold-Hardy Bamboo Fargesia Using Mitochondrial COI Data. International Journal of Molecular Sciences, 26(17), 8608. https://doi.org/10.3390/ijms26178608