Expression of the Renin-Angiotensin System in the Heart, Aorta, and Perivascular Adipose Tissue in an Animal Model of Type 1 Diabetes
Abstract
1. Introduction
2. Results
Inflammation Markers
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Design
4.3. Serum/Plasma and Urine Measurements
4.4. RNA Extraction and Quantitative Real-Time PCR
4.5. Immunoblotting
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
ACE2 | Angiotensin-converting enzyme 2 |
ADAM17 | A disintegrin and metalloproteinase 17 |
Ang II | angiotensin II |
AT1R | Angiotensin II type 1 receptor |
AT2R | Angiotensin II type 2 receptor |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
Hb1Ac | Glycosylated haemoglobin |
HDL-C | High-density lipoprotein cholesterol |
MasR | Mas receptor |
NT-proBNP | N-terminal pro-B-type natriuretic peptide |
PVAT | Perivascular adipose tissue |
RAS | Renin-angiotensin system |
R.U. | Relative units |
SD | Standard deviation |
TG | Triglycerides |
T1D | Type 1 diabetes |
TNFα | Tumor necrosis factor-alpha |
uACR | Albumin-to-creatinine ratio |
References
- International Diabetes Federation IDF Diabetes Atlas. Available online: https://www.diabetesatlas.org (accessed on 6 May 2024).
- Dal Canto, E.; Ceriello, A.; Ryden, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. 2), 25–32. [Google Scholar] [CrossRef]
- Colom, C.; Rull, A.; Sanchez-Quesada, J.L.; Perez, A. Cardiovascular Disease in Type 1 Diabetes Mellitus: Epidemiology and Management of Cardiovascular Risk. J. Clin. Med. 2021, 10, 1798. [Google Scholar] [CrossRef]
- Chavan, A.; Archana, D. Role of inflammation in development of diabetic complications and commonly used inflammatory markers with respect to diabetic complications. Int. J. Pharm. Pharm. Sci. 2013, 5 (Suppl. 2), 1–5. [Google Scholar]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The Role of Inflammation in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.F.; Mora, C. Role of inflammation in diabetic complications. Nephrol. Dial. Transplant. 2005, 20, 2601–2604. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, P.; Yeo, J.L.; Brady, E.M.; McCann, G.P. Role of inflammation in diabetic cardiomyopathy. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221083530. [Google Scholar] [CrossRef] [PubMed]
- Paz Ocaranza, M.; Riquelme, J.A.; Garcia, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020, 17, 116–129. [Google Scholar] [CrossRef]
- Thomas, C.M.; Yong, Q.C.; Rosa, R.M.; Seqqat, R.; Gopal, S.; Casarini, D.E.; Jones, W.K.; Gupta, S.; Baker, K.M.; Kumar, R. Cardiac-specific suppression of NF-kappaB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1036–H1045. [Google Scholar] [CrossRef]
- Thomas, C.M.; Yong, Q.C.; Seqqat, R.; Chandel, N.; Feldman, D.L.; Baker, K.M.; Kumar, R. Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: Comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clin. Sci. 2013, 124, 529–541. [Google Scholar] [CrossRef]
- Kanugula, A.K.; Kaur, J.; Batra, J.; Ankireddypalli, A.R.; Velagapudi, R. Renin-Angiotensin System: Updated Understanding and Role in Physiological and Pathophysiological States. Cureus 2023, 15, e40725. [Google Scholar] [CrossRef]
- Patel, V.B.; Zhong, J.C.; Grant, M.B.; Oudit, G.Y. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ. Res. 2016, 118, 1313–1326. [Google Scholar]
- Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med. 2008, 264, 224–236. [Google Scholar] [PubMed]
- Leyssac, P.P. The In Vivo Effect of Angiotensin on the Proximal Tubular Reabsorption of Salt in Rat Kidneys. Acta Physiol. Scand. 1964, 62, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Gamino-Gutierrez, J.A.; Teran-Hernandez, I.M.; Castellar-Lopez, J.; Villamizar-Villamizar, W.; Osorio-Llanes, E.; Palacios-Cruz, M.; Rosales, W.; Chang, A.Y.; Diaz-Ariza, L.A.; Ospino, M.C.; et al. Novel Insights into the Cardioprotective Effects of the Peptides of the Counter-Regulatory Renin-Angiotensin System. Biomedicines 2024, 12, 255. [Google Scholar]
- Nehme, A.; Zouein, F.A.; Zayeri, Z.D.; Zibara, K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J. Cardiovasc. Dev. Dis. 2019, 6, 14. [Google Scholar] [CrossRef]
- Ribeiro-Oliveira, A., Jr.; Nogueira, A.I.; Pereira, R.M.; Boas, W.W.; Dos Santos, R.A.; Simoes e Silva, A.C. The renin-angiotensin system and diabetes: An update. Vasc. Health Risk Manag. 2008, 4, 787–803. [Google Scholar]
- Levy, B.I. How to explain the differences between renin angiotensin system modulators. Am. J. Hypertens. 2005, 18, 134S–141S. [Google Scholar] [CrossRef]
- Okuno, K.; Torimoto, K.; Cicalese, S.M.; Preston, K.; Rizzo, V.; Hashimoto, T.; Coffman, T.M.; Sparks, M.A.; Eguchi, S. Angiotensin II Type 1A Receptor Expressed in Smooth Muscle Cells is Required for Hypertensive Vascular Remodeling in Mice Infused With Angiotensin II. Hypertension 2023, 80, 668–677. [Google Scholar] [CrossRef]
- Sluimer, J.C.; Gasc, J.M.; Hamming, I.; van Goor, H.; Michaud, A.; van den Akker, L.H.; Jutten, B.; Cleutjens, J.; Bijnens, A.P.; Corvol, P.; et al. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J. Pathol. 2008, 215, 273–279. [Google Scholar]
- Cassis, L.A.; Lynch, K.R.; Peach, M.J. Localization of angiotensinogen messenger RNA in rat aorta. Circ. Res. 1988, 62, 1259–1262. [Google Scholar] [CrossRef]
- Lee, R.M.; Lu, C.; Su, L.Y.; Gao, Y.J. Endothelium-dependent relaxation factor released by perivascular adipose tissue. J. Hypertens. 2009, 27, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, N.; Araujo, N.F.; Reis, D.; Facine, L.M.; Miranda, C.A.S.; Mota, G.C.; Aires, R.D.; Capettini, L.; Cruz, J.D.S.; Bonaventura, D. Hydrogen peroxide and nitric oxide induce anticontractile effect of perivascular adipose tissue via renin angiotensin system activation. Nitric Oxide 2019, 84, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Prieto, B.; Bolbrinker, J.; Stucchi, P.; de Las Heras, A.I.; Merino, B.; Arribas, S.; Ruiz-Gayo, M.; Huber, M.; Wehland, M.; Kreutz, R.; et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue. J. Endocrinol. 2008, 197, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Fontes, M.T.; Paula, S.M.; Lino, C.A.; Senger, N.; Couto, G.K.; Barreto-Chaves, M.L.M.; Mill, J.G.; Rossoni, L.V. Renin-angiotensin system overactivation in perivascular adipose tissue contributes to vascular dysfunction in heart failure. Clin. Sci. 2020, 134, 3195–3211. [Google Scholar] [CrossRef]
- Barp, C.G.; Bonaventura, D.; Assreuy, J. NO, ROS, RAS, and PVAT: More Than a Soup of Letters. Front. Physiol. 2021, 12, 640021. [Google Scholar] [CrossRef]
- Paulik, K.A.; Ivanics, T.; Dunay, G.A.; Fülöp, Á.; Kerék, M.; Takács, K.; Benyó, Z.; Miklós, Z. Inhibition of the Renin–Angiotensin System Improves Hemodynamic Function of the Diabetic Rat Heart by Restoring Intracellular Calcium Regulation. Biomedicines 2025, 13, 757. [Google Scholar] [CrossRef]
- Balakumar, P.; Alqahtani, A.; Khan, N.A.; Alqahtani, T.; Jagadeesh, G. The physiologic and physiopathologic roles of perivascular adipose tissue and its interactions with blood vessels and the renin-angiotensin system. Pharmacol. Res. 2021, 173, 105890. [Google Scholar] [CrossRef]
- Raizada, V.; Skipper, B.; Luo, W.; Griffith, J. Intracardiac and intrarenal renin-angiotensin systems: Mechanisms of cardiovascular and renal effects. J. Investig. Med. 2007, 55, 341–359. [Google Scholar] [CrossRef]
- Saravi, B.; Li, Z.; Lang, C.N.; Schmid, B.; Lang, F.K.; Grad, S.; Alini, M.; Richards, R.G.; Schmal, H.; Sudkamp, N.; et al. The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? Cells 2021, 10, 650. [Google Scholar] [CrossRef]
- Campbell, D.J. Clinical relevance of local Renin Angiotensin systems. Front. Endocrinol. 2014, 5, 113. [Google Scholar] [CrossRef]
- Batista, J.P.T.; Faria, A.O.V.; Ribeiro, T.F.S.; Simoes, E.S.A.C. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life 2023, 13, 1598. [Google Scholar] [CrossRef]
- Roca-Ho, H.; Riera, M.; Palau, V.; Pascual, J.; Soler, M.J. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse. Int. J. Mol. Sci. 2017, 18, 563. [Google Scholar] [CrossRef]
- Garvin, A.M.; Khokhar, B.S.; Czubryt, M.P.; Hale, T.M. RAS inhibition in resident fibroblast biology. Cell Signal 2021, 80, 109903. [Google Scholar] [CrossRef]
- Bhullar, S.K.; Dhalla, N.S. Angiotensin II-Induced Signal Transduction Mechanisms for Cardiac Hypertrophy. Cells 2022, 11, 3336. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, V.; Tsuchimochi, H.; Tatsumi, E.; Shirai, M.; Pearson, J.T. Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1-7/Mas receptor cascade. Biochem. Pharmacol. 2017, 144, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, H.; Dempsey, P.J.; Frank, G.D.; Brailoiu, E.; Higuchi, S.; Suzuki, H.; Nakashima, H.; Eguchi, K.; Eguchi, S. ADAM17 mediates epidermal growth factor receptor transactivation and vascular smooth muscle cell hypertrophy induced by angiotensin II. Arterioscler. Thromb. Vasc. Biol. 2006, 26, e133–e137. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Clarke, N.; Wang, Z.; Fan, D.; Parajuli, N.; Basu, R.; Putko, B.; Kassiri, Z.; Turner, A.J.; Oudit, G.Y. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: A positive feedback mechanism in the RAS. J. Mol. Cell Cardiol. 2014, 66, 167–176. [Google Scholar] [CrossRef]
- Iwata, M.; Silva Enciso, J.E.; Greenberg, B.H. Selective and specific regulation of ectodomain shedding of angiotensin-converting enzyme 2 by tumor necrosis factor alpha-converting enzyme. Am. J. Physiol. Cell Physiol. 2009, 297, C1318–C1329. [Google Scholar] [CrossRef]
- Epelman, S.; Tang, W.H.; Chen, S.Y.; Van Lente, F.; Francis, G.S.; Sen, S. Detection of soluble angiotensin-converting enzyme 2 in heart failure: Insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J. Am. Coll. Cardiol. 2008, 52, 750–754. [Google Scholar] [CrossRef]
- Narula, S.; Yusuf, S.; Chong, M.; Ramasundarahettige, C.; Rangarajan, S.; Bangdiwala, S.I.; van Eikels, M.; Leineweber, K.; Wu, A.; Pigeyre, M.; et al. Plasma ACE2 and risk of death or cardiometabolic diseases: A case-cohort analysis. Lancet 2020, 396, 968–976. [Google Scholar] [CrossRef]
- Sukumaran, V.; Veeraveedu, P.T.; Gurusamy, N.; Yamaguchi, K.; Lakshmanan, A.P.; Ma, M.; Suzuki, K.; Kodama, M.; Watanabe, K. Cardioprotective effects of telmisartan against heart failure in rats induced by experimental autoimmune myocarditis through the modulation of angiotensin-converting enzyme-2/angiotensin 1-7/mas receptor axis. Int. J. Biol. Sci. 2011, 7, 1077–1092. [Google Scholar] [CrossRef]
- Marfella, R.; D’Onofrio, N.; Mansueto, G.; Grimaldi, V.; Trotta, M.C.; Sardu, C.; Sasso, F.C.; Scisciola, L.; Amarelli, C.; Esposito, S.; et al. Glycated ACE2 reduces anti-remodeling effects of renin-angiotensin system inhibition in human diabetic hearts. Cardiovasc. Diabetol. 2022, 21, 146. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Bodiga, S.; Basu, R.; Das, S.K.; Wang, W.; Wang, Z.; Lo, J.; Grant, M.B.; Zhong, J.; Kassiri, Z.; et al. Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: A critical role of the angiotensin II/AT1 receptor axis. Circ. Res. 2012, 110, 1322–1335. [Google Scholar] [CrossRef] [PubMed]
- Palau, V.; Riera, M.; Soler, M.J. The reno-cardiovascular connection in the patient with Diabetes mellitus: What’s new? Endocrinol. Diabetes Y Nutr. 2017, 64, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Martin-Carro, B.; Martin-Virgala, J.; Fernandez-Villabrille, S.; Fernandez-Fernandez, A.; Perez-Basterrechea, M.; Navarro-Gonzalez, J.F.; Donate-Correa, J.; Mora-Fernandez, C.; Dusso, A.S.; Carrillo-Lopez, N.; et al. Role of Klotho and AGE/RAGE-Wnt/beta-Catenin Signalling Pathway on the Development of Cardiac and Renal Fibrosis in Diabetes. Int. J. Mol. Sci. 2023, 24, 5241. [Google Scholar] [CrossRef]
- Landolfo, M.; Spannella, F.; Giulietti, F.; Ortensi, B.; Stella, L.; Carlucci, M.A.; Galeazzi, R.; Turchi, F.; Luconi, M.P.; Zampa, R.; et al. Detecting heart stress using NT-proBNP in patients with type 2 diabetes mellitus and hypertension or high-normal blood pressure: A cross-sectional multicentric study. Cardiovasc. Diabetol. 2024, 23, 297. [Google Scholar] [CrossRef]
- Hamo, C.E.; Liu, R.; Wu, W.; Anthopolos, R.; Bangalore, S.; Held, C.; Kullo, I.; Mavromatis, K.; McManus, B.; Newby, L.K.; et al. Cardiometabolic Co-morbidity Burden and Circulating Biomarkers in Patients With Chronic Coronary Disease in the ISCHEMIA Trials. Am. J. Cardiol. 2024, 225, 118–124. [Google Scholar] [CrossRef]
- Pernomian, L.; Pernomian, L.; Baraldi Araujo Restini, C. Counter-regulatory effects played by the ACE-Ang II-AT1 and ACE2-Ang-(1-7)-Mas axes on the reactive oxygen species-mediated control of vascular function: Perspectives to pharmacological approaches in controlling vascular complications. Vasa 2014, 43, 404–414. [Google Scholar] [CrossRef]
- Marchesi, C.; Paradis, P.; Schiffrin, E.L. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol. Sci. 2008, 29, 367–374. [Google Scholar] [CrossRef]
- Cherney, D.Z.; Scholey, J.W.; Jiang, S.; Har, R.; Lai, V.; Sochett, E.B.; Reich, H.N. The effect of direct renin inhibition alone and in combination with ACE inhibition on endothelial function, arterial stiffness, and renal function in type 1 diabetes. Diabetes Care 2012, 35, 2324–2330. [Google Scholar] [CrossRef]
- Balakumar, P.; Orayj, K.M.; Khan, N.A.; Shanmugam, K.; Jagadeesh, G. Impact of the local renin-angiotensin system in perivascular adipose tissue on vascular health and disease. Cell Signal 2024, 124, 111461. [Google Scholar] [CrossRef]
- Stanek, A.; Brozyna-Tkaczyk, K.; Myslinski, W. The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients 2021, 13, 3843. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.; Sena, C.M. Perivascular adipose tissue: A central player in the triad of diabetes, obesity, and cardiovascular health. Cardiovasc. Diabetol. 2024, 23, 455. [Google Scholar] [CrossRef] [PubMed]
- Skiba, D.S.; Nosalski, R.; Mikolajczyk, T.P.; Siedlinski, M.; Rios, F.J.; Montezano, A.C.; Jawien, J.; Olszanecki, R.; Korbut, R.; Czesnikiewicz-Guzik, M.; et al. Anti-atherosclerotic effect of the angiotensin 1-7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br. J. Pharmacol. 2017, 174, 4055–4069. [Google Scholar] [CrossRef] [PubMed]
- Kortekaas, K.E.; Meijer, C.A.; Hinnen, J.W.; Dalman, R.L.; Xu, B.; Hamming, J.F.; Lindeman, J.H. ACE inhibitors potently reduce vascular inflammation, results of an open proof-of-concept study in the abdominal aortic aneurysm. PLoS ONE 2014, 9, e111952. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Control (n = 17) | Diabetes (n = 17) | p-Value | |
---|---|---|---|
Serum Glucose (mg/dL) | 193.04 (19.20) | 693.32 (60.94) | <0.001 |
HbA1c (%) | 4.87 (0.38) | 14.00 (0.00) | <0.001 |
Serum Proteins (g/L) | 61.92 (3.76) | 55.58 (2.26) | <0.001 |
Serum Albumin (g/L) | 41.99 (3.19) | 34.89 (2.10) | <0.001 |
Serum Creatinine (mg/dL) | 0.32 (0.04) | 0.37 (0.06) | 0.009 |
Serum Urea (mg/dL) | 26.02 (4.29) | 35.21 (6.63) | <0.001 |
Serum total cholesterol (mg/dL) | 84.47 (16.59) | 84.38 (14.71) | 0.667 |
Serum HDL-C (mg/dL) | 55.55 (13.71) | 60.51 (6.50) | 0.148 |
Serum TG (mg/dL) | 126.36 (56.04) | 199.50 (101.23) | 0.021 |
Plasma ACE (ng/mL) | 17.16 (3.24) | 23.32 (4.14) | <0.001 |
Plasma ACE2 (ng/mL) | 31.96 (7.98) | 41.29 (9.23) | 0.004 |
Plasma AngII (pg/mL) | 542.29 (86.83) | 695.68 (84.70) | <0.001 |
Plasma NT-proBNP (µg/mL) | 251.30 (76.70) | 304.78 (54.09) | 0.034 |
Urine volume (mL) | 10.34 (5.44) | 150.53 (28.34) | <0.001 |
Urinary Glucose (mg/24 h) | 20.79 (27.57) | 15,216.63 (2633.44) | <0.001 |
Urinary proteins (mg/mg) | 0.72 (0.18) | 1.14 (0.40) | <0.001 |
uACR (mg/g) | 11.42 (10.30) | 39.09 (13.48) | <0.001 |
Creatinine clearance (mL/min/kg) | 3.03 (0.64) | 3.39 (0.99) | 0.480 |
(A) Heart | (B) Aorta | (C) PVAT | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | Diabetes | p-Value | Control | Diabetes | p-Value | Control | Diabetes | p-Value | |
n | 17 | 17 | 17 | 17 | 17 | 17 | |||
Ace (R.U.) | 1.00 (0.22) | 1.19 (0.28) | 0.113 | 1.00 (0.62) | 1.90 (1.03) | 0.014 | 1.00 (0.22) | 4.08 (1.32) | <0.001 |
Ace2 (R.U.) | 1.00 (0.43) | 1.96 (0.67) | <0.001 | 1.00 (0.74) | 0.51 (0.48) | 0.032 | 1.00 (0.65) | 1.31 (0.81) | 0.262 |
At1r (R.U.) | 1.00 (0.22) | 1.70 (0.45) | <0.001 | 1.00 (0.59) | 1.74 (0.91) | 0.017 | 1.00 (0.59) | 7.22 (4.14) | <0.001 |
At2r (R.U.) | 1.00 (1.72) | 0.24 (0.29) | 0.057 | 1.00 (0.95) | 0.47 (0.24) | 0.102 | 1.00 (1.84) | 0.63 (0.51) | 0.121 |
MasR (R.U.) | 1.00 (0.56) | 1.33 (0.29) | 0.004 | 1.00 (0.57) | 0.68 (0.20) | 0.144 | 1.00 (0.70) | 4.52 (1.91) | <0.001 |
Tnfα (R.U.) | 1.00 (0.80) | 3.25 (1.11) | <0.001 | 1.00 (0.50) | 0.69 (0.47) | 0.089 | 1.00 (0.41) | 6.91 (3.34) | <0.001 |
Adam17 (R.U.) | 1.00 (0.51) | 2.19 (0.53) | <0.001 | 1.00 (0.43) | 1.47 (0.61) | 0.029 | 1.00 (0.25) | 1.65 (0.31) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Carro, B.; Fernández-Villabrille, S.; Calvó-García, P.; González-García, N.; Baena-Huerta, F.; Hospital-Sastre, A.; Pujante, P.; López-Hernández, F.J.; Naves-Díaz, M.; Panizo, S.; et al. Expression of the Renin-Angiotensin System in the Heart, Aorta, and Perivascular Adipose Tissue in an Animal Model of Type 1 Diabetes. Int. J. Mol. Sci. 2025, 26, 9538. https://doi.org/10.3390/ijms26199538
Martín-Carro B, Fernández-Villabrille S, Calvó-García P, González-García N, Baena-Huerta F, Hospital-Sastre A, Pujante P, López-Hernández FJ, Naves-Díaz M, Panizo S, et al. Expression of the Renin-Angiotensin System in the Heart, Aorta, and Perivascular Adipose Tissue in an Animal Model of Type 1 Diabetes. International Journal of Molecular Sciences. 2025; 26(19):9538. https://doi.org/10.3390/ijms26199538
Chicago/Turabian StyleMartín-Carro, Beatriz, Sara Fernández-Villabrille, Paula Calvó-García, Nerea González-García, Francisco Baena-Huerta, Angie Hospital-Sastre, Pedro Pujante, Francisco José López-Hernández, Manuel Naves-Díaz, Sara Panizo, and et al. 2025. "Expression of the Renin-Angiotensin System in the Heart, Aorta, and Perivascular Adipose Tissue in an Animal Model of Type 1 Diabetes" International Journal of Molecular Sciences 26, no. 19: 9538. https://doi.org/10.3390/ijms26199538
APA StyleMartín-Carro, B., Fernández-Villabrille, S., Calvó-García, P., González-García, N., Baena-Huerta, F., Hospital-Sastre, A., Pujante, P., López-Hernández, F. J., Naves-Díaz, M., Panizo, S., Carrillo-López, N., Alonso-Montes, C., & Fernández-Martín, J. L. (2025). Expression of the Renin-Angiotensin System in the Heart, Aorta, and Perivascular Adipose Tissue in an Animal Model of Type 1 Diabetes. International Journal of Molecular Sciences, 26(19), 9538. https://doi.org/10.3390/ijms26199538