Protein–Ligand Interactions: Recent Advances in Biophysics, Biochemistry, and Bioinformatics
- −
- A conformational selection mechanism assuming that the crossing of free-energy barriers between protein conformations before the binding event [8,9] is likely to be at least as common as the induced fit mechanism, where the ligand binding induces a conformational change in the protein [10], and both mechanisms can be engaged in the same binding process [11,12].
- −
- −
- Allosteric binding, the interaction of a molecule with a protein at a site distinct from its active site, causing a conformational change or conformational redistribution that alters the enzyme or receptor activity, plays an important role in signaling and regulatory pathways, and enables the design of pharmacologically active allosteric modulators [15,16,17,18,19].
- −
- Multivalent binding involves multivalent ligands simultaneously interacting with a number of receptors or a single receptor with multiple binding sites [20,21]. Multivalency is typical for antibody–antigen interactions, protein-polysaccharide binding, complexes of nucleic acids with DNA/RNA-binding proteins and transcription factors, and results in an enhanced affinity and sometimes selectivity, which can be utilized in the development of therapeutic agents [22,23,24,25].
Author Contributions
Funding
Conflicts of Interest
References
- Dunn, M.F. Protein–Ligand Interactions: General Description. In Encyclopedia of Life Sciences; Wiley: Chichester, UK, 2010; ISBN 978-0-470-01617-6. [Google Scholar]
- Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Berichte Dtsch. Chem. Ges. 1894, 27, 2985–2993. [Google Scholar] [CrossRef]
- Koshland, D.E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc. Natl. Acad. Sci. USA 1958, 44, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Shan, Y.; Kim, E.T.; Eastwood, M.P.; Dror, R.O.; Seeliger, M.A.; Shaw, D.E. How Does a Drug Molecule Find Its Target Binding Site? J. Am. Chem. Soc. 2011, 133, 9181–9183. [Google Scholar] [CrossRef]
- Pan, A.C.; Xu, H.; Palpant, T.; Shaw, D.E. Quantitative Characterization of the Binding and Unbinding of Millimolar Drug Fragments with Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13, 3372–3377. [Google Scholar] [CrossRef]
- Rizzuti, B. Molecular Simulations of Proteins: From Simplified Physical Interactions to Complex Biological Phenomena. Biochim. Biophys. Acta BBA Proteins Proteom. 2022, 1870, 140757. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Kumar, S.; Tsai, C.-J.; Nussinov, R. Folding Funnels and Binding Mechanisms. Protein Eng. Des. Sel. 1999, 12, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Vogt, A.D.; Pozzi, N.; Chen, Z.; Di Cera, E. Essential Role of Conformational Selection in Ligand Binding. Biophys. Chem. 2014, 186, 13–21. [Google Scholar] [CrossRef]
- Vogt, A.D.; Di Cera, E. Conformational Selection or Induced Fit? A Critical Appraisal of the Kinetic Mechanism. Biochemistry 2012, 51, 5894–5902. [Google Scholar] [CrossRef]
- Nussinov, R.; Ma, B.; Tsai, C.-J. Multiple Conformational Selection and Induced Fit Events Take Place in Allosteric Propagation. Biophys. Chem. 2014, 186, 22–30. [Google Scholar] [CrossRef]
- Morando, M.A.; Saladino, G.; D’Amelio, N.; Pucheta-Martinez, E.; Lovera, S.; Lelli, M.; López-Méndez, B.; Marenchino, M.; Campos-Olivas, R.; Gervasio, F.L. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase. Sci. Rep. 2016, 6, 24439. [Google Scholar] [CrossRef]
- Qin, J.; Gronenborn, A.M. Weak Protein Complexes: Challenging to Study but Essential for Life. FEBS J. 2014, 281, 1948–1949. [Google Scholar] [CrossRef]
- Kastritis, P.L.; Rodrigues, J.P.G.L.M.; Folkers, G.E.; Boelens, R.; Bonvin, A.M.J.J. Proteins Feel More Than They See: Fine-Tuning of Binding Affinity by Properties of the Non-Interacting Surface. J. Mol. Biol. 2014, 426, 2632–2652. [Google Scholar] [CrossRef]
- McCullagh, M.; Zeczycki, T.N.; Kariyawasam, C.S.; Durie, C.L.; Halkidis, K.; Fitzkee, N.C.; Holt, J.M.; Fenton, A.W. What Is Allosteric Regulation? Exploring the Exceptions That Prove the Rule! J. Biol. Chem. 2024, 300, 105672. [Google Scholar] [CrossRef]
- Govindaraj, R.G.; Thangapandian, S.; Schauperl, M.; Denny, R.A.; Diller, D.J. Recent Applications of Computational Methods to Allosteric Drug Discovery. Front. Mol. Biosci. 2023, 9, 1070328. [Google Scholar] [CrossRef]
- Motlagh, H.N.; Wrabl, J.O.; Li, J.; Hilser, V.J. The Ensemble Nature of Allostery. Nature 2014, 508, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Nussinov, R. Allostery: An Overview of Its History, Concepts, Methods, and Applications. PLoS Comput. Biol. 2016, 12, e1004966. [Google Scholar] [CrossRef] [PubMed]
- Fournier, L.; Guarnera, E.; Kolmar, H.; Becker, S. Allosteric Antibodies: A Novel Paradigm in Drug Discovery. Trends Pharmacol. Sci. 2025, 46, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, L.L.; Lamanna, A.C. Multivalency in Biological Systems. In Chemical Probes in Biology: Science at the Interface of Chemistry, Biology and Medicine; Schneider, M.P., Ed.; Springer: Dordrecht, The Netherlands, 2003; Volume 129, pp. 345–357. ISBN 978-1-4020-1769-8. [Google Scholar]
- Dennis Wright, B.S.P.; Lynn Usher, B.S.P. Multivalent Binding in the Design of Bioactive Compounds. Curr. Org. Chem. 2001, 5, 1107–1131. [Google Scholar] [CrossRef]
- Collins, B.E.; Paulson, J.C. Cell Surface Biology Mediated by Low Affinity Multivalent Protein–glycan Interactions. Curr. Opin. Chem. Biol. 2004, 8, 617–625. [Google Scholar] [CrossRef]
- Currie, S.L.; Doane, J.J.; Evans, K.S.; Bhachech, N.; Madison, B.J.; Lau, D.K.W.; McIntosh, L.P.; Skalicky, J.J.; Clark, K.A.; Graves, B.J. ETV4 and AP1 Transcription Factors Form Multivalent Interactions with Three Sites on the MED25 Activator-Interacting Domain. J. Mol. Biol. 2017, 429, 2975–2995. [Google Scholar] [CrossRef]
- Curk, T.; Dubacheva, G.V.; Brisson, A.R.; Richter, R.P. Controlling Superselectivity of Multivalent Interactions with Cofactors and Competitors. J. Am. Chem. Soc. 2022, 144, 17346–17350. [Google Scholar] [CrossRef]
- Kang, J.J.; Ohoka, A.; Sarkar, C.A. Designing Multivalent and Multispecific Biologics. Annu. Rev. Chem. Biomol. Eng. 2024, 15, 293–314. [Google Scholar] [CrossRef] [PubMed]
- Knockenhauer, K.E.; Copeland, R.A. The Importance of Binding Kinetics and Drug–target Residence Time in Pharmacology. Br. J. Pharmacol. 2024, 181, 4103–4116. [Google Scholar] [CrossRef] [PubMed]
- Bernetti, M.; Cavalli, A.; Mollica, L. Protein–ligand (un)binding Kinetics as a New Paradigm for Drug Discovery at the Crossroad between Experiments and Modelling. MedChemComm 2017, 8, 534–550. [Google Scholar] [CrossRef]
- Liu, H.; Su, M.; Lin, H.-X.; Wang, R.; Li, Y. Public Data Set of Protein–Ligand Dissociation Kinetic Constants for Quantitative Structure–Kinetics Relationship Studies. ACS Omega 2022, 7, 18985–18996. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Q.; Wang, R. Current Experimental Methods for Characterizing Protein–Protein Interactions. ChemMedChem 2016, 11, 738–756. [Google Scholar] [CrossRef]
- Jarmoskaite, I.; AlSadhan, I.; Vaidyanathan, P.P.; Herschlag, D. How to Measure and Evaluate Binding Affinities. eLife 2020, 9, e57264. [Google Scholar] [CrossRef] [PubMed]
- Bakar, K.A.; Feroz, S.R. A Critical View on the Analysis of Fluorescence Quenching Data for Determining Ligand–protein Binding Affinity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117337. [Google Scholar] [CrossRef]
- Winiewska-Szajewska, M.; Poznański, J. Differential Scanning Fluorimetry Followed by Microscale Thermophoresis And/or Isothermal Titration Calorimetry as an Efficient Tool for Ligand Screening. Biophys. Rev. 2025, 17, 199–223. [Google Scholar] [CrossRef]
- Wigge, C.; Stefanovic, A.; Radjainia, M. The Rapidly Evolving Role of Cryo-EM in Drug Design. Drug Discov. Today Technol. 2020, 38, 91–102. [Google Scholar] [CrossRef]
- Dueñas, M.E.; Peltier-Heap, R.E.; Leveridge, M.; Annan, R.S.; Büttner, F.H.; Trost, M. Advances in High-throughput Mass Spectrometry in Drug Discovery. EMBO Mol. Med. 2023, 15, e14850. [Google Scholar] [CrossRef]
- Williams, J.D.; Pu, F.; Sawicki, J.W.; Elsen, N.L. Ultra-High-Throughput Mass Spectrometry in Drug Discovery: Fundamentals and Recent Advances. Expert Opin. Drug Discov. 2024, 19, 291–301. [Google Scholar] [CrossRef]
- Sato, A. Eliminating Bottlenecks in mAb Drug Discovery: Twist Biopharma’s Approach to Antibody Discovery Incorporates Phage Display to Generate Massive Antibody Libraries, and High-Throughput Surface Plasmon Resonance Technology to Accelerate Screening. Genet. Eng. Biotechnol. News 2020, 40, 48–49. [Google Scholar] [CrossRef]
- Bedinger, D.; Parisot, J.; Ditto, N.T. Competitive Epitope Binning Using HT-SPR. In Epitope Mapping Protocols; Rockberg, J., Nilvebrant, J., Malm, M., Thalén, N.B., Eds.; Springer: New York, NY, USA, 2025; Volume 2937, pp. 325–360. ISBN 978-1-0716-4590-1. [Google Scholar]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Krishna, R.; Wang, J.; Ahern, W.; Sturmfels, P.; Venkatesh, P.; Kalvet, I.; Lee, G.R.; Morey-Burrows, F.S.; Anishchenko, I.; Humphreys, I.R.; et al. Generalized Biomolecular Modeling and Design with RoseTTAFold All-Atom. Science 2024, 384, eadl2528. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Boitreaud, J.; Dent, J.; McPartlon, M.; Meier, J.; Reis, V.; Rogozhnikov, A.; Wu, K. Chai-1: Decoding the Molecular Interactions of Life. bioRxiv 2024. [Google Scholar] [CrossRef]
- Wohlwend, J.; Corso, G.; Passaro, S.; Getz, N.; Reveiz, M.; Leidal, K.; Swiderski, W.; Atkinson, L.; Portnoi, T.; Chinn, I.; et al. Boltz-1: Democratizing biomolecular interaction modeling. bioRxiv 2024. [Google Scholar] [CrossRef]
- Buttenschoen, M.; Morris, G.M.; Deane, C.M. PoseBusters: AI-Based Docking Methods Fail to Generate Physically Valid Poses or Generalise to Novel Sequences. Chem. Sci. 2024, 15, 3130–3139. [Google Scholar] [CrossRef]
- Childs, H.; Zhou, P.; Donald, B.R. Has AlphaFold 3 Solved the Protein Folding Problem for D-Peptides? bioRxiv 2025. [Google Scholar] [CrossRef]
- York, D.M. Modern Alchemical Free Energy Methods for Drug Discovery Explained. ACS Phys. Chem. Au 2023, 3, 478–491. [Google Scholar] [CrossRef]
- Ross, G.A.; Lu, C.; Scarabelli, G.; Albanese, S.K.; Houang, E.; Abel, R.; Harder, E.D.; Wang, L. The Maximal and Current Accuracy of Rigorous Protein-Ligand Binding Free Energy Calculations. Commun. Chem. 2023, 6, 222. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Prediction of Protein–ligand Binding Affinity via Deep Learning Models. Brief. Bioinform. 2024, 25, bbae081. [Google Scholar] [CrossRef]
- Passaro, S.; Corso, G.; Wohlwend, J.; Reveiz, M.; Thaler, S.; Somnath, V.R.; Getz, N.; Portnoi, T.; Roy, J.; Stark, H.; et al. Boltz-2: Towards Accurate and Efficient Binding Affinity Prediction. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Pöhner, I.; Sivula, T.; Poso, A. Ultra-Large-Scale Virtual Screening. In Computer-Aided and Machine Learning-Driven Drug Design; Maltarollo, V.G., Ed.; Springer Nature: Cham, Switzerland, 2024; Volume 3, pp. 299–343. ISBN 978-3-031-76717-3. [Google Scholar]
- Tang, Y.; Moretti, R.; Meiler, J. Recent Advances in Automated Structure-Based De Novo Drug Design. J. Chem. Inf. Model. 2024, 64, 1794–1805. [Google Scholar] [CrossRef]
- Alakhdar, A.; Poczos, B.; Washburn, N. Diffusion Models in De Novo Drug Design. J. Chem. Inf. Model. 2024, 64, 7238–7256. [Google Scholar] [CrossRef]
- Li, W.; Cadet, X.F.; Medina-Ortiz, D.; Davari, M.D.; Sowdhamini, R.; Damour, C.; Li, Y.; Miranville, A.; Cadet, F. From Thermodynamics to Protein Design: Diffusion Models for Biomolecule Generation towards Autonomous Protein Engineering. arXiv 2025, arXiv:2501.02680. [Google Scholar] [CrossRef]
- Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. Intrinsically Disordered Proteins in Human Diseases: Introducing the D2 Concept. Annu. Rev. Biophys. 2008, 37, 215–246. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. How to Drug a Cloud? Targeting Intrinsically Disordered Proteins. Pharmacol. Rev. 2025, 77, 100016. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Ábrányi-Balogh, P.; Petri, L.; Mészáros, A.; Pauwels, K.; Vandenbussche, G.; Keserű, G.M.; Tompa, P. Targeting an Intrinsically Disordered Protein by Covalent Modification. In Intrinsically Disordered Proteins; Kragelund, B.B., Skriver, K., Eds.; Springer: New York, NY, USA, 2020; Volume 2141, pp. 835–854. ISBN 978-1-0716-0523-3. [Google Scholar]
- Shea, J.-E.; Best, R.B.; Mittal, J. Physics-Based Computational and Theoretical Approaches to Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2021, 67, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Nagpal, S.; Muñoz, V. Molecular Simulations Integrated with Experiments for Probing the Interaction Dynamics and Binding Mechanisms of Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2024, 84, 102756. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, R.; Lai, L. Rational Drug Design Targeting Intrinsically Disordered Proteins. WIREs Comput. Mol. Sci. 2023, 13, e1685. [Google Scholar] [CrossRef]
- Orand, T.; Jensen, M.R. Binding Mechanisms of Intrinsically Disordered Proteins: Insights from Experimental Studies and Structural Predictions. Curr. Opin. Struct. Biol. 2025, 90, 102958. [Google Scholar] [CrossRef]
- Robustelli, P. Extending Computational Protein Design to Intrinsically Disordered Proteins. Sci. Adv. 2024, 10, eadr3239. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Xu, Y.; Zhao, Z.; Cheng, G.-J.; Ren, R.; Chiang, Y.-C. Identifying Residues for Substrate Recognition in Human GPAT4 by Molecular Dynamics Simulations. Int. J. Mol. Sci. 2024, 25, 3729. [Google Scholar] [CrossRef] [PubMed]
- Kusova, A.M.; Rakipov, I.T.; Zuev, Y.F. Effects of Homogeneous and Heterogeneous Crowding on Translational Diffusion of Rigid Bovine Serum Albumin and Disordered Alfa-Casein. Int. J. Mol. Sci. 2023, 24, 11148. [Google Scholar] [CrossRef] [PubMed]
- Buzzo, B.B.; Giuliatti, S.; Pereira, P.A.M.; Gomes-Pepe, E.S.; Lemos, E.G.D.M. Molecular Docking of Lac_CB10: Highlighting the Great Potential for Bioremediation of Recalcitrant Chemical Compounds by One Predicted Bacteroidetes CopA-Laccase. Int. J. Mol. Sci. 2023, 24, 9785. [Google Scholar] [CrossRef]
- Haueis, L.; Stech, M.; Schneider, E.; Lanz, T.; Hebel, N.; Zemella, A.; Kubick, S. Rapid One-Step Capturing of Native, Cell-Free Synthesized and Membrane-Embedded GLP-1R. Int. J. Mol. Sci. 2023, 24, 2808. [Google Scholar] [CrossRef]
- Tran, J.B.; Padjasek, M.; Krężel, A. Relations between Structure and Zn(II) Binding Affinity Shed Light on the Mechanisms of Rad50 Hook Domain Functioning and Its Phosphorylation. Int. J. Mol. Sci. 2022, 23, 11140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedov, I.A.; Zuev, Y.F. Protein–Ligand Interactions: Recent Advances in Biophysics, Biochemistry, and Bioinformatics. Int. J. Mol. Sci. 2025, 26, 9576. https://doi.org/10.3390/ijms26199576
Sedov IA, Zuev YF. Protein–Ligand Interactions: Recent Advances in Biophysics, Biochemistry, and Bioinformatics. International Journal of Molecular Sciences. 2025; 26(19):9576. https://doi.org/10.3390/ijms26199576
Chicago/Turabian StyleSedov, Igor A., and Yuriy F. Zuev. 2025. "Protein–Ligand Interactions: Recent Advances in Biophysics, Biochemistry, and Bioinformatics" International Journal of Molecular Sciences 26, no. 19: 9576. https://doi.org/10.3390/ijms26199576
APA StyleSedov, I. A., & Zuev, Y. F. (2025). Protein–Ligand Interactions: Recent Advances in Biophysics, Biochemistry, and Bioinformatics. International Journal of Molecular Sciences, 26(19), 9576. https://doi.org/10.3390/ijms26199576