Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism
Abstract
:1. Introduction
2. Somatostatin Receptor Ligands (SRLs)
2.1. First-Generation Somatostatin Receptor Ligands
2.2. Second-Generation Somatostatin Receptor Ligands
2.3. Molecular Mechanisms of Hyperglycemia Secondary to SRL Treatment
- β-cells, secreting insulin after eating to suppress hepatic glucose production and to stimulate glucose uptake in several tissues, such as skeletal muscle and white adipose tissue;
- α-cells, secreting glucagon to increase blood glucose during fasting through glucose production, mainly in the liver;
- δ-cells, secreting the inhibitory hormone somatostatin for regulating paracrine pancreatic islet functions, such as modulation of insulin/glucagon balance. Of note, only 5% of circulating somatostatin is derived from δ-cells.
3. Growth Hormone Receptor Antagonists
4. Dopamine Agonists
5. Future Therapies for Acromegaly
5.1. Paltusotine
5.2. Somatoprim
5.3. ONO-5788 and ONO-ST-468
6. Treatment of Acromegaly Treatment-Related Diabetes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Adigun, O.O.; Nguyen, M.; Fox, T.J.; Anastasopoulou, C. Acromegaly. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Esposito, D.; Ragnarsson, O.; Granfeldt, D.; Marlow, T.; Johannsson, G.; Olsson, D.S. Decreasing Mortality and Changes in Treatment Patterns in Patients with Acromegaly from a Nationwide Study. Eur. J. Endocrinol. 2018, 178, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Bolfi, F.; Neves, A.F.; Boguszewski, C.L.; Nunes-Nogueira, V.S. Mortality in Acromegaly Decreased in the Last Decade: A Systematic Review and Meta-Analysis. Eur. J. Endocrinol. 2018, 179, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, O.; Bex, M.; Kamenicky, P.; Mvoula, A.B.; Chanson, P.; Maiter, D. Prevalence and Risk Factors of Impaired Glucose Tolerance and Diabetes Mellitus at Diagnosis of Acromegaly: A Study in 148 Patients. Pituitary 2014, 17, 81–89. [Google Scholar] [CrossRef]
- Dal, J.; Feldt-Rasmussen, U.; Andersen, M.; Kristensen, L.Ø.; Laurberg, P.; Pedersen, L.; Dekkers, O.M.; Sørensen, H.T.; Jørgensen, J.O.L. Acromegaly Incidence, Prevalence, Complications and Long-Term Prognosis: A Nationwide Cohort Study. Eur. J. Endocrinol. 2016, 175, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Olsson, D.S.; Franzén, S.; Miftaraj, M.; Nåtman, J.; Gudbjörnsdottir, S.; Johannsson, G. Effect of Diabetes on Morbidity and Mortality in Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2022, 107, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Møller, N.; Jørgensen, J.O.L. Effects of Growth Hormone on Glucose, Lipid, and Protein Metabolism in Human Subjects. Endocr. Rev. 2009, 30, 152–177. [Google Scholar] [CrossRef]
- Esposito, D.; Boguszewski, C.L.; Colao, A.; Fleseriu, M.; Gatto, F.; Jørgensen, J.O.L.; Ragnarsson, O.; Ferone, D.; Johannsson, G. Diabetes Mellitus in Patients with Acromegaly: Pathophysiology, Clinical Challenges and Management. Nat. Rev. Endocrinol. 2024, 20, 541–552. [Google Scholar] [CrossRef]
- Giustina, A.; Barkhoudarian, G.; Beckers, A.; Ben-Shlomo, A.; Biermasz, N.; Biller, B.; Boguszewski, C.; Bolanowski, M.; Bollerslev, J.; Bonert, V.; et al. Multidisciplinary Management of Acromegaly: A Consensus. Rev. Endocr. Metab. Disord. 2020, 21, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Stelmachowska-Banaś, M.; Zieliński, G.; Zdunowski, P.; Podgórski, J.; Zgliczyński, W. The Impact of Transsphenoidal Surgery on Glucose Homeostasis and Insulin Resistance in Acromegaly. Neurol. I Neurochir. Pol. 2011, 45, 328–334. [Google Scholar] [CrossRef]
- Hannon, A.M.; Thompson, C.J.; Sherlock, M. Diabetes in Patients with Acromegaly. Curr. Diab Rep. 2017, 17, 8. [Google Scholar] [CrossRef]
- Melmed, S.; Bronstein, M.D.; Chanson, P.; Klibanski, A.; Casanueva, F.F.; Wass, J.A.H.; Strasburger, C.J.; Luger, A.; Clemmons, D.R.; Giustina, A. A Consensus Statement on Acromegaly Therapeutic Outcomes. Nat. Rev. Endocrinol. 2018, 14, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Grasso, L.F.S.; Giustina, A.; Melmed, S.; Chanson, P.; Pereira, A.M.; Pivonello, R. Acromegaly. Nat. Rev. Dis. Primers 2019, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Gatto, F.; Barbieri, F.; Arvigo, M.; Thellung, S.; Amarù, J.; Albertelli, M.; Ferone, D.; Florio, T. Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int. J. Mol. Sci. 2019, 20, 3940. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Sasi, R.; Suresh, S.; Patel, A.; Thangaraju, M.; Metrakos, P.; Patel, S.C.; Patel, Y.C. Subtype-Selective Expression of the Five Somatostatin Receptors (hSSTR1-5) in Human Pancreatic Islet Cells: A Quantitative Double-Label Immunohistochemical Analysis. Diabetes 1999, 48, 77–85. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Kasuki, L.; Lim, D.S.T.; Fleseriu, M. Systemic Complications of Acromegaly and the Impact of the Current Treatment Landscape: An Update. Endocr. Rev. 2019, 40, 268–332. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, N.T.; Erichsen, T.M.; Jørgensen, M.B.; Idorn, T.; Feldt-Rasmussen, B.; Holst, J.J.; Feldt-Rasmussen, U.; Klose, M. Glucose Metabolism, Gut-Brain Hormones, and Acromegaly Treatment: An Explorative Single Centre Descriptive Analysis. Pituitary 2023, 26, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Auriemma, R.S.; Savastano, S.; Galdiero, M.; Grasso, L.F.S.; Lombardi, G.; Pivonello, R. Glucose Tolerance and Somatostatin Analog Treatment in Acromegaly: A 12-Month Study. J. Clin. Endocrinol. Metab. 2009, 94, 2907–2914. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Floriani, I.; Bonadonna, S.; Torri, V.; Chanson, P.; Giustina, A. Effects of Somatostatin Analogs on Glucose Homeostasis: A Metaanalysis of Acromegaly Studies. J. Clin. Endocrinol. Metab. 2009, 94, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, A.; Feola, T.; Simonelli, I.; Puliani, G.; Pozza, C.; Giannetta, E.; Gianfrilli, D.; Pasqualetti, P.; Lenzi, A.; Isidori, A.M. Somatostatin Analogs and Glucose Metabolism in Acromegaly: A Meta-Analysis of Prospective Interventional Studies. J. Clin. Endocrinol. Metab. 2018, 103, 2089–2099. [Google Scholar] [CrossRef]
- Biagetti, B.; Aulinas, A.; Casteras, A.; Pérez-Hoyos, S.; Simó, R. HOMA-IR in Acromegaly: A Systematic Review and Meta-Analysis. Pituitary 2021, 24, 146–158. [Google Scholar] [CrossRef]
- Puig-Domingo, M.; Bernabéu, I.; Picó, A.; Biagetti, B.; Gil, J.; Alvarez-Escolá, C.; Jordà, M.; Marques-Pamies, M.; Soldevila, B.; Gálvez, M.-A.; et al. Pasireotide in the Personalized Treatment of Acromegaly. Front. Endocrinol. 2021, 12, 648411. [Google Scholar] [CrossRef] [PubMed]
- Gatto, F.; Arvigo, M.; Amarù, J.; Campana, C.; Cocchiara, F.; Graziani, G.; Bruzzone, E.; Giusti, M.; Boschetti, M.; Ferone, D. Cell Specific Interaction of Pasireotide: Review of Preclinical Studies in Somatotroph and Corticotroph Pituitary Cells. Pituitary 2019, 22, 89–99. [Google Scholar] [CrossRef]
- Bruns, C.; Lewis, I.; Briner, U.; Meno-Tetang, G.; Weckbecker, G. SOM230: A Novel Somatostatin Peptidomimetic with Broad Somatotropin Release Inhibiting Factor (SRIF) Receptor Binding and a Unique Antisecretory Profile. Eur. J. Endocrinol. 2002, 146, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Bronstein, M.D.; Freda, P.; Gu, F.; Shen, C.-C.; Gadelha, M.; Fleseriu, M.; Van Der Lely, A.J.; Farrall, A.J.; Hermosillo Reséndiz, K.; et al. Pasireotide Versus Octreotide in Acromegaly: A Head-to-Head Superiority Study. J. Clin. Endocrinol. Metab. 2014, 99, 791–799. [Google Scholar] [CrossRef]
- Henry, R.R.; Ciaraldi, T.P.; Armstrong, D.; Burke, P.; Ligueros-Saylan, M.; Mudaliar, S. Hyperglycemia Associated with Pasireotide: Results from a Mechanistic Study in Healthy Volunteers. J. Clin. Endocrinol. Metab. 2013, 98, 3446–3453. [Google Scholar] [CrossRef]
- Moustaki, M.; Paschou, S.A.; Xekouki, P.; Kotsa, K.; Peppa, M.; Psaltopoulou, T.; Kalantaridou, S.; Vryonidou, A. Secondary Diabetes Mellitus in Acromegaly. Endocrine 2023, 81, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.; Dormoy, A.; Maione, L.; Salenave, S.; Young, J.; Kamenický, P.; Chanson, P. Impairment in Insulin Secretion without Changes in Insulin Resistance Explains Hyperglycemia in Patients with Acromegaly Treated with Pasireotide LAR. Endocr. Connect. 2022, 11, e220296. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, M.R.; Bronstein, M.D.; Brue, T.; Coculescu, M.; Fleseriu, M.; Guitelman, M.; Pronin, V.; Raverot, G.; Shimon, I.; Lievre, K.K.; et al. Pasireotide versus Continued Treatment with Octreotide or Lanreotide in Patients with Inadequately Controlled Acromegaly (PAOLA): A Randomised, Phase 3 Trial. Lancet Diabetes Endocrinol. 2014, 2, 875–884. [Google Scholar] [CrossRef]
- Shimon, I.; Adnan, Z.; Gorshtein, A.; Baraf, L.; Saba Khazen, N.; Gershinsky, M.; Pauker, Y.; Abid, A.; Niven, M.J.; Shechner, C.; et al. Efficacy and Safety of Long-Acting Pasireotide in Patients with Somatostatin-Resistant Acromegaly: A Multicenter Study. Endocrine 2018, 62, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Lasolle, H.; Ferriere, A.; Vasiljevic, A.; Eimer, S.; Nunes, M.-L.; Tabarin, A. Pasireotide-LAR in Acromegaly Patients Treated with a Combination Therapy: A Real-Life Study. Endocr. Connect. 2019, 8, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Akirov, A.; Gorshtein, A.; Dotan, I.; Khazen, N.S.; Pauker, Y.; Gershinsky, M.; Shimon, I. Long-Term Safety and Efficacy of Long-Acting Pasireotide in Acromegaly. Endocrine 2021, 74, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Witek, P.; Bolanowski, M.; Szamotulska, K.; Wojciechowska-Luźniak, A.; Jawiarczyk-Przybyłowska, A.; Kałużny, M. The Effect of 6 Months’ Treatment with Pasireotide LAR on Glucose Metabolism in Patients with Resistant Acromegaly in Real-World Clinical Settings. Front. Endocrinol. 2021, 12, 633944. [Google Scholar] [CrossRef]
- Stelmachowska-Banaś, M.; Czajka-Oraniec, I.; Tomasik, A.; Zgliczyński, W. Real-World Experience with Pasireotide-LAR in Resistant Acromegaly: A Single Center 1-Year Observation. Pituitary 2022, 25, 180–190. [Google Scholar] [CrossRef]
- Corica, G.; Pirchio, R.; Milioto, A.; Nista, F.; Arecco, A.; Mattioli, L.; Auriemma, R.S.; Cocchiara, F.; Pivonello, R.; Colao, A.; et al. Pasireotide Effects on Biochemical Control and Glycometabolic Profile in Acromegaly Patients Switched from Combination Therapies or Unconventional Dosages of Somatostatin Analogs. J. Endocrinol. Investig. 2023, 47, 683–697. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, M.; Marques, N.V.; Fialho, C.; Scaf, C.; Lamback, E.; Antunes, X.; Santos, E.; Magalhães, J.; Wildemberg, L.E. Long-Term Efficacy and Safety of Pasireotide in Patients with Acromegaly: 14 Years of Single-Center Real-World Experience. J. Clin. Endocrinol. Metab. 2023, 108, e1571–e1579. [Google Scholar] [CrossRef] [PubMed]
- Pirchio, R.; Auriemma, R.S.; Vergura, A.; Pivonello, R.; Colao, A. Long-Term Pasireotide Therapy in Acromegaly: Extensive Real-Life Experience of a Referral Center. J. Endocrinol. Investig. 2024, 47, 1887–1901. [Google Scholar] [CrossRef] [PubMed]
- Urbani, C.; Dassie, F.; Zampetti, B.; Mioni, R.; Maffei, P.; Cozzi, R.; Bogazzi, F. Real-Life Data of Pasireotide LAR in Acromegaly: A Long-Term Follow-Up. J. Endocrinol. Investig. 2024, 47, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Biagetti, B.; Araujo-Castro, M.; Tebe, C.; Marazuela, M.; Puig-Domingo, M. Real-World Evidence of Effectiveness and Safety of Pasireotide in the Treatment of Acromegaly: A Systematic Review and Meta-Analysis. Rev. Endocr. Metab. Disord. 2024. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Gu, F.; Bronstein, M.D.; Brue, T.C.; Fleseriu, M.; Shimon, I.; Van Der Lely, A.J.; Ravichandran, S.; Kandra, A.; Pedroncelli, A.M.; et al. Risk Factors and Management of Pasireotide-Associated Hyperglycemia in Acromegaly. Endocr. Connect. 2020, 9, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Gu, F.; Feldt-Rasmussen, U.; Zhang, S.; Yu, Y.; Witek, P.; Kalra, P.; Pedroncelli, A.M.; Pultar, P.; Jabbour, N.; et al. Managing Pasireotide-Associated Hyperglycemia: A Randomized, Open-Label, Phase IV Study. Pituitary 2021, 24, 887–903. [Google Scholar] [CrossRef]
- Hartig, S.M.; Cox, A.R. Paracrine Signaling in Islet Function and Survival. J. Mol. Med. 2020, 98, 451–467. [Google Scholar] [CrossRef]
- Campbell, J.E.; Drucker, D.J. Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metab. 2013, 17, 819–837. [Google Scholar] [CrossRef]
- Wu, T.; Bound, M.J.; Standfield, S.D.; Gedulin, B.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Effects of Rectal Administration of Taurocholic Acid on Glucagon-like Peptide-1 and Peptide YY Secretion in Healthy Humans. Diabetes Obes. Metab. 2013, 15, 474–477. [Google Scholar] [CrossRef]
- Kindel, T.L.; Yoder, S.M.; D’Alessio, D.A.; Tso, P. The Effect of Duodenal–Jejunal Bypass on Glucose-Dependent Insulinotropic Polypeptide Secretion in Wistar Rats. Obes. Surg. 2010, 20, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Quesada, I.; Tudurí, E.; Ripoll, C.; Nadal, Á. Physiology of the Pancreatic α-Cell and Glucagon Secretion: Role in Glucose Homeostasis and Diabetes. J. Endocrinol. 2008, 199, 5–19. [Google Scholar] [CrossRef]
- Theodoropoulou, M.; Stalla, G.K. Somatostatin Receptors: From Signaling to Clinical Practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef]
- Strowski, M.Z.; Parmar, R.M.; Blake, A.D.; Schaeffer, J.M. Somatostatin Inhibits Insulin and Glucagon Secretion via Two Receptor Subtypes: An in Vitro Study of Pancreatic Islets from Somatostatin Receptor 2 Knockout Mice*. Endocrinology 2000, 141, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Strowski, M.Z.; Kohler, M.; Chen, H.Y.; Trumbauer, M.E.; Li, Z.; Szalkowski, D.; Gopal-Truter, S.; Fisher, J.K.; Schaeffer, J.M.; Blake, A.D.; et al. Somatostatin Receptor Subtype 5 Regulates Insulin Secretion and Glucose Homeostasis. Mol. Endocrinol. 2003, 17, 93–106. [Google Scholar] [CrossRef]
- Kailey, B.; Van De Bunt, M.; Cheley, S.; Johnson, P.R.; MacDonald, P.E.; Gloyn, A.L.; Rorsman, P.; Braun, M. SSTR2 Is the Functionally Dominant Somatostatin Receptor in Human Pancreatic β- and α-Cells. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E1107–E1116. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Brendel, M.D.; Zacharias, S.; Mergler, S.; Jahr, H.; Wiedenmann, B.; Bretzel, R.G.; Plöckinger, U.; Strowski, M.Z. Characterization of Somatostatin Receptor Subtype-Specific Regulation of Insulin and Glucagon Secretion: An in Vitro Study on Isolated Human Pancreatic Islets. J. Clin. Endocrinol. Metab. 2007, 92, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Pourhosseinzadeh, M.S.; Lee, S.; Krämer, N.; Guillen, J.V.; Cinque, N.H.; Aniceto, P.; Momen, A.T.; Koike, S.; Huising, M.O. Paracrine Signalling by Pancreatic δ Cells Determines the Glycaemic Set Point in Mice. Nat. Metab. 2024, 6, 61–77. [Google Scholar] [CrossRef]
- Moss, C.E.; Marsh, W.J.; Parker, H.E.; Ogunnowo-Bada, E.; Riches, C.H.; Habib, A.M.; Evans, M.L.; Gribble, F.M.; Reimann, F. Somatostatin Receptor 5 and Cannabinoid Receptor 1 Activation Inhibit Secretion of Glucose-Dependent Insulinotropic Polypeptide from Intestinal K Cells in Rodents. Diabetologia 2012, 55, 3094–3103. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.P.; Sorrell, J.E.; Haller, A.; Roelofs, K.; Hutch, C.R.; Kim, K.-S.; Gutierrez-Aguilar, R.; Li, B.; Drucker, D.J.; D’Alessio, D.A.; et al. The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice. Cell Metab. 2017, 25, 927–934.e3. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, P.; Lupi, R.; Bugliani, M.; Kirkpatrick, C.L.; Sebastiani, G.; Grieco, F.A.; Del Guerra, S.; D’Aleo, V.; Piro, S.; Marselli, L.; et al. A Local Glucagon-like Peptide 1 (GLP-1) System in Human Pancreatic Islets. Diabetologia 2012, 55, 3262–3272. [Google Scholar] [CrossRef] [PubMed]
- Weir, G.C.; Bonner-Weir, S. Conflicting Views About Interactions Between Pancreatic α-Cells and β-Cells. Diabetes 2023, 72, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M.; Schreiber, E.; Fogel, H.; Mojsov, S.; Habener, J.F. Insulinotropic Action of Glucagonlike Peptide-I-(7–37) in Diabetic and Nondiabetic Subjects. Diabetes Care 1992, 15, 270–276. [Google Scholar] [CrossRef]
- Nadkarni, P.; Chepurny, O.G.; Holz, G.G. Regulation of Glucose Homeostasis by GLP-1. Prog. Mol. Biol. Transl. Sci. 2014, 121, 23–65. [Google Scholar] [CrossRef]
- O’Toole, D.; Ducreux, M.; Bommelaer, G.; Wemeau, J.L.; Bouché, O.; Catus, F.; Blumberg, J.; Ruszniewski, P. Treatment of Carcinoid Syndrome: A Prospective Crossover Evaluation of Lanreotide versus Octreotide in Terms of Efficacy, Patient Acceptability, and Tolerance. Cancer 2000, 88, 770–776. [Google Scholar] [CrossRef]
- Chisholm, C.; Greenberg, G.R. Somatostatin-28 Regulates GLP-1 Secretion via Somatostatin Receptor Subtype 5 in Rat Intestinal Cultures. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E311–E317. [Google Scholar] [CrossRef]
- Jepsen, S.L.; Grunddal, K.V.; Wewer Albrechtsen, N.J.; Engelstoft, M.S.; Gabe, M.B.N.; Jensen, E.P.; Ørskov, C.; Poulsen, S.S.; Rosenkilde, M.M.; Pedersen, J.; et al. Paracrine Crosstalk between Intestinal L- and D-Cells Controls Secretion of Glucagon-like Peptide-1 in Mice. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E1081–E1093. [Google Scholar] [CrossRef]
- Jepsen, S.L.; Albrechtsen, N.J.W.; Windeløv, J.A.; Galsgaard, K.D.; Hunt, J.E.; Farb, T.B.; Kissow, H.; Pedersen, J.; Deacon, C.F.; Martin, R.E.; et al. Antagonizing Somatostatin Receptor Subtype 2 and 5 Reduces Blood Glucose in a Gut- and GLP-1R-Dependent Manner. JCI Insight 2021, 6, e143228. [Google Scholar] [CrossRef] [PubMed]
- Farb, T.B.; Adeva, M.; Beauchamp, T.J.; Cabrera, O.; Coates, D.A.; Meredith, T.D.; Droz, B.A.; Efanov, A.; Ficorilli, J.V.; Gackenheimer, S.L.; et al. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5. Endocrinology 2017, 158, 3859–3873. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shao, P.P.; Liang, G.-B.; Bawiec, J.; He, J.; Aster, S.D.; Wu, M.; Chicchi, G.; Wang, J.; Tsao, K.-L.; et al. Discovery and Pharmacology of a Novel Somatostatin Subtype 5 (SSTR5) Antagonist: Synergy with DPP-4 Inhibition. ACS Med. Chem. Lett. 2018, 9, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Singh, S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int. J. Mol. Sci. 2020, 21, 2568. [Google Scholar] [CrossRef] [PubMed]
- Störmann, S.; Meyhöfer, S.M.; Groener, J.B.; Faust, J.; Schilbach, K.; Seufert, J.; Vergès, B. Management of Pasireotide-Induced Hyperglycemia in Patients with Acromegaly: An Experts’ Consensus Statement. Front. Endocrinol. 2024, 15, 1348990. [Google Scholar] [CrossRef]
- Tritos, N.A.; Biller, B.M.K. Pegvisomant: A Growth Hormone Receptor Antagonist Used in the Treatment of Acromegaly. Pituitary 2017, 20, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Drake, W.; Rowles, S.; Roberts, M.; Fode, F.; Besser, G.; Monson, J.; Trainer, P. Insulin Sensitivity and Glucose Tolerance Improve in Patients with Acromegaly Converted from Depot Octreotide to Pegvisomant. Eur. J. Endocrinol. 2003, 149, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Lindberg-Larsen, R.; Møller, N.; Schmitz, O.; Nielsen, S.; Andersen, M.; Ørskov, H.; Jørgensen, J.O.L. The Impact of Pegvisomant Treatment on Substrate Metabolism and Insulin Sensitivity in Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2007, 92, 1724–1728. [Google Scholar] [CrossRef] [PubMed]
- Higham, C.E.; Rowles, S.; Russell-Jones, D.; Umpleby, A.M.; Trainer, P.J. Pegvisomant Improves Insulin Sensitivity and Reduces Overnight Free Fatty Acid Concentrations in Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2009, 94, 2459–2463. [Google Scholar] [CrossRef] [PubMed]
- Feola, T.; Cozzolino, A.; Simonelli, I.; Sbardella, E.; Pozza, C.; Giannetta, E.; Gianfrilli, D.; Pasqualetti, P.; Lenzi, A.; Isidori, A.M. Pegvisomant Improves Glucose Metabolism in Acromegaly: A Meta-Analysis of Prospective Interventional Studies. J. Clin. Endocrinol. Metab. 2019, 104, 2892–2902. [Google Scholar] [CrossRef]
- Fleseriu, M.; Führer-Sakel, D.; Van Der Lely, A.J.; De Marinis, L.; Brue, T.; Van Der Lans-Bussemaker, J.; Hey-Hadavi, J.; Camacho-Hubner, C.; Wajnrajch, M.P.; Valluri, S.R.; et al. More than a Decade of Real-World Experience of Pegvisomant for Acromegaly: ACROSTUDY. Eur. J. Endocrinol. 2021, 185, 525–538. [Google Scholar] [CrossRef]
- Brue, T.; Lindberg, A.; Jan Van Der Lely, A.; Akerblad, A.C.; Koltowska-Häggström, M.; Gomez, R.; Droste, M.; Hey-Hadavi, J.; Strasburger, C.J.; Camacho-Hübner, C. Diabetes in Patients with Acromegaly Treated with Pegvisomant: Observations from Acrostudy. Endocrine 2019, 63, 563–572. [Google Scholar] [CrossRef]
- Ma, L.; Luo, D.; Yang, T.; Wu, S.; Li, M.; Chen, C.; Zhou, S.; Ma, L.; Wu, Y.; Zhou, Y.; et al. Combined Therapy of Somatostatin Analogues with Pegvisomant for the Treatment of Acromegaly: A Meta-Analysis of Prospective Studies. BMC Endocr. Disord. 2020, 20, 126. [Google Scholar] [CrossRef]
- Wass, J.A.H.; Cudworth, A.G.; Bottazzo, G.F.; Woodrow, J.C.; Besser, G.M. An Assessment of Glucose Intolerance in Acromegaly and Its Response to Medical Treatment. Clin. Endocrinol. 1980, 12, 53–59. [Google Scholar] [CrossRef]
- Feek, C.M.; Bevan, J.S.; Taylor, S.; Brown, N.S.; Baird, J.D. The Effect of Bromocriptine on Insulin Secretion and Glucose Tolerance in Patients with Acromegaly. Clin. Endocrinol. 1981, 15, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Rau, H.; Althoff, P.-H.; Schmidt, K.; Badenhoop, K.; Usadel, K.H. Bromocriptine Treatment over 12 Years in Acromegaly: Effect on Glucose Tolerance and Insulin Secretion. Clin. Investig. 1993, 71, 372–378. [Google Scholar] [CrossRef]
- Roemmler, J.; Steffin, B.; Gutt, B.; Schneider, H.J.; Sievers, C.; Bidlingmaier, M.; Schopohl, J. The Acute Effect of a Single Application of Cabergoline on Endogenous GH Levels in Patients with Acromegaly on Pegvisomant Treatment. Growth Horm. IGF Res. 2010, 20, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Higham, C.E.; Atkinson, A.B.; Aylwin, S.; Bidlingmaier, M.; Drake, W.M.; Lewis, A.; Martin, N.M.; Moyes, V.; Newell-Price, J.; Trainer, P.J. Effective Combination Treatment with Cabergoline and Low-Dose Pegvisomant in Active Acromegaly: A Prospective Clinical Trial. J. Clin. Endocrinol. Metab. 2012, 97, 1187–1193. [Google Scholar] [CrossRef]
- Ozery, M.; Wadhwa, R. Bromocriptine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Colao, A.; Lombardi, G.; Annunziato, L. Cabergoline. Expert Opin. Pharmacother. 2000, 1, 555–574. [Google Scholar] [CrossRef]
- Melmed, S.; Casanueva, F.F.; Hoffman, A.R.; Kleinberg, D.L.; Montori, V.M.; Schlechte, J.A.; Wass, J.A.H. Diagnosis and Treatment of Hyperprolactinemia: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 273–288. [Google Scholar] [CrossRef]
- Wass, J.A.; Thorner, M.O.; Morris, D.V.; Rees, L.H.; Mason, A.S.; Jones, A.E.; Besser, G.M. Long-Term Treatment of Acromegaly with Bromocriptine. BMJ 1977, 1, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Cincotta, A.H.; Meier, A.H. Bromocriptine (Ergoset) Reduces Body Weight and Improves Glucose Tolerance in Obese Subjects. Diabetes Care 1996, 19, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Lopez Vicchi, F.; Luque, G.M.; Brie, B.; Nogueira, J.P.; Garcia Tornadu, I.; Becu-Villalobos, D. Dopaminergic Drugs in Type 2 Diabetes and Glucose Homeostasis. Pharmacol. Res. 2016, 109, 74–80. [Google Scholar] [CrossRef]
- Scranton, R.E.; Gaziano, J.M.; Rutty, D.; Ezrokhi, M.; Cincotta, A. A Randomized, Double-Blind, Placebo-Controlled Trial to Assess Safety and Tolerability during Treatment of Type 2 Diabetes with Usual Diabetes Therapy and Either CyclosetTM or Placebo. BMC Endocr. Disord. 2007, 7, 3. [Google Scholar] [CrossRef]
- Antunes, X.; Kasuki, L.; Gadelha, M.R. New and Emerging Pharmacological Treatment Options for Acromegaly. Expert Opin. Pharmacother. 2021, 22, 1615–1623. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Gordon, M.B.; Doknic, M.; Mezősi, E.; Tóth, M.; Randeva, H.; Marmon, T.; Jochelson, T.; Luo, R.; Monahan, M.; et al. ACROBAT Edge: Safety and Efficacy of Switching Injected SRLs to Oral Paltusotine in Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2023, 108, e148–e159. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Casagrande, A.; Strasburger, C.J.; Bidlingmaier, M.; Snyder, P.J.; Guitelman, M.A.; Boguszewski, C.L.; Buchfelder, M.; Shimon, I.; Raverot, G.; et al. Acromegaly Disease Control Maintained After Switching from Injected Somatostatin Receptor Ligands to Oral Paltusotine. J. Clin. Endocrinol. Metab. 2024, 110, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, M.R.; Wildemberg, L.E.; Kasuki, L. The Future of Somatostatin Receptor Ligands in Acromegaly. J. Clin. Endocrinol. Metab. 2022, 107, 297–308. [Google Scholar] [CrossRef]
- Shimon, I.; Rubinek, T.; Hadani, M.; Alhadef, N. PTR-3173 (SomatoprimTM), a Novel Somatostatin Analog with Affinity for Somatostatin Receptors 2, 4 and 5 Is a Potent Inhibitor of Human GH Secretion. J. Endocrinol. Investig. 2004, 27, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Komagata, T.; Tanaka, H.; Ishida, A.; Sawada, T.; Neki, S.; Iida, H.; Okada, H.; Katsumata, S.; Shinozaki, K. MON-464 Non-Clinical Profiling of ONO-5788, a Novel Oral Small Molecule Somatostatin Receptor Type-2 (SST2) Agonist, to Support Studies in Humans. J. Endocr. Soc. 2019, 3, MON-464. [Google Scholar] [CrossRef]
- Zhou, C.; Bonert, V.; Mamelak, A.; Kelly, D.; Barkhoudarian, G.; Hoon, D.; Komagata, T.; Shinozaki, K.; Melmed, S. MON-459 ONO-5788, a Novel Oral Small Molecule Somatostatin Receptor Type-2 (SST2) Agonist, Attenuates GH Hypersecretion in Human GH-Secreting, Pituitary Adenoma-Derived Cells. J. Endocr. Soc. 2019, 3, MON-459. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and Treatment of Type 2 Diabetes: Perspectives on the Past, Present, and Future. Lancet 2014, 383, 1068–1083. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
Study Design | Number of Patients | ∆ FPG (mg/dL) | ∆ Glucose Load (mmol/L) | ∆ HbA1c (%) | ∆ FPI (mU/L) | ∆ HOMA-IR | |
---|---|---|---|---|---|---|---|
Shimon et al., 2018 [30] | Retrospective study | 35 | ↑ 29 mg/dL | - | ↑ 0.6 | - | - |
Lasolle H et al. 2019 a [31] | Prospective study | 15 | ↑ 16 mg/dL | - | ↑ 0.5 | - | - |
Akirov et al. 2021 b [32] | Retrospective study | 19 | - | - | ↑ 0.5 | - | - |
Witek et al., 2021 [33] | Retrospective study | 39 | - | - | ↑ 0.40 (−0.20; 2.30) | - | - |
Wolf et al., 2022 [28] | Retrospective study | 33 | - | ↑ 250 (AUC mmol/L × min) c | ↑ 1.0 | - | ↓ −0.32 c |
Stelmachowska-Banaś et al., 2022 [34] | Prospective study | 28 (26 enrolled for the final analysis) | ↑ 14.99 mg/dL (8.55; 21.42) | - | ↑ 0.53 (0.38; 0.68) | - | - |
Corica et al., 2023 a [35] | Retrospective study | 21 | ↑ 31 mg/dL | - | ↑ 0.3 | - | - |
Gadelha et al., 2023 [36] | Retrospective study | 54 | ↑ 16 mg/dL | - | ↑ 1.3 | - | - |
Pirchio et al., 2024 [37] | Retrospective study | 28 | ↑ 17 mg/dL d | - | ↑ 0.1 d | ↓ −3.6 d | ↓ −0.6 d |
Urbani et al., 2024 [38] | Retrospective study | 50 | ↑ 22 mg/dL e | - | ↑ 2.8 e | - | - |
Study Design | Number of Patients | Treatment | ∆ FPG (mmol/L or mg/dL) | ∆ Glucose Load (mmol/L) | ∆ HbA1c (%) | ∆ FPI (mU/L) | ∆ HOMA-IR | |
---|---|---|---|---|---|---|---|---|
Pegvisomant | ||||||||
Feola et al., 2019 [71] | Meta-analysis (16 studies) | 550 | PEG monotherapy | ↓ −0.80 (−1.6; −0.55) mmol/L | ↓ −2.75 (−5.91; 0.41) | ↓ −0.43 (−0.56; −0.31) | ↓ −5.31 (−10.23; −0.39) | ↓ −0.61 (−1.17; −0.04) |
PEG + fg-SRL | ↓ −0.09 (−0.58; −0.40) mmol/L | - | ↓ −0.12 (−0.24; 0.00) | ↓ −3.63 (−4.11; −3.14) | ↓ −0.98 (−2.33; 0.37) | |||
Ma et al., 2020 [74] | Meta-analysis (9 studies) | 318 | PEG + fg-SRL | ↑ 0.011 (−0.374; 0.397) mmol/L | - | ↓ −0.074 (−0.166; 0.315) | ↓ −21.487 (−35.71; −7.26) | - |
Dopamine agonists | ||||||||
Wass et al., 1980 [75] | Cross-sectional | 69 | Bromocriptine | - | ↓ | - | - | - |
Feek et al., 1981 [76] | Prospective study | 12 | Bromocriptine | ↓ | ↓ | - | ↓ | - |
Rau et al., 1993 [77] | Prospective study | 12 | Bromocriptine | ↓ | ↓ | - | - | - |
Roemmler et al., 2010 [78] | Cross-sectional | 9 | Cabergoline + PEG vs. PEG alone | - | ↓ (both peak glucose and AUC glucose) a | - | - | - |
Higham et al., 2012 [79] | Prospective study | 24 | Cabergoline b | ↓ −0.4 mmol/L | ↓ −2.2 | ↓ −0.20 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatto, F.; Arecco, A.; Amarù, J.; Arvigo, M.; Campana, C.; Milioto, A.; Esposito, D.; Johannsson, G.; Cocchiara, F.; Maggi, D.C.; et al. Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism. Int. J. Mol. Sci. 2025, 26, 465. https://doi.org/10.3390/ijms26020465
Gatto F, Arecco A, Amarù J, Arvigo M, Campana C, Milioto A, Esposito D, Johannsson G, Cocchiara F, Maggi DC, et al. Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism. International Journal of Molecular Sciences. 2025; 26(2):465. https://doi.org/10.3390/ijms26020465
Chicago/Turabian StyleGatto, Federico, Anna Arecco, Jessica Amarù, Marica Arvigo, Claudia Campana, Angelo Milioto, Daniela Esposito, Gudmundur Johannsson, Francesco Cocchiara, Davide Carlo Maggi, and et al. 2025. "Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism" International Journal of Molecular Sciences 26, no. 2: 465. https://doi.org/10.3390/ijms26020465
APA StyleGatto, F., Arecco, A., Amarù, J., Arvigo, M., Campana, C., Milioto, A., Esposito, D., Johannsson, G., Cocchiara, F., Maggi, D. C., Ferone, D., & Puddu, A. (2025). Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism. International Journal of Molecular Sciences, 26(2), 465. https://doi.org/10.3390/ijms26020465