The Scent of Lily Flowers: Advances in the Identification, Biosynthesis, and Regulation of Fragrance Components
Abstract
:1. Introduction
2. Release, Detection, and Identification of Lily Floral Compounds
2.1. Release of Floral Compounds from Different Tissues and Developmental Stages
2.2. Detection Methods
2.3. Identification of Lily Floral Compounds
Type | Group or Species | Cultivar | Floral Scent 1 | Mainly VOCs 2 | Class 3 | Reference |
---|---|---|---|---|---|---|
Cultispecies | Oriental Hybrids | ‘Viviana’ | Scented | β-Ocimene, linalool, allo-ocimene | Monoterpenoids | [11] |
‘Starfighter’ | Scented | Methyl benzoate, linalool, (E)-β-ocimene | Phenylpropanoids, monoterpenoids | [10] | ||
‘White Proud’ | Scented | Linalool, (E)-β-ocimene, myrcene | Monoterpenoids | [10] | ||
‘Pink News’ | Scented | β-Ocimene, 1,8-cineole, linalool | Monoterpenoids | [11] | ||
‘Tiber’ | Scented | β-Ocimene, neo-allo-ocimene, methyl benzoate | Phenylpropanoids, monoterpenoids | [11] | ||
Longiflorum Hybrids | ‘Augusta’ | Scented | Methyl benzoate, (E)-β-ocimene, linalool | Phenylpropanoids, monoterpenoids | [10] | |
‘White Present’ | Scented | (E)-β-Ocimene, methyl benzoate, myrcene | Phenylpropanoids, monoterpenoids | [10] | ||
‘White Heaven’ | Scented | Methyl benzoate, linalool, ethyl benzoate | Phenylpropanoids, monoterpenoids | [7] | ||
Longiflorum × Oriental Hybrids | ‘Triumphator’ | Scented | (E)-β-Ocimene, methyl benzoate, myrcene | Phenylpropanoids, monoterpenoids | [10] | |
‘White Triumph’ | Scented | (E)-β-Ocimene, methyl benzoate, myrcene | Phenylpropanoids, monoterpenoids | [10] | ||
‘Bell Song’ | Scented | Methyl benzoate, linalool, ethyl benzoate | Phenylpropanoids, monoterpenoids | [7] | ||
‘Pink Brilliant’ | Scented | Linalool, methyl benzoate, (E)-β-ocimene | Phenylpropanoids, monoterpenoids | [7] | ||
‘Pink Heaven’ | Scented | Linalool, methyl benzoate, 2-ethenyl-1,1-dimethyl-3-methylenecyclohexane | Phenylpropanoids, monoterpenoids, fatty acid derivatives | [7] | ||
Trumpet Hybrids | ‘African Queen’ | Scented | 1,8-Cineole, methyl benzoate, (E)-β-ocimene | Phenylpropanoids, monoterpenoids | [10] | |
‘Pink Planet’ | Scented | 1,8-Cineole, methyl benzoate, α-pinene | Phenylpropanoids, monoterpenoids | [10] | ||
‘Regale’ | Scented | 1,8-Cineole, methyl benzoate, α-pinene | Phenylpropanoids, monoterpenoids | [10] | ||
‘Yellow Planet’ | Scented | 1,8-Cineole, (E)-β-ocimene, methyl benzoate | Phenylpropanoids, monoterpenoids | [10] | ||
Oriental × Trumpet Hybrids | ‘Donato’ | Scented | 1,8-Cineole, linalool, (E)-β-ocimene | Monoterpenoids | [10] | |
‘Pink Palace’ | Scented | 1,8-Cineole, (E)-β-ocimene, methyl benzoate | Phenylpropanoids, monoterpenoids | [10] | ||
‘Revelation’ | Scented | 1,8-Cineole, (E)-β-ocimene, methyl benzoate | Phenylpropanoids, monoterpenoids | [10] | ||
‘Tabledance’ | Scented | 1,8-Cineole, (E)-β-ocimene, linalool | Monoterpenoids | [10] | ||
‘Palazzo’ | Scented | methyl benzoate, β-ocimene, 1,8-cineole | Phenylpropanoids, monoterpenoids | [11] | ||
Longiflorum × Asiatic Hybrids | ‘Trebbiano’ | Lightly scented | β-Ocimene, (E)-2-hexanal, methyl benzoate | Phenylpropanoids, monoterpenoids, fatty acid derivatives | [11] | |
‘Couplet’ | Lightly scented | (E)-β-Ocimene, DMNT 4, methyl benzoate | Phenylpropanoids, monoterpenoids, fatty acid derivatives | [10] | ||
‘Desiderio’ | Lightly scented | (E)-β-Ocimene, DMNT 4, (Z)-ocimene | Monoterpenoids, fatty acid derivatives | [10] | ||
‘Eyeliner’ | Lightly scented | (E)-β-Ocimene, DMNT 4, linalool | Monoterpenoids, fatty acid derivatives | [10] | ||
‘Serrada’ | Lightly scented | (E)-β-Ocimene, linalool, myrcene | Monoterpenoids | [10] | ||
Asiatic Hybrids | ‘Nello’ | Nonscented | - | - | [10] | |
‘Navona’ | Nonscented | - | - | [10] | ||
‘Pollyanna’ | Nonscented | - | - | [10] | ||
‘Renoir’ | Nonscented | - | - | [10] | ||
Wild species | Lilium regale | - | Scented | 1,8-Cineole, methyl benzoate, α-pinene | Phenylpropanoids, monoterpenoids | [28] |
Lilium sulphureum | - | Scented | 1,8-Cineole, methyl benzoate, α-pinene | Phenylpropanoids, monoterpenoids | [1] | |
Lilium auratum | - | Scented | (E)-β-Ocimene, methyl benzoate, linalool | Phenylpropanoids, monoterpenoids | [27] | |
Lilium sargentiae | - | Scented | Methyl benzoate, 1,8-cineole, (E)-β-ocimene | Phenylpropanoids, monoterpenoids | [26] | |
Lilium bakerianum var. delavayi | - | Scented | Benzaldehyde, linalool, (E)-β-ocimene | Benzenoids, monoterpenoids | [26] | |
Lilium primulinum var. ochraceum | - | Scented | Linalool, 1,8-cineole, β-elemene | Monoterpenoids, sesquiterpenoids | [26] |
2.4. Key VOCs Influencing Lily Fragrance
3. Biosynthesis of Lily Fragrance Components
3.1. Biosynthesis Pathways of Terpenoids
3.2. Biosynthetic Pathways of Benzenoid/Phenylpropanoids
Variety | Aroma Intensity | Gene | Method | Precursor/Transformed Plant | Major Products/Impact | References |
---|---|---|---|---|---|---|
‘Siberia’ | Strong | LoAAT1 | In vitro enzyme-catalyzed reaction | Ethanol and benzoyl-CoA/methanol and benzoyl-CoA | Ethyl benzoate/methyl benzoate | [16] |
‘Siberia’ | Strong | LoTPS1 | In vitro enzyme-catalyzed reaction | GPP | (Z)-β-Ocimene and linalool | [19] |
‘Siberia’ | Strong | LoTPS3 | In vitro enzyme-catalyzed reaction | GPP/FPP | Linalool/cis-nerolidol | [19] |
‘Siberia’ | Strong | LoTPS2 | In vitro enzyme-catalyzed reaction | FPP | (E,E)-α-farnesene | [18] |
‘Siberia’ | Strong | LoTPS4 | In vitro enzyme-catalyzed reaction | GPP/FPP | D-limonene and β-myrcene/(E)-α-bergamotene | [18] |
‘Siberia’ | Strong | LoTPS5 | In vitro enzyme-catalyzed reaction | FPP | Squalene | [34] |
‘Siberia’ | Strong | LiTPS2 | In vitro enzyme-catalyzed reaction | GPP/FPP | Linalool/trans-nerolidol | [35] |
‘Red life’ | Light | LrlTPS-1 | In vitro enzyme-catalyzed reaction | GPP | (E)-β-Ocimene, α-pinene, and limonene | [7] |
‘Red life’ | Light | LrlTPS-3 | In vitro enzyme-catalyzed reaction | GPP | (E)-β-Ocimene, α-pinene, and limonene | [7] |
‘Sorbonne’ | Strong | LsoTPS-1 | In vitro enzyme-catalyzed reaction | GPP | (E)-β-Ocimene, α-pinene, and limonene | [7] |
‘Sorbonne’ | Strong | LsoTPS-2 | In vitro enzyme-catalyzed reaction | GPP | (E)-β-Ocimene, α-pinene, and limonene | [7] |
‘Sorbonne’ | Strong | LsoTPS-3 | In vitro enzyme-catalyzed reaction | GPP | (E)-β-Ocimene, α-pinene, and limonene | [7] |
‘Siberia’ | Strong | LiDXS | Heterologous transformation | Tobacco | Increased levels of sclareol and caryophyllene | [31] |
‘Siberia’ | Strong | LiDXR | Heterologous transformation | Tobacco | Increased levels of sclareol, linalool, and caryophyllene | [31] |
‘Sorbonne’ | Strong | LiMCT | Heterologous transformation | Arabidopsis | Increased levels of AtTPS14 expression; increased carotenoid and chlorophyll content | [32] |
‘Sorbonne’ | Strong | LiLIS, LiMYS | Heterologous transformation | Arabidopsis | Significant changes in the gene expression of MVA and MEP pathways | [33] |
3.3. Biosynthetic Pathways of Fatty Acid Derivatives
4. Regulatory Mechanisms of Lily Floral Scent Components
4.1. Transcriptional Regulation of Floral Scent Component Biosynthesis
4.2. Circadian Rhythm
4.3. Light
4.4. Hormones
4.5. Other Factors
5. Conclusions and Prospects
- (1)
- Identify the key aroma compounds determining sensory fragrance types, using sensory omics techniques.
- (2)
- Develop efficient and rapid detection systems for lily fragrance.
- (3)
- Combine multi-omics and molecular biology to deeply analyze the synthesis and regulatory mechanisms of floral scent substances.
- (4)
- Construct genetic maps to achieve gene localization and the positional cloning of fragrance traits.
- (5)
- Develop the molecular markers significantly associated with lily fragrance.
- (6)
- Build genetic transformation and gene-editing systems that are suitable for different lily varieties.
- (7)
- Explore the impact of environmental factors on lily fragrance.
- (8)
- Enhance research on the application of lily fragrance in the daily chemical industry.
- (9)
- Construct a pan-genome for lilies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kong, Y.; Sun, M.; Pan, H.; Zhang, Q.; Ai, C.; Wang, Y. Floral scent composition of Lilium sulphureum. Chem. Nat. Compd. 2013, 49, 362–364. [Google Scholar] [CrossRef]
- Link, C.B. Lilies: A guide for growers and collectors. HortTechnology 1999, 9, 513. [Google Scholar] [CrossRef]
- Inada, Y.; Oyama-Okubo, N.; Yamagishi, M. Introduction of floral scent traits into asiatic hybrid lilies (unscented) by crossbreeding with Lilium cernuum (scented). Hortic. J. 2023, 92, 485–492. [Google Scholar] [CrossRef]
- Chen, M.; Nie, G.; Li, X.; Yang, L.; Cai, Y.; Zhang, Y. Development of EST-SSR markers based on transcriptome sequencing for germplasm evaluation of 65 lilies (Lilium). Mol. Biol. Rep. 2023, 50, 3259–3269. [Google Scholar] [CrossRef]
- Marasek-Ciolakowska, A.; Nishikawa, T.; Shea, D.J.; Okazaki, K. Breeding of lilies and tulips—Interspecific hybridization and genetic background. Breeding Sci. 2018, 68, 35–52. [Google Scholar] [CrossRef]
- Basit, A.; Lim, K. Recent approaches towards characterization, genetic, and genomic perspectives of genus Lilium. Genet. Resour. Crop Evol. 2024. [Google Scholar] [CrossRef]
- Du, F.; Wang, T.; Fan, J.; Liu, Z.; Zong, J.; Fan, W.; Han, Y.; Grierson, D. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. Hortic. Res. 2019, 6, 110. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, H.; Huo, J.; Huang, D.; Wang, B.; Liao, W. Involvement of calcium and calmodulin in nitric oxide-regulated senescence of cut lily flowers. Front. Plant Sci. 2018, 9, 1284. [Google Scholar] [CrossRef]
- Jo, H.; Rodiek, S.; Fujii, E.; Miyazaki, Y.; Park, B.; Ann, S. Physiological and psychological response to floral scent. Hortscience 2013, 48, 82–88. [Google Scholar] [CrossRef]
- Kong, Y.; Bai, J.; Lang, L.; Bao, F.; Dou, X.; Wang, H.; Shang, H. Variation in floral scent compositions of different lily hybrid groups. J. Am. Soc. Hortic. Sci. 2017, 142, 175–183. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, X.; Zhang, Q.; Guo, Z.; Hao, J.; Zhang, Z.; Sun, M.; Liu, Y. Determination of volatile organic compounds and endogenous extracts and study of expression patterns of TPS and BSMT in the flowers of seven Lilium cultivars. Molecules 2023, 28, 7938. [Google Scholar] [CrossRef] [PubMed]
- Aros, D.; Garrido, N.; Rivas, C.; Medel, M.; Müller, C.; Rogers, H.; Úbeda, C. Floral scent evaluation of three cut flowers through sensorial and gas chromatography analysis. Agronomy 2020, 10, 131. [Google Scholar] [CrossRef]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Front. Plant Sci. 2022, 13, 860157. [Google Scholar] [CrossRef] [PubMed]
- Stolar, J.; Davis, A.R. Floral nectary structure, nectar production, and carbohydrate composition in the Lilium Asiatic hybrid ‘Trésor’. Botany 2010, 88, 185–205. [Google Scholar] [CrossRef]
- Kong, Y.; Sun, M.; Pan, H.; Zhang, Q. Composition and emission rhythm of floral scent volatiles from eight lily cut flowers. J. Am. Soc. Hortic. Sci. 2012, 137, 376–382. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, L.; Li, M.; Liu, F.; Yin, J.; Huang, L.; Zhou, B.; Li, X.; Yu, Y.; Chen, F.; et al. A BAHD acyltransferase contributes to the biosynthesis of both ethyl benzoate and methyl benzoate in the flowers of Lilium oriental hybrid ‘Siberia’. Front. Plant Sci. 2023, 14, 1275960. [Google Scholar] [CrossRef]
- Johnson, T.S.; Schwieterman, M.L.; Kim, J.Y.; Cho, K.H.; Clark, D.G.; Colquhoun, T.A. Lilium floral fragrance: A biochemical and genetic resource for aroma and flavor. Phytochemistry 2016, 122, 103–112. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.; Zhou, Y.; Ashraf, U.; Li, X.; Yu, Y.; Yue, Y.; Ahmad, K.W.; Yu, R.; Fan, Y. Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety ‘Siberia’. Phytochemistry 2020, 173, 112294. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.; Yu, R.; Fan, Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’. Planta 2019, 249, 71–93. [Google Scholar] [CrossRef]
- Hu, Z.; Tang, B.; Wu, Q.; Zheng, J.; Leng, P.; Zhang, K. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium ‘Siberia’ and unscented Lilium ‘Novano’. Front. Plant Sci. 2017, 8, 1351. [Google Scholar] [CrossRef]
- Shi, S.; Duan, G.; Li, D.; Wu, J.; Liu, X.; Hong, B.; Yi, M.; Zhang, Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium ‘Siberia’. Sci. Rep. 2018, 8, 5315–5352. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, Y.; Dong, J.; Wang, Q.; Yan, F.; Tan, J.; Xu, Y.; Zhu, G.; Fan, Y.; Ye, Y. Postharvest fragrance dynamics of different scented cut lilies: Insights from HS–SPME–GC–MS and electronic nose. Postharvest Biol. Tec. 2025, 222, 113378. [Google Scholar] [CrossRef]
- Wei, L.; Wei, S.; Hu, D.; Feng, L.; Liu, Y.; Liu, H.; Liao, W. Comprehensive flavor analysis of volatile components during the vase period of cut lily (Lilium spp. ‘Manissa’) flowers by HS-SPME/GC–MS combined with e-nose technology. Front. Plant Sci. 2022, 13, 822956. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, F.; Wang, Q.; Chen, Y.; Dong, J.; Ye, Y.; Zhu, G.; Fan, Y.; Xu, Y. Diversity of chemical compounds in lily fragrance and identification of key sensory markers. Ind. Crop. Prod. 2024, 222, 120034. [Google Scholar] [CrossRef]
- Kim, H.; Lee, G.; Song, J.; Kim, S. Real-time visualization of scent accumulation reveals the frequency of floral scent emissions. Front. Plant Sci. 2022, 13, 835305. [Google Scholar] [CrossRef]
- Kong, Y.; Bai, J.; Lang, L.; Bao, F.; Dou, X.; Wang, H.; Shang, H. Floral scents produced by Lilium and Cardiocrinum species native to China. Biochem. Syst. Ecol. 2017, 70, 222–229. [Google Scholar] [CrossRef]
- Morinaga, S.; Kumano, Y.; Ota, A.; Yamaoka, R.; Sakai, S. Day-night fluctuations in floral scent and their effects on reproductive success in Lilium auratum. Popul. Ecol. 2009, 51, 187–195. [Google Scholar] [CrossRef]
- Kong, Y.; Bai, J.; Kong, X.; Dou, X.; Wang, N. Floral scent composition of Lilium regale Wilson. Acta Hortic. 2014, 1027, 81–86. [Google Scholar]
- Zhou, F.; Pichersky, E. More is better: The diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytologist 2018, 220, 692–702. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, M.; Guo, Y.; Shi, X.; Yang, Y.; Chen, J.; Zheng, T.; Han, Y.; Bao, F.; Ahmad, S. Overexpression of LiDXS and LiDXR from lily (Lilium ‘Siberia’) enhances the terpenoid content in tobacco flowers. Front. Plant Sci. 2018, 9, 909. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Liu, D.; Dai, J.; Yang, T.; Zhang, J.; Che, D.; Fan, J. Cloning and functional characterization of 2-c-methyl-d-erythritol-4-phosphate cytidylyltransferase (LiMCT) gene in oriental lily (Lilium ‘Sorbonne’). Mol. Biotechnol. 2024, 66, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Jiang, F.; Liu, D.; Zhang, J.; Yang, T.; Zhang, J.; Che, D.; Fan, J. Genome-wide characterization of differentially expressed scent genes in the mep control network of the flower of Lilium ‘Sorbonne’. Mol. Biotechnol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Ke, Y.; Zhou, Y.; Waseem, M.; Yu, Y.; Ashraf, U.; Li, X.; Wang, C.; Yue, Y.; Yu, R.; et al. Cloning, functional characterization and expression analysis of LoTPS5 from Lilium ‘Siberia’. Gene 2020, 756, 144921. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, Y.; Shi, X.; Yang, Y.; Chen, J.; Zhang, Q.; Sun, M. Overexpression of LiTPS2 from a cultivar of lily (Lilium ‘Siberia’) enhances the monoterpenoids content in tobacco flowers. Plant Physiol. Bioch. 2020, 151, 391–399. [Google Scholar] [CrossRef]
- Orlova, I.; Marshall-Colón, A.; Schnepp, J.; Wood, B.; Varbanova, M.; Fridman, E.; Blakeslee, J.J.; Peer, W.A.; Murphy, A.S.; Rhodes, D.; et al. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 2006, 18, 3458–3475. [Google Scholar] [CrossRef]
- Skaliter, O.; Livneh, Y.; Agron, S.; Shafir, S.; Vainstein, A. A whiff of the future: Functions of phenylalanine-derived aroma compounds and advances in their industrial production. Plant Biotechnol. J. 2022, 20, 1651–1669. [Google Scholar] [CrossRef]
- Yoo, H.; Widhalm, J.R.; Qian, Y.; Maeda, H.; Cooper, B.R.; Jannasch, A.S.; Gonda, I.; Lewinsohn, E.; Rhodes, D.; Dudareva, N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine: Phenylpyruvate aminotransferase. Nat. Commun. 2013, 4, 2833. [Google Scholar] [CrossRef]
- Lackus, N.D.; Schmidt, A.; Gershenzon, J.; Köllner, T.G. A peroxisomal β-oxidative pathway contributes to the formation of C6-C1 aromatic volatiles in poplar. Plant Physiol. 2021, 186, 891–909. [Google Scholar] [CrossRef]
- Widhalm, J.R.; Dudareva, N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant 2015, 8, 83–97. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, S. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ho, C.; Wang, Y. Biosynthetic pathways and metabolic engineering of spice flavors. Crit. Rev. Food Sci. 2021, 61, 2047–2060. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, T.A.; Marciniak, D.M.; Wedde, A.E.; Kim, J.Y.; Schwieterman, M.L.; Levin, L.A.; Van Moerkercke, A.; Schuurink, R.C.; Clark, D.G. Peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petunia × hybrida cv. ‘Mitchell Diploid’flower. J. Exp. Bot. 2012, 63, 4821–4833. [Google Scholar] [CrossRef]
- Klempien, A.; Kaminaga, Y.; Qualley, A.; Nagegowda, D.A.; Widhalm, J.R.; Orlova, I.; Shasany, A.K.; Taguchi, G.; Kish, C.M.; Cooper, B.R.; et al. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. The Plant Cell 2012, 24, 2015–2030. [Google Scholar] [CrossRef]
- Qualley, A.V.; Widhalm, J.R.; Adebesin, F.; Kish, C.M.; Dudareva, N. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc. Natl. Acad. Sci. USA 2012, 109, 16383–16388. [Google Scholar] [CrossRef]
- Wang, H.; Sun, M.; Li, L.L.; Xie, X.H.; Zhang, Q.X. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium ‘Yelloween’). Genet. Mol. Res. 2015, 14, 14510–14521. [Google Scholar] [CrossRef]
- Viswanath, K.K.; Varakumar, P.; Pamuru, R.R.; Basha, S.J.; Mehta, S.; Rao, A.D. Plant lipoxygenases and their role in plant physiology. J. Plant Biol. 2020, 63, 83–95. [Google Scholar] [CrossRef]
- Jerković, I.; Kuś, P.M.; Carbonell-Barrachina, Á.A. Volatile organic compounds as artefacts derived from natural phytochemicals sourced form plants and honey. Phytochem. Rev. 2019, 18, 871–891. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Abbas, F.; Zhou, Y.; He, J.; Fan, Y.; Yu, R. Light regulation of LoCOP1 and its role in floral scent biosynthesis in Lilium ‘Siberia’. Plants 2023, 12, 2004. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusia, J.; Peñuelas, J. Floral volatile organic compounds: Between attraction and deterrence of visitors under global change. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 56–67. [Google Scholar] [CrossRef]
- Du, F.; Fan, J.; Wang, T.; Wu, Y.; Grierson, D.; Gao, Z.; Xia, Y. Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid ‘Sorbonne’ and putative control network for scent genes. BMC Genom. 2017, 18, 899. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Guo, Z.; Zhong, J.; Liang, Y.; Zhang, P.; Sun, M. The LibHLH22 and LibHLH63 from Lilium ‘Siberia’ can positively regulate volatile terpenoid biosynthesis. Horticulturae 2023, 9, 459. [Google Scholar] [CrossRef]
- Liu, X.; Yan, W.; Liu, S.; Wu, J.; Leng, P.; Hu, Z. LiNAC100 contributes to linalool biosynthesis by directly regulating LiLiS in Lilium ‘Siberia’. Planta 2024, 259, 73. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, Z.; Zhong, J.; Liang, Y.; Feng, Y.; Zhang, P.; Zhang, Q.; Sun, M. Positive regulatory role of R2R3 MYBs in terpene biosynthesis in Lilium ‘Siberia’. Hortic. Plant J. 2023, 9, 1024–1038. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Ma, B.; Li, Y.Y.; Han, M.Z.; Wu, J.; Zhou, X.F.; Tian, J.; Wang, W.H.; Leng, P.S.; Hu, Z.H. Transcriptome analysis identifies key gene LiMYB305 involved in monoterpene biosynthesis in Lilium ‘Siberia’. Front. Plant Sci. 2022, 13, 1021576. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Hu, Z.; Zhang, Y.; Yu, H.; Yang, L.; Leng, P. Negative regulatory role of LiSRM1 in monoterpene biosynthesis in Lilium ‘Siberia’. Plant Physiol. Bioch. 2024, 216, 109167. [Google Scholar] [CrossRef]
- Yoshida, K.; Oyama-Okubo, N.; Yamagishi, M. An R2R3-MYB transcription factor odorant1 regulates fragrance biosynthesis in lilies (Lilium spp.). Mol. Breed. 2018, 38, 1–14. [Google Scholar] [CrossRef]
- Carvalho, S.D.; Schwieterman, M.L.; Abrahan, C.E.; Colquhoun, T.A.; Folta, K.M. Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Front. Plant Sci. 2016, 7, 1328. [Google Scholar] [CrossRef]
- Han, J.; Li, T.; Wang, X.; Zhang, X.; Bai, X.; Shao, H.; Wang, S.; Hu, Z.; Wu, J.; Leng, P. AmMYB24 regulates floral terpenoid biosynthesis induced by blue light in snapdragon flowers. Front. Plant Sci. 2022, 13, 885168. [Google Scholar] [CrossRef]
- Shang, W.; Song, Y.; Zhang, C.; Shi, L.; Shen, Y.; Li, X.; Wang, Z.; He, S. Effects of light quality on growth, photosynthetic characteristics, and endogenous hormones in in vitro-cultured Lilium plantlets. Hortic. Environ. Biotechnol. 2023, 64, 65–81. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, H.; Leng, P.; Zhao, J.; Wang, W.; Wang, S. Emission of floral scent from Lilium ‘Siberia’ in response to light intensity and temperature. Acta Physiol. Plant. 2013, 35, 1691–1700. [Google Scholar] [CrossRef]
- Dani, K.G.S.; Loreto, F. Plant volatiles as regulators of hormone homeostasis. New Phytol. 2022, 234, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Fu, Y.; Yan, Z.; Wang, S.; Leng, P.; Hu, Z. Effect of methyl jasmonate (MeJA) on floral scent of Lilium ’Siberia’. Jiangsu Agric. Sci. 2018, 46, 100–104. (In Chinese) [Google Scholar]
- Yang, L.; Tian, J.; Huang, Q. Effects of ABA treatment on floral fragrance of lily ‘Sorbonne’. Mol. Plant Breed. 2023, 1, 1–8. (In Chinese) [Google Scholar]
- Oyama-Okubo, N.; Nakayama, M.; Ichimura, K. Control of floral scent emission by inhibitors of phenylalanine ammonia-lyase in cut flower of Lilium cv. ‘Casa Blanca’. J. Jpn. Soc. Hortic. Sci. 2011, 80, 190–199. [Google Scholar] [CrossRef]
- Hu, Z.; Li, T.; Zheng, J.; Yang, K.; He, X.; Leng, P. Ca2+ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium ‘Siberia’. Plant Physiol Biochem 2015, 91, 1–9. [Google Scholar] [CrossRef]
- Abbas, F.; Nian, X.; Zhou, Y.; Ke, Y.; Liu, L.; Yu, R.; Fan, Y. Putative regulatory role of hexokinase and fructokinase in terpenoid aroma biosynthesis in Lilium ‘Siberia’. Plant Physiol. Bioch. 2021, 167, 619–629. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Niinemets, Ü.; Peñuelas, J. Optimum temperature for floral terpene emissions tracks the mean temperature of the flowering season. Funct. Plant Biol. 2015, 42, 851–857. [Google Scholar] [CrossRef]
- Muhlemann, J.K.; Klempien, A.; Dudareva, N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef]
- Xu, S.; Chen, R.; Zhang, X.; Wu, Y.; Yang, L.; Sun, Z.; Zhu, Z.; Song, A.; Wu, Z.; Li, T.; et al. The evolutionary tale of lilies: Giant genomes derived from transposon insertions and polyploidization. Innovation 2024, 5, 100726. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, W.; Li, X.; Liu, D.; Liu, G. A fast, efficient, and tissue-culture-independent genetic transformation method for Panax notoginseng and Lilium regale. Plants 2024, 13, 2509. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hou, X.; Zheng, Y.; Lyu, Y. The establishment of a genetic transformation system and the acquisition of transgenic plants of oriental hybrid lily (Lilium L.). Int. J. Mol. Sci. 2023, 24, 782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yan, H.; Che, H.; So, K.; He, L.; Zhu, Y.; Liu, B.; Zhang, Y. Establishment of genetic transformation system in Lilium pumilum and functional analysis of LpNAC6 on abiotic stress. Plant Sci. 2024, 350, 112292. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Wang, Z.; Ren, Y.; Li, H.; Liu, N.; Sun, H. Establishment of efficient genetic transformation systems and application of CRISPR/CAS9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum ‘White Heaven‘. Int. J. Mol. Sci. 2019, 20, 2920. [Google Scholar] [CrossRef]
- Fan, X.; Sun, H. Exploring agrobacterium-mediated genetic transformation methods and its applications in Lilium. Plant Methods 2024, 20, 120–124. [Google Scholar] [CrossRef]
- Losch, F.; Liedtke, S.; Vautz, W.; Weigend, M. Evaluation of floral volatile patterns in the genus narcissus using gas chromatography-coupled ion mobility spectrometry. Appl. Plant Sci. 2023, 11, e11506. [Google Scholar] [CrossRef]
- Shen, C.; Cai, Y.; Wu, X.; Gai, S.; Wang, B.; Liu, D. Characterization of selected commercially available grilled lamb shashliks based on flavor profiles using GC-MS, GC x GC-TOF-MS, GC-IMS, E-nose and E-tongue combined with chemometrics. Food Chem. 2023, 423, 136257. [Google Scholar] [CrossRef]
- Onzo, A.; Pascale, R.; Acquavia, M.A.; Cosma, P.; Gubitosa, J.; Gaeta, C.; Iannece, P.; Tsybin, Y.; Rizzi, V.; Guerrieri, A.; et al. Untargeted analysis of pure snail slime and snail slime-induced au nanoparticles metabolome with MALDI FT-ICR MS. J. Mass Spectrom. 2021, 56, e4722. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q.; Wei, X.; Gao, T.; Abbas, F.; Yan, F.; He, J.; Yu, Y.; Yu, R.; Fan, Y. Dynamic aromatics: Evaluating fragrance quality shifts and implementation of real-time rapid detection in Hedychium cut flowers during senescence. Postharvest Biol. Tec. 2024, 218, 113193. [Google Scholar] [CrossRef]
- Tholl, D.; Hossain, O.; Weinhold, A.; Röse, U.S.R.; Wei, Q. Trends and applications in plant volatile sampling and analysis. Plant J. 2021, 106, 314–325. [Google Scholar] [CrossRef]
Fragrance Collection Method | Fragrance Analysis Method | Advantage | Disadvantage | References |
---|---|---|---|---|
Adsorbent tube | GC-MS | Qualitative and quantitative analysis of VOCs | Multiple steps, relatively long analysis time | [1,3,10,15,20] |
SPME | GC-MS | [7,11,12,16,18,19,21,25,26] | ||
- | Sensory | Directly reflects consumer perception of fragrance | High labor costs, strong subjectivity | [7,12,22] |
- | E-nose | Real-time detection, short analysis time | Cannot qualitatively analyze VOCs | [23,24] |
- | Metal-oxide semiconductor odor sensor | Real-time detection, short analysis time | [26] | |
- | Mach–Zehnder interferometer | Real-time visualization of scent accumulation | [25] |
Transcription Factor | Target Gene | Regulatory Mode | Controlled VOCs | References |
---|---|---|---|---|
LibHLH22 | LiDXR, LiTPS2 | Positive | Linalool, (E)-β-ocimene | [53] |
LibHLH63 | LiDXR, LiTPS2 | Positive | Linalool, (E)-β-ocimene | [53] |
LiNAC100 | LiLiS | Positive | Linalool | [54] |
LiMYB1 | LiTPS2 | Positive | Linalool, (E)-β-ocimene | [55] |
LiMYB305 | LiTPS2 | Positive | Linalool, (E)-β-ocimene | [55] |
LiMYB330 | LiTPS2 | Positive | Linalool, (E)-β-ocimene | [55] |
Complex of LiMYB1 and LiMYB308 | LiTPS2 | Positive | Linalool, (E)-β-ocimene | [55] |
LiMYB305 | LiOcS | Positive | (E)-β-Ocimene | [56] |
LiSRM1 | LiLiS, LiOcS | Negative | Linalool, (E)-β-ocimene | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Lu, X.; Gao, T.; Zhou, Y. The Scent of Lily Flowers: Advances in the Identification, Biosynthesis, and Regulation of Fragrance Components. Int. J. Mol. Sci. 2025, 26, 468. https://doi.org/10.3390/ijms26020468
Chen Y, Lu X, Gao T, Zhou Y. The Scent of Lily Flowers: Advances in the Identification, Biosynthesis, and Regulation of Fragrance Components. International Journal of Molecular Sciences. 2025; 26(2):468. https://doi.org/10.3390/ijms26020468
Chicago/Turabian StyleChen, Yiwei, Xiaoxuan Lu, Ting Gao, and Yiwei Zhou. 2025. "The Scent of Lily Flowers: Advances in the Identification, Biosynthesis, and Regulation of Fragrance Components" International Journal of Molecular Sciences 26, no. 2: 468. https://doi.org/10.3390/ijms26020468
APA StyleChen, Y., Lu, X., Gao, T., & Zhou, Y. (2025). The Scent of Lily Flowers: Advances in the Identification, Biosynthesis, and Regulation of Fragrance Components. International Journal of Molecular Sciences, 26(2), 468. https://doi.org/10.3390/ijms26020468