The Ocular Surface and the Anterior Segment of the Eye in the Pseudoexfoliation Syndrome: A Comprehensive Review
Abstract
:1. Introduction
2. Methodology
2.1. The Effect of Pseudoexfoliation on Ocular Structures
2.2. Conjunctiva
2.3. Tenon’s Capsule
2.4. Sclera
2.5. Cornea
2.6. Iris
2.7. Ciliary Body, Zonules and Aqueous Humour
Raised Concentration in Aqueous Humour | Refs. |
---|---|
IL-6 | [84] |
IL-8 | [84] |
TGF-β1 | [83,85,86] |
TNF-α | [87] |
Protein-carbonyl | [90] |
Complement factor 3 | [88] |
Antithrombin III | [88] |
Kininogen-1 | [88] |
Vitamin D-binding protein | [88] |
8-hydroxy-2′-deoxyguanosine | [89] |
ADMA | [91] |
Selenium | [92] |
Glutathione | [88,93] |
Thiobarbituric acid | [93] |
VEGF | [100] |
Fetuin-A | [101] |
Lowered concentration in aqueous humour | |
Total lipid content | [95] |
Klotho | [98,99] |
2.8. Trabecular Meshwork
2.9. Lens
3. Conclusions
4. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
24S-OHC | 24S-hydroxycholesterol |
ABCA1 | ATP-binding cassette transporter A1 |
ABCG1 | ATP Binding Cassette Subfamily G Member 1 |
ADMA | asymmetric dimethyl arginine |
AGPAT1 | 1-acylglycerol-3-phosphate O-acyltransferase 1 |
ALDH1A1 | aldehyde dehydrogenase 1a1 |
APOB | Apolipoprotein B |
APOC1 | Apolipoprotein C2 |
CACNA1A | Calcium Voltage-Gated Channel Subunit Alpha 1 |
Cas9 | CRISPR-associated protein 9 |
CCT | Central corneal thickness |
CRISPR/ | clustered regularly interspaced short palindromic repeats |
CYP39A1 | cytochrome P450 family 39 subfamily A member 1 |
DNAJB11 | DnaJ heat shock protein family (Hsp40) member B11 |
ECD | endothelial cell density |
ECM | extracellular matix |
GWAS | genome-wide association studies |
HMGCR | 3-hydroxy-3-methylglutaryl coenzyme A reductase |
HNK-1 | human natural killer-1 |
IFIS, | floppy iris syndrome |
IL-6 | Interleukin 6 |
IL-8 | Inteleukin 8 |
IOP | intra-ocular pressure |
LC3 | Microtubule-associated protein 1A/1B-light chain 3 |
LDL | Low-dense lipoprotein |
LOXL1 | Lysyl oxidase-like 1 |
LXRA/B | Liver X receptor alpha/beta, |
MIGS | Minimally Invasive Glaucoma Surgery |
NSAIDs | non-steroidal anti-inflammatory drugs |
OCT | optical coherence tomography |
POAG | primary open angle glaucoma |
POMP | proteasome maturation protein |
PXG | Pseudoexfoliation glaucoma |
PXS | Pseudoexfoliation syndrome |
RBMS3 | RNA binding motif, single stranded interacting protein 3 |
RXRA | Retinoid X Receptor Alpha |
SEMA6A | semaphorin 6A |
snoRNA | Small nucleolar RNAs |
SNP | single nucleotide polymorphisms |
SOD2 | Superoxide dismutase 2 |
SREBF2 | Sterol Regulatory Element Binding Transcription Factor 2 |
TGF–β1 | transforming growth factor- beta1 |
TM | trabecular meshwork |
TMEM136 | transmembrane protein 136 |
TNF-α | tumor necrosis factor-alpha |
TUNEL | Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling |
UV | Ultraviolet |
References
- Pasutto, F.; Zenkel, M.; Hoja, U.; Berner, D.; Uebe, S.; Ferrazzi, F.; Schödel, J.; Liravi, P.; Ozaki, M.; Paoli, D.; et al. Pseudoexfoliation Syndrome-Associated Genetic Variants Affect Transcription Factor Binding and Alternative Splicing of LOXL1. Nat. Commun. 2017, 8, 15466. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, L.E.; Lee, R.K. Genomic and Proteomic Pathophysiology of Pseudoexfoliation Glaucoma. Int. Ophthalmol. Clin. 2014, 54, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mastronikolis, S.; Pagkalou, M.; Baroutas, G.; Kyriakopoulou, K.; Makri, O.E.; Georgakopoulos, C.D. Pseudoexfoliation Syndrome: The Critical Role of the Extracellular Matrix in Pathogenesis and Treatment. IUBMB Life 2022, 74, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Zenkel, M.; Krysta, A.; Pasutto, F.; Juenemann, A.; Kruse, F.E.; Schlötzer-Schrehardt, U. Regulation of Lysyl Oxidase-like 1 (LOXL1) and Elastin-Related Genes by Pathogenic Factors Associated with Pseudoexfoliation Syndrome. Investig. Opthalmol. Vis. Sci. 2011, 52, 8488. [Google Scholar] [CrossRef]
- Ovodenko, B.; Rostagno, A.; Neubert, T.A.; Shetty, V.; Thomas, S.; Yang, A.; Liebmann, J.; Ghiso, J.; Ritch, R. Proteomic Analysis of Exfoliation Deposits. Investig. Opthalmol. Vis. Sci. 2007, 48, 1447. [Google Scholar] [CrossRef]
- Karp, C.L. True Exfoliation of the Lens Capsule. Arch. Ophthalmol. 1999, 117, 1078. [Google Scholar] [CrossRef]
- Aung, T.; Chan, A.S.; Khor, C.-C. Genetics of Exfoliation Syndrome. J. Glaucoma 2018, 27 (Suppl. S1), S12–S14. [Google Scholar] [CrossRef]
- Bora, R.R.; Prasad, R.; Mathurkar, S.; Bhojwani, K.; Prasad, A. Cardiovascular Manifestations of Pseudoexfoliation Syndrome: A Narrative Review. Cureus 2024, 16, e51492. [Google Scholar] [CrossRef]
- Yüksel, N.; Yılmaz Tuğan, B. Pseudoexfoliation Glaucoma: Clinical Presentation and Therapeutic Options. Turk. J. Ophthalmol. 2023, 53, 247–256. [Google Scholar] [CrossRef]
- Eremenko, R.; Neimark, E.; Shalev, D.; Harel, G.; Kleinmann, G. Prevalence and Prediction of Intraoperative Floppy Iris Syndrome in Patients with Pseudoexfoliation Syndrome. Can. J. Ophthalmol. 2024. Advanced online publication. [Google Scholar] [CrossRef]
- Desai, M.A.; Lee, R.K. The Medical and Surgical Management of Pseudoexfoliation Glaucoma. Int. Ophthalmol. Clin. 2008, 48, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Nagase, T.; Sanai, Y.; Nakamura, S.; Asato, H.; Harii, K.; Osumi, N. Roles of HNK-1 Carbohydrate Epitope and Its Synthetic Glucuronyltransferase Genes on Migration of Rat Neural Crest Cells. J. Anat. 2003, 203, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Berner, D.; Hoja, U.; Zenkel, M.; Ross, J.J.; Uebe, S.; Paoli, D.; Frezzotti, P.; Rautenbach, R.M.; Ziskind, A.; Williams, S.E.; et al. The Protective Variant Rs7173049 at LOXL1 Locus Impacts on Retinoic Acid Signaling Pathway in Pseudoexfoliation Syndrome. Hum. Mol. Genet. 2019, 28, 2531–2548. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Zenkel, M. The Role of Lysyl Oxidase-like 1 (LOXL1) in Exfoliation Syndrome and Glaucoma. Exp. Eye Res. 2019, 189, 107818. [Google Scholar] [CrossRef]
- Sahay, P.; Chakraborty, M.; Rao, A. Global and Comparative Proteome Signatures in the Lens Capsule, Trabecular Meshwork, and Iris of Patients With Pseudoexfoliation Glaucoma. Front. Mol. Biosci. 2022, 9, 877250. [Google Scholar] [CrossRef]
- Khan, T.T.; Li, G.; Navarro, I.D.; Kastury, R.D.; Zeil, C.J.; Semchyshyn, T.M.; Moya, F.J.; Epstein, D.L.; Gonzalez, P.; Challa, P. LOXL1 Expression in Lens Capsule Tissue Specimens from Individuals with Pseudoexfoliation Syndrome and Glaucoma. Mol. Vis. 2010, 16, 2236–2241. [Google Scholar]
- Berner, D.; Zenkel, M.; Pasutto, F.; Hoja, U.; Liravi, P.; Gusek-Schneider, G.C.; Kruse, F.E.; Schödel, J.; Reis, A.; Schlötzer-Schrehardt, U. Posttranscriptional Regulation of LOXL1 Expression Via Alternative Splicing and Nonsense-Mediated MRNA Decay as an Adaptive Stress Response. Investig. Opthalmol. Vis. Sci. 2017, 58, 5930. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Pasutto, F.; Sommer, P.; Hornstra, I.; Kruse, F.E.; Naumann, G.O.H.; Reis, A.; Zenkel, M. Genotype-Correlated Expression of Lysyl Oxidase-Like 1 in Ocular Tissues of Patients with Pseudoexfoliation Syndrome/Glaucoma and Normal Patients. Am. J. Pathol. 2008, 173, 1724–1735. [Google Scholar] [CrossRef]
- Thorleifsson, G.; Magnusson, K.P.; Sulem, P.; Walters, G.B.; Gudbjartsson, D.F.; Stefansson, H.; Jonsson, T.; Jonasdottir, A.; Jonasdottir, A.; Stefansdottir, G.; et al. Common Sequence Variants in the LOXL1 Gene Confer Susceptibility to Exfoliation Glaucoma. Science 2007, 317, 1397–1400. [Google Scholar] [CrossRef]
- Aung, T.; Ozaki, M.; Mizoguchi, T.; Allingham, R.R.; Li, Z.; Haripriya, A.; Nakano, S.; Uebe, S.; Harder, J.M.; Chan, A.S.Y.; et al. A Common Variant Mapping to CACNA1A Is Associated with Susceptibility to Exfoliation Syndrome. Nat. Genet. 2015, 47, 387–392. [Google Scholar] [CrossRef]
- Williams, S.E.I.; Whigham, B.T.; Liu, Y.; Carmichael, T.R.; Qin, X.; Schmidt, S.; Ramsay, M.; Hauser, M.A.; Allingham, R.R. Major LOXL1 Risk Allele Is Reversed in Exfoliation Glaucoma in a Black South African Population. Mol. Vis. 2010, 16, 705–712. [Google Scholar] [PubMed]
- Strzalka-Mrozik, B.; Prudlo, L.; Kimsa, M.W.; Kimsa, M.C.; Kapral, M.; Nita, M.; Mazurek, U. Quantitative Analysis of SOD2, ALDH1A1 and MGST1 Messenger Ribonucleic Acid in Anterior Lens Epithelium of Patients with Pseudoexfoliation Syndrome. Mol. Vis. 2013, 19, 1341–1349. [Google Scholar] [PubMed]
- Hicks, P.M.; Siedlecki, A.; Haaland, B.; Owen, L.A.; Au, E.; Feehan, M.; Murtaugh, M.A.; Sieminski, S.; Reynolds, A.; Lillvis, J.; et al. A Global Genetic Epidemiological Review of Pseudoexfoliation Syndrome. Explor. Med. 2021, 2, 527–543. [Google Scholar] [CrossRef]
- Hicks, P.M.; Au, E.; Self, W.; Haaland, B.; Feehan, M.; Owen, L.A.; Siedlecki, A.; Nuttall, E.; Harrison, D.; Reynolds, A.L.; et al. Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. Int. J. Environ. Res. Public. Health 2021, 18, 7231. [Google Scholar] [CrossRef]
- Zenkel, M.; Lütjohann, D.; Kerksiek, A.; Giessl, A.; Kruse, F.; Schlötzer-Schrehardt, U. Abnormalities in Cholesterol Homeostasis May Contribute to Pathogenesis of Pseudoexfoliation Syndrome/Glaucoma. Investig. Ophthalmol. Vis. Sci. 2023, 64, 51. [Google Scholar]
- Schlötzer-Schrehardt, U.; Lütjohann, D.; Kerksiek, A.; Mossböck, G.; Kruse, F.; Pasutto, F.; Zenkel, M. Role of CYP39A1 Deficiency and 24S-Hydroxycholesterol in the Pathogenesis of Pseudoexfoliation Syndrome/Glaucoma. Investig. Ophthalmol. Vis. Sci. 2023, 64, 4348. [Google Scholar]
- Li, Z.; Wang, Z.; Lee, M.C.; Zenkel, M.; Peh, E.; Ozaki, M.; Topouzis, F.; Nakano, S.; Chan, A.; Chen, S.; et al. Association of Rare CYP39A1 Variants With Exfoliation Syndrome Involving the Anterior Chamber of the Eye. JAMA 2021, 325, 753. [Google Scholar] [CrossRef]
- Bell, K.; Ozaki, M.; Mori, K.; Mizoguchi, T.; Nakano, S.; Porporato, N.; Ikeda, Y.; Chihara, E.; Inoue, K.; Manabe, S.; et al. Association of the CYP39A1 G204E Genetic Variant with Increased Risk of Glaucoma and Blindness in Patients with Exfoliation Syndrome. Ophthalmology 2022, 129, 406–413. [Google Scholar] [CrossRef]
- Zenkel, M.; Pasutto, F.; Bergua, A.; Liravi, P.; Uebe, S.; Ortolani, F.; Kruse, F.; Schlötzer-Schrehardt, U. Expression of CACNA1A in Patients with Pseudoexfoliation Syndrome. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5997. [Google Scholar]
- Schlötzer-Schrehardt, U.; Körtje, K.-H.; Erb, C. Energy-Filtering Transmission Electron Microscopy (EFTEM) in the Elemental Analysis of Pseudoexfoliative Material. Curr. Eye Res. 2001, 22, 154–162. [Google Scholar] [CrossRef]
- Pasquale, L.R.; Borrás, T.; Fingert, J.H.; Wiggs, J.L.; Ritch, R. Exfoliation Syndrome: Assembling the Puzzle Pieces. Acta Ophthalmol. 2016, 94, e505–e512. [Google Scholar] [CrossRef] [PubMed]
- Jiwani, A.Z.; Pasquale, L.R. Exfoliation Syndrome and Solar Exposure. Int. Ophthalmol. Clin. 2015, 55, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Pasquale, L.R.; Wiggs, J.L.; Willett, W.C.; Kang, J.H. The Relationship between Caffeine and Coffee Consumption and Exfoliation Glaucoma or Glaucoma Suspect: A Prospective Study in Two Cohorts. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6427–6433. [Google Scholar] [CrossRef] [PubMed]
- Pasquale, L.R.; Kang, J.H.; Fan, B.; Levkovitch-Verbin, H.; Wiggs, J.L. LOXL1 Polymorphisms: Genetic Biomarkers That Presage Environmental Determinants of Exfoliation Syndrome. J. Glaucoma 2018, 27 (Suppl. S1), S20–S23. [Google Scholar] [CrossRef] [PubMed]
- Cholkar, K.; Dasari, S.R.; Pal, D.; Mitra, A.K. Eye: Anatomy, Physiology and Barriers to Drug Delivery. In Ocular Transporters and Receptors; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–36. [Google Scholar] [CrossRef]
- Dartt, D.A. Control of Mucin Production by Ocular Surface Epithelial Cells. Exp. Eye Res. 2004, 78, 173–185. [Google Scholar] [CrossRef]
- Kozobolis, V.P.; Christodoulakis, E.V.; Naoumidi, I.I.; Siganos, C.S.; Detorakis, E.T.; Pallikaris, I.G. Study of Conjunctival Goblet Cell Morphology and Tear Film Stability in Pseudoexfoliation Syndrome. Graefe’s Arch. Clin. Exp. Ophthalmol. 2004, 242, 478–483. [Google Scholar] [CrossRef]
- Akdemir, M.O.; Kirgiz, A.; Ayar, O.; Kaldirim, H.; Mert, M.; Cabuk, K.S.; Taskapili, M. The Effect of Pseudoexfoliation and Pseudoexfoliation Induced Dry Eye on Central Corneal Thickness. Curr. Eye Res. 2015, 41, 305–310. [Google Scholar] [CrossRef]
- Erdoğan, H.; Arıcı, D.S.; Toker, M.İ.; Arıcı, M.K.; Fariz, G.; Topalkara, A. Conjunctival Impression Cytology in Pseudoexfoliative Glaucoma and Pseudoexfoliation Syndrome. Clin. Exp. Ophthalmol. 2006, 34, 108–113. [Google Scholar] [CrossRef]
- Detorakis, E.; Bontzos, G.; Drakonaki, E.; Spandidos, D. Changes in Periocular Anatomy and Physiology in Pseudoexfoliation Syndrome. Exp. Ther. Med. 2021, 21, 650. [Google Scholar] [CrossRef]
- Gupta, M.; Rhee, D.J. Ophthalmic Anesthesia. In Glaucoma; Elsevier: Amsterdam, The Netherlands, 2015; pp. 734–748. [Google Scholar] [CrossRef]
- Plikus, M.V.; Wang, X.; Sinha, S.; Forte, E.; Thompson, S.M.; Herzog, E.L.; Driskell, R.R.; Rosenthal, N.; Biernaskie, J.; Horsley, V. Fibroblasts: Origins, Definitions, and Functions in Health and Disease. Cell 2021, 184, 3852–3872. [Google Scholar] [CrossRef]
- Want, A.; Gillespie, S.R.; Wang, Z.; Gordon, R.; Iomini, C.; Ritch, R.; Wolosin, J.M.; Bernstein, A.M. Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients. PLoS ONE 2016, 11, e0157404. [Google Scholar] [CrossRef] [PubMed]
- Boote, C.; Sigal, I.A.; Grytz, R.; Hua, Y.; Nguyen, T.D.; Girard, M.J.A. Scleral Structure and Biomechanics. Prog. Retin. Eye Res. 2020, 74, 100773. [Google Scholar] [CrossRef] [PubMed]
- Alpogan, O.; Tekcan, H.; Imamoglu, S.; Ozturk, Y.; Bolac, R. The Effect of Uneventful Cataract Surgery on Schlemm’s Canal and the Trabecular Meshwork in Cases with Pseudoexfoliation. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Braunsmann, C.; Hammer, C.M.; Rheinlaender, J.; Kruse, F.E.; Schäffer, T.E.; Schlötzer-Schrehardt, U. Evaluation of Lamina Cribrosa and Peripapillary Sclera Stiffness in Pseudoexfoliation and Normal Eyes by Atomic Force Microscopy. Investig. Opthalmol. Vis. Sci. 2012, 53, 2960. [Google Scholar] [CrossRef]
- Ludwig, P.E.; Lopez, M.J.; Sevensma, K.E. Anatomy, Head and Neck, Eye Cornea. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mizuno, K.; Muroi, S. Cycloscopy of Pseudoexfoliation. Am. J. Ophthalmol. 1979, 87, 513–518. [Google Scholar] [CrossRef]
- de Juan-Marcos, L.; Cabrillo-Estévez, L.; Escudero-Domínguez, F.A.; Sánchez-Jara, A.; Hernández-Galilea, E. Cambios Morfométricos de Las Células Del Endotelio Corneal En El Síndrome Pseudoexfoliativo y Glaucoma Pseudoexfoliativo. Arch. Soc. Esp. Oftalmol. 2013, 88, 439–444. [Google Scholar] [CrossRef]
- Yüksel, N.; Emre, E.; Pirhan, D. Evaluation of Corneal Microstructure in Pseudoexfoliation Syndrome and Glaucoma: In Vivo Scanning Laser Confocal Microscopic Study. Curr. Eye Res. 2016, 41, 34–40. [Google Scholar] [CrossRef]
- Naumann, G.O.H.; Schlötzer-Schrehardt, U. Keratopathy in Pseudoexfoliation Syndrome as a Cause of Corneal Endothelial Decompensation. Ophthalmology 2000, 107, 1111–1124. [Google Scholar] [CrossRef]
- Kocabeyoglu, S.; Mocan, M.C.; Irkec, M.; Karakaya, J. In Vivo Confocal Microscopic Evaluation of Corneas in Patients With Exfoliation Syndrome. J. Glaucoma 2016, 25, 193–197. [Google Scholar] [CrossRef]
- Palko, J.; Qi, O.; Sheybani, A. Corneal Alterations Associated with Pseudoexfoliation Syndrome and Glaucoma: A Literature Review. J. Ophthalmic Vis. Res. 2017, 12, 312. [Google Scholar] [CrossRef]
- Sarowa, S.; Manoher, J.; Jain, K.; Singhal, Y.; Devathia, D. Qualitative and Quantitative Changes of Corneal Endothelial Cells and Central Corneal Thickness in Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. Int. J. Med. Sci. Public. Health 2016, 5, 2526. [Google Scholar] [CrossRef]
- Oltulu, R.; Satirtav, G.; Kayitmazbatir, E.T.; dan Bitirgen, G.; Ozkagnici, A.; Karaibrahimoglu, A. Characteristics of the Cornea in Patients with Pseudoexfoliation Syndrome. Arq. Bras. Oftalmol. 2015, 78, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Asfuroglu, Y.; Kemer, O.E. Central Corneal Thickness and Corneal Volume Changes in Eyes with and without Pseudoexfoliation after Uneventful Phacoemulsification. Int. Ophthalmol. 2019, 39, 275–280. [Google Scholar] [CrossRef]
- Yilmaz, Y.C.; Hayat, S.C.; Ipek, S.C. Corneal Clarity and Tomographic Patterns in Pseudoexfoliation Syndrome: A Severity-Based Investigation. Eye Contact Lens Sci. Clin. Pract. 2024, 50, 482–488. [Google Scholar] [CrossRef]
- Durukan, I. Evaluation of Corneal and Lens Clarity in Unilateral Pseudoexfoliation Syndrome: A Densitometric Analysis. Clin. Exp. Optom. 2018, 101, 740–746. [Google Scholar] [CrossRef]
- Yazgan, S.; Celik, U.; Alagöz, N.; Taş, M. Corneal Biomechanical Comparison of Pseudoexfoliation Syndrome, Pseudoexfoliative Glaucoma and Healthy Subjects. Curr. Eye Res. 2015, 40, 470–475. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.M. Corneal Endothelial Involvement in Pseudoexfoliation Syndrome. Arch. Ophthalmol. 1993, 111, 666. [Google Scholar] [CrossRef]
- Pradhan, Z.S.; Deshmukh, S.; Dixit, S.; Sreenivasaiah, S.; Shroff, S.; Devi, S.; Webers, C.A.B.; Rao, H.L. A Comparison of the Corneal Biomechanics in Pseudoexfoliation Glaucoma, Primary Open-Angle Glaucoma and Healthy Controls Using Corvis ST. PLoS ONE 2020, 15, e0241296. [Google Scholar] [CrossRef]
- Bloom, J.; Motlagh, M.; Czyz, C.N. Anatomy, Head and Neck: Eye Iris Sphincter Muscle. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Schlötzer-Schrehardt, U.; Naumann, G.O.H. Ocular and Systemic Pseudoexfoliation Syndrome. Am. J. Ophthalmol. 2006, 141, 921–937.e2. [Google Scholar] [CrossRef]
- Ritch, R.; Schlötzer-Schrehardt, U. Exfoliation Syndrome. Surv. Ophthalmol. 2001, 45, 265–315. [Google Scholar] [CrossRef]
- Asano, N.; Schlötzer-Schrehardt, U.; Naumann, G.O. A Histopathologic Study of Iris Changes in Pseudoexfoliation Syndrome. Ophthalmology 1995, 102, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Helbig, H.; Schlötzer-Schrehardt, U.; Noske, W.; Kellner, U.; Foerster, M.H.; Naumann, G.O. Anterior-Chamber Hypoxia and Iris Vasculopathy in Pseudoexfoliation Syndrome. Ger. J. Ophthalmol. 1994, 3, 148–153. [Google Scholar] [PubMed]
- Mardin, C.Y.; Schlötzer-Schrehardt, U.; Naumann, G. “Masked” Pseudoexfoliation Syndrome in Unoperated Eyes With Circular Posterior Synechiae. Arch. Ophthalmol. 2001, 119, 1500. [Google Scholar] [CrossRef]
- Wilson, M.R.; Satapathy, S.; Jeong, S.; Fini, M.E. Clusterin, Other Extracellular Chaperones, and Eye Disease. Prog. Retin. Eye Res. 2022, 89, 101032. [Google Scholar] [CrossRef]
- Padhy, B.; Nanda, G.G.; Chowdhury, M.; Padhi, D.; Rao, A.; Alone, D.P. Role of an Extracellular Chaperone, Clusterin in the Pathogenesis of Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. Exp. Eye Res. 2014, 127, 69–76. [Google Scholar] [CrossRef]
- Doudevski, I.; Rostagno, A.; Cowman, M.; Liebmann, J.; Ritch, R.; Ghiso, J. Clusterin and Complement Activation in Exfoliation Glaucoma. Investig. Opthalmol. Vis. Sci. 2014, 55, 2491. [Google Scholar] [CrossRef]
- Zenkel, M.; Kruse, F.E.; Jünemann, A.G.; Naumann, G.O.H.; Schlötzer-Schrehardt, U. Clusterin Deficiency in Eyes with Pseudoexfoliation Syndrome May Be Implicated in the Aggregation and Deposition of Pseudoexfoliative Material. Investig. Opthalmol. Vis. Sci. 2006, 47, 1982. [Google Scholar] [CrossRef]
- Borrás, T. The Cellular and Molecular Biology of the Iris, an Overlooked Tissue. J. Glaucoma 2014, 23, S39–S42. [Google Scholar] [CrossRef]
- Hardenborg, E.; Botling-Taube, A.; Hanrieder, J.; Andersson, M.; Alm, A.; Bergquist, J. Protein Content in Aqueous Humor from Patients with Pseudoexfoliation (PEX) Investigated by Capillary LC MALDI-TOF/TOF MS. Proteom. Clin. Appl. 2009, 3, 299–306. [Google Scholar] [CrossRef]
- Rao, A.; Vupparaboina, K.K.; Padhy, D.; Raj, N.; Pradhan, A.; Goud, A.; Peguda, H.K.; Jana, S.; Richariya, A. Automated Iris Volume Analysis and Trabecular Meshwork Length Using Anterior Segment Optical Coherence Tomography—Application in Pseudoexfoliation and Pseudoexfoliation Glaucoma. Indian J. Ophthalmol. 2021, 69, 1815–1819. [Google Scholar] [CrossRef]
- Atalay, E.; Tamçelik, N.; Bilgec, M.D. Quadrantwise Comparison of Lens-Iris Distance in Patients With Pseudoexfoliation Syndrome and Age-Matched Controls. J. Glaucoma 2016, 25, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Batur, M.; Seven, E.; Tekin, S.; Yasar, T. Anterior Lens Capsule and Iris Thicknesses in Pseudoexfoliation Syndrome. Curr. Eye Res. 2017, 42, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Rehman, I.; Mahabadi, N.; Ali, T. Anatomy, Head and Neck, Eye Ciliary Muscles. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Johnson, T.V.; Fan, S.; Camras, C. Aqueous Humor Dynamics in Exfoliation Syndrome. Arch. Ophthalmol. 2008, 126, 914. [Google Scholar] [CrossRef] [PubMed]
- Schlötzer-Schrehardt, U.; Zenkel, M.; Küchle, M.; Sakai, L.Y.; Naumann, G.O.H. Role of Transforming Growth Factor-Β1 and Its Latent Form Binding Protein in Pseudoexfoliation Syndrome. Exp. Eye Res. 2001, 73, 765–780. [Google Scholar] [CrossRef]
- Thevi, T.; Abas, A. Intraoperative and Postoperative Complications of Cataract Surgery in Eyes with Pseudoexfoliation—An 8-Year Analysis. Oman J. Ophthalmol. 2019, 12, 160. [Google Scholar] [CrossRef]
- Drolsum, L.; Ringvold, A.; Nicolaissen, B. Cataract and Glaucoma Surgery in Pseudoexfoliation Syndrome: A Review. Acta Ophthalmol. Scand. 2007, 85, 810–821. [Google Scholar] [CrossRef]
- Güler, M.; Aydın, S.; Urfalıoğlu, S.; Yardım, M. Aqueous Humor Heat-Shock Protein 70, Periostin, and Irisin Levels in Patients with Pseudoexfoliation Syndrome. Arq. Bras. Oftalmol. 2020, 83, 378–382. [Google Scholar] [CrossRef]
- Zenkel, M.; Kruse, F.E.; Naumann, G.O.H.; Schlötzer-Schrehardt, U. Impaired Cytoprotective Mechanisms in Eyes with Pseudoexfoliation Syndrome/Glaucoma. Investig. Opthalmol. Vis. Sci. 2007, 48, 5558. [Google Scholar] [CrossRef]
- Zenkel, M.; Lewczuk, P.; Jünemann, A.; Kruse, F.E.; Naumann, G.O.H.; Schlötzer-Schrehardt, U. Proinflammatory Cytokines Are Involved in the Initiation of the Abnormal Matrix Process in Pseudoexfoliation Syndrome/Glaucoma. Am. J. Pathol. 2010, 176, 2868–2879. [Google Scholar] [CrossRef]
- Lodyga, M.; Hinz, B. TGF-Β1—A Truly Transforming Growth Factor in Fibrosis and Immunity. Semin. Cell Dev. Biol. 2020, 101, 123–139. [Google Scholar] [CrossRef]
- Chakraborty, M.; Sahay, P.; Rao, A. Primary Human Trabecular Meshwork Model for Pseudoexfoliation. Cells 2021, 10, 3448. [Google Scholar] [CrossRef] [PubMed]
- Kondkar, A.; Azad, T.A.; Almobarak, F.; Kalantan, H.; Al-Obeidan, S.; Abu-Amero, K. Elevated Levels of Plasma Tumor Necrosis Factor Alpha in Patients with Pseudoexfoliation Glaucoma. Clin. Ophthalmol. 2018, 12, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Botling Taube, A.; Konzer, A.; Alm, A.; Bergquist, J. Proteomic Analysis of the Aqueous Humour in Eyes with Pseudoexfoliation Syndrome. Br. J. Ophthalmol. 2019, 103, 1190–1194. [Google Scholar] [CrossRef]
- Koçak, N.; Can, E.; Yeter, V.; Turunç, M.; Subaşı, M.; Niyaz, L.; Avcı, B. Aqueous Humor and Serum Levels of 4-Hydroxynonenal and 8-Hydroxy-2′deoxyguanosine in Pseudoexfoliation Syndrome and Glaucoma. Int. Ophthalmol. 2022, 43, 1395–1404. [Google Scholar] [CrossRef]
- Yaǧcı, R.; Ersöz, I.; Erdurmuş, M.; Gürel, A.; Duman, S. Protein Carbonyl Levels in the Aqueous Humour and Serum of Patients with Pseudoexfoliation Syndrome. Eye 2008, 22, 128–131. [Google Scholar] [CrossRef]
- Tosun, M.; Erdurmus, M.; Bugdayci, G.; Celebi, S.; Alcelik, A. Aqueous Humour and Serum Concentration of Asymmetric Dimethyl Arginine in Pseudoexfoliation Syndrome. Br. J. Ophthalmol. 2012, 96, 1137–1140. [Google Scholar] [CrossRef]
- Yilmaz, A.; Ayaz, L.; Tamer, L. Selenium and Pseudoexfoliation Syndrome. Am. J. Ophthalmol. 2011, 151, 272–276.e1. [Google Scholar] [CrossRef]
- Gartaganis, S.P.; Georgakopoulos, C.D.; Patsoukis, N.E.; Gotsis, S.S.; Gartaganis, V.S.; Georgiou, C.D. Glutathione and Lipid Peroxide Changes in Pseudoexfoliation Syndrome. Curr. Eye Res. 2005, 30, 647–651. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Collao, V.; Morris, J.; Chauhan, M.Z.; Abdelrahman, L.; Martínez-de-la-Casa, J.M.; Vidal-Villegas, B.; Burgos-Blasco, B.; Bhattacharya, S.K. Analyses of Pseudoexfoliation Aqueous Humor Lipidome. Mol. Omics 2022, 18, 387–396. [Google Scholar] [CrossRef]
- Melese, E.K.; Shibeshi, M.A.; Sherief, S.T. Prevalence of Pseudoexfoliation Among Adults and Its Related Ophthalmic Variables in Southern Ethiopia: A Cross-Sectional Study. Clin. Ophthalmol. 2022, 16, 3951–3958. [Google Scholar] [CrossRef] [PubMed]
- Arnarsson, A.; Damji, K.F.; Sverrisson, T.; Sasaki, H.; Jonasson, F. Pseudoexfoliation in the Reykjavik Eye Study: Prevalence and Related Ophthalmological Variables. Acta Ophthalmol. Scand. 2007, 85, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Ahoor, M.H.; Ghorbanihaghjo, A.; Sorkhabi, R.; Kiavar, A. Klotho and Endothelin-1 in Pseudoexfoliation Syndrome and Glaucoma. J. Glaucoma 2016, 25, 919–922. [Google Scholar] [CrossRef]
- Tokuc, E.O.; Yuksel, N.; Kır, H.M.; Acar, E. Evaluation of Serum and Aqueous Humor Klotho Levels in Pseudoexfoliation Syndrome, Pseudoexfoliation and Primary Open-Angle Glaucoma. Int. Ophthalmol. 2021, 41, 2369–2375. [Google Scholar] [CrossRef]
- Borazan, M.; Karalezli, A.; Kucukerdonmez, C.; Bayraktar, N.; Kulaksizoglu, S.; Akman, A.; Akova, Y.A. Aqueous Humor and Plasma Levels of Vascular Endothelial Growth Factor and Nitric Oxide in Patients With Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. J. Glaucoma 2010, 19, 207–211. [Google Scholar] [CrossRef]
- Yuksel, N.; Takmaz, T.; Ozel Turkcu, U.; Ergin, M.; Altinkaynak, H.; Bilgihan, A. Serum and Aqueous Humor Levels of Fetuin-A in Pseudoexfoliation Syndrome. Curr. Eye Res. 2017, 42, 1378–1381. [Google Scholar] [CrossRef]
- Buffault, J.; Labbé, A.; Hamard, P.; Brignole-Baudouin, F.; Baudouin, C. The Trabecular Meshwork: Structure, Function and Clinical Implications. A Review of the Literature. J. Fr. Ophtalmol. 2020, 43, e217–e230. [Google Scholar] [CrossRef]
- Wordinger, R.J.; Clark, A.F. Lysyl Oxidases in the Trabecular Meshwork. J. Glaucoma 2014, 23, S55–S58. [Google Scholar] [CrossRef]
- Ritch, R.; Schlötzer-Schrehardt, U.; Konstas, A. Why Is Glaucoma Associated with Exfoliation Syndrome? Prog. Retin. Eye Res. 2003, 22, 253–275. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Naumann, G.O. Trabecular Meshwork in Pseudoexfoliation Syndrome with and without Open-Angle Glaucoma. A Morphometric, Ultrastructural Study. Investig. Ophthalmol. Vis. Sci. 1995, 36, 1750–1764. [Google Scholar]
- Kapuganti, R.S.; Alone, D.P. Current Understanding of Genetics and Epigenetics in Pseudoexfoliation Syndrome and Glaucoma. Mol. Asp. Med. 2023, 94, 101214. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.C.; Krupin, T.; Schmitt, M.; Lauffer, J.; Miller, E.; Ewing, M.Q.; Scheie, H.G. Long-Term Follow-up of Pseudoexfoliation and the Development of Elevated Intraocular Pressure. Ophthalmology 1987, 94, 545–552. [Google Scholar] [CrossRef]
- Pathak Ray, V.; Ramesh, S.B.; Rathi, V. Slit-Lamp Measurement of Anterior Chamber Depth and Its Agreement with Anterior Segment Optical Coherence Tomography and Lenstar LS 900 in Pseudoexfoliation and Normal Eyes. Indian J. Ophthalmol. 2021, 69, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.A.; Kaufman, P.L. The Trabecular Meshwork in Normal Eyes and in Exfoliation Glaucoma. J. Glaucoma 2014, 23, S15–S19. [Google Scholar] [CrossRef]
- OCKLIND, A. Effect of Latanoprost on the Extracellular Matrix of the Ciliary Muscle. A Study on Cultured Cells and Tissue Sections. Exp. Eye Res. 1998, 67, 179–191. [Google Scholar] [CrossRef]
- Hepsen, I.F.; Ozkaya, E. 24-h IOP Control with Latanoprost, Travoprost, and Bimatoprost in Subjects with Exfoliation Syndrome and Ocular Hypertension. Eye 2007, 21, 453–458. [Google Scholar] [CrossRef]
- Gasińska, K.; Czop, M.; Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Kocki, J.; Żarnowski, T. Small Nucleolar RNAs in Pseudoexfoliation Glaucoma. Cells 2022, 11, 2738. [Google Scholar] [CrossRef]
- Chauhan, W.; Sudharshan, S.J.; Kafle, S.; Zennadi, R. SnoRNAs: Exploring Their Implication in Human Diseases. Int. J. Mol. Sci. 2024, 25, 7202. [Google Scholar] [CrossRef]
- Ruan, X.; Liu, Z.; Luo, L.; Liu, Y. Structure of the Lens and Its Associations with the Visual Quality. BMJ Open Ophthalmol. 2020, 5, e000459. [Google Scholar] [CrossRef]
- Hejtmancik, J.F.; Shiels, A. Overview of the Lens. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2015; pp. 119–127. [Google Scholar] [CrossRef]
- Danysh, B.P.; Duncan, M.K. The Lens Capsule. Exp. Eye Res. 2009, 88, 151–164. [Google Scholar] [CrossRef]
- Hayat, B.; Padhy, B.; Mohanty, P.P.; Alone, D.P. Altered Unfolded Protein Response and Proteasome Impairment in Pseudoexfoliation Pathogenesis. Exp. Eye Res. 2019, 181, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Uçakhan, Ö.Ö.; Karel, F.; Kanpolat, A.; Devrim, E.; Durak, İ. Superoxide Dismutase Activity in the Lens Capsule of Patients with Pseudoexfoliation Syndrome and Cataract. J. Cataract. Refract. Surg. 2006, 32, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Turan, G.; Turan, M. The Evaluation of TUNEL, PCNA and SOX2 Expressions in Lens Epithelial Cells of Cataract Patients with Pseudoexfoliation Syndrome. Curr. Eye Res. 2019, 45, 12–16. [Google Scholar] [CrossRef]
- Efremov, Y.M.; Bakhchieva, N.A.; Shavkuta, B.S.; Frolova, A.A.; Kotova, S.L.; Novikov, I.A.; Akovantseva, A.A.; Avetisov, K.S.; Avetisov, S.E.; Timashev, P.S. Mechanical Properties of Anterior Lens Capsule Assessed with AFM and Nanoindenter in Relation to Human Aging, Pseudoexfoliation Syndrome, and Trypan Blue Staining. J. Mech. Behav. Biomed. Mater. 2020, 112, 104081. [Google Scholar] [CrossRef]
- Simsek, C.; Oto, S.; Yilmaz, G.; Altinors, D.D.; Akman, A.; Gungor, S.G. Comparison of the Mechanical Properties of the Anterior Lens Capsule in Senile Cataract, Senile Cataract with Trypan Blue Application, and Pseudoexfoliation Syndrome. J. Cataract. Refract. Surg. 2017, 43, 1054–1061. [Google Scholar] [CrossRef]
- Rathi, S.; Andrews, C.; Greenfield, D.S.; Stein, J.D. A Comparison of Resource Use and Costs of Caring for Patients With Exfoliation Syndrome Glaucoma Versus Primary Open-Angle Glaucoma. Am. J. Ophthalmol. 2019, 200, 100–109. [Google Scholar] [CrossRef]
- Borjan, I.; Stanić, R.; Pleština-Borjan, I.; Pavić, M.; Hertzberg, S.N.W.; Znaor, L.; Petrovski, B.É.; Petrovski, G. Pseudoexfoliative Syndrome in Cataract Surgery—A Quality Register Study and Health Economic Analysis in the Split-Dalmatia County, Croatia. J. Clin. Med. 2023, 13, 38. [Google Scholar] [CrossRef]
- Bušić, M. Optical Low Coherence Reflectometry Enables Preoperative Detection of Zonular Weakness in Pseudoexfoliation Syndrome; Clinicaltrials.Gov. 2011. Available online: https://clinicaltrials.gov/study/NCT01298895?cond=NCT01298895&rank=1 (accessed on 4 December 2024).
- Nicolela, M. Phacoemulsification vs. SLT as Initial Treatment for Pseudoexfoliation Glaucoma (CANPEX1); Clinicaltrials.Gov. 2022. Available online: https://clinicaltrials.gov/study/NCT04416724?cond=NCT04416724&rank=1 (accessed on 4 December 2024).
- Harju, M. Comparison of IStent to Laser in Exfoliation Glaucoma Helsinki Study Group; Clinicaltrials.Gov. 2020. Available online: https://clinicaltrials.gov/study/NCT04635020?cond=NCT04635020&rank=1 (accessed on 4 December 2024).
- Ahmad, I. CRISPR/Cas9—A Promising Therapeutic Tool to Cure Blindness: Current Scenario and Future Prospects. Int. J. Mol. Sci. 2022, 23, 11482. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, B.; Li, X.; Li, M.; Wang, Y.; Dan, H.; Zhou, J.; Wei, Y.; Ge, K.; Li, P.; et al. The Application and Progression of CRISPR/Cas9 Technology in Ophthalmological Diseases. Eye 2023, 37, 607–617. [Google Scholar] [CrossRef]
- Coassin, M.; Fontana, L. Bromfenac to Reduce Inflammation in Patients with Pseudoexfoliation Syndrome After Cataract Surgery (REPEX); Clinicaltrials.Gov 2014. Available online: https://clinicaltrials.gov/study/NCT02137161?cond=%20NCT02137161&rank=1 (accessed on 4 December 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, M.N.; Skopiński, P.; Roberts, H.; Woronkowicz, M. The Ocular Surface and the Anterior Segment of the Eye in the Pseudoexfoliation Syndrome: A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 532. https://doi.org/10.3390/ijms26020532
Thomas MN, Skopiński P, Roberts H, Woronkowicz M. The Ocular Surface and the Anterior Segment of the Eye in the Pseudoexfoliation Syndrome: A Comprehensive Review. International Journal of Molecular Sciences. 2025; 26(2):532. https://doi.org/10.3390/ijms26020532
Chicago/Turabian StyleThomas, Maya Natasha, Piotr Skopiński, Harry Roberts, and Małgorzata Woronkowicz. 2025. "The Ocular Surface and the Anterior Segment of the Eye in the Pseudoexfoliation Syndrome: A Comprehensive Review" International Journal of Molecular Sciences 26, no. 2: 532. https://doi.org/10.3390/ijms26020532
APA StyleThomas, M. N., Skopiński, P., Roberts, H., & Woronkowicz, M. (2025). The Ocular Surface and the Anterior Segment of the Eye in the Pseudoexfoliation Syndrome: A Comprehensive Review. International Journal of Molecular Sciences, 26(2), 532. https://doi.org/10.3390/ijms26020532