Highlights of Precision Medicine, Genetics, Epigenetics and Artificial Intelligence in Pompe Disease
Abstract
:1. Introduction
2. Precision Medicine: Inherent Difficulties of the Disease
3. Genetics in Pompe Disease
4. Multisystemic Disease: Approach to Treatment
5. Epigenetics
6. Evolving Scenarios and Motor Function Assessment: Outcome Measures Relevant to Vital, Cognitive and Neurological Status
7. Development of Informatic Platforms (IT): Application of Artificial Intelligence Algorithms Useful for Diagnosis of PD Patients
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Do, H.; Meena, N.K.; Raben, N. Failure of Autophagy in Pompe Disease. Biomolecules 2024, 14, 573. [Google Scholar] [CrossRef]
- Klein, T.L.; Bender, J.; Bolton, S.; Collin-Histed, T.; Daher, A.; De Baere, L.; Dong, D.; Hopkin, J.; Johnson, J.; Lai, T.; et al. A rare partnership: Patient community and industry collaboration to shape the impact of real-world evidence on the rare disease ecosystem. Orphanet J. Rare Dis. 2024, 19, 262. [Google Scholar] [CrossRef]
- BBanugaria, S.G.; Prater, S.N.; Patel, T.T.; DeArmey, S.M.; Milleson, C.; Sheets, K.B.; Bali, D.S.; Rehder, C.W.; Raiman, J.A.J.; Wang, R.A.; et al. Algorithm for the early diagnosis and treatment of patients with cross reactive immunologic material-negative classic infantile pompe disease: A step towards improving the efficacy of ERT. PLoS ONE 2013, 8, e67052. [Google Scholar] [CrossRef]
- Colella, P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol. Diagn. Ther. 2024, 28, 703–719. [Google Scholar] [CrossRef] [PubMed]
- Beraza-Millor, M.; Rodríguez-Castejón, J.; Del Pozo-Rodríguez, A.; Rodríguez-Gascón, A.; Solinís, M. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024, 38, 657–680. [Google Scholar] [CrossRef]
- Moschetti, M.; Lo Curto, A.; Giacomarra, M.; Francofonte, D.; Zizzo, C.; Messina, E.; Duro, G.; Colomba, P. Mutation Spectrum of GAA Gene in Pompe Disease: Current Knowledge and Results of an Italian Study. Int. J. Mol. Sci. 2024, 25, 9139. [Google Scholar] [CrossRef]
- Gómez-Cebrián, N.; Gras-Colomer, E.; Poveda Andrés, J.L.; Pineda-Lucena, A.; Puchades-Carrasco, L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. Biology 2023, 12, 1159. [Google Scholar] [CrossRef]
- Cerón-Rodríguez, M.; Castillo-García, D.; Acosta-Rodríguez-Bueno, C.; Aguirre-Hernández, J.; Murillo-Eliosa, J.; Valencia-Mayoral, P.; Escobar-Sánchez, A.; Salgado-Loza, J. Classic infantile-onset Pompe disease with histopathological neurologic findings linked to a novel GAA gene 4 bp deletion: A case study. Mol. Genet. Genom. Med. 2022, 10, e1957. [Google Scholar] [CrossRef]
- Gaspar, R.C.; Sakuma, I.; Nasiri, A.; Hubbard, B.T.; LaMoia, T.E.; Leitner, B.P.; Tep, S.; Xi, Y.; Green, E.M.; Ullman, J.C.; et al. Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease. Am. J. Physiol. Endocrinol. Metab. 2024, 327, E524–E532. [Google Scholar] [CrossRef]
- Ren, P.; Lu, L.; Cai, S.; Chen, J.; Lin, W.; Han, F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front. Immunol. 2021, 12, 713540. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Ma, Y.; Ma, M.; Ding, J.; Jiang, J.; Zheng, X.; Han, X. Development of a rapid simultaneous assay of two urinary tetrasaccharide metabolites using differential ion mobility and tandem mass spectrometry and its application to patients with glycogen storage disease (type Ib and II). Anal. Bioanal. Chem. 2023, 415, 6863–6871. [Google Scholar] [CrossRef]
- Ren, J.; Ma, Y.; Ma, M.; Ding, J.; Jiang, J.; Zheng, X.; Han, X. Rapid ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of three characteristic urinary saccharide metabolites in patients with glycogen storage diseases (type Ib and II). J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2023, 1229, 123900. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhou, R.; Jiang, C.; Wang, J.; Zhou, Y.; Xu, X.; Wang, T.; Li, A.; Zhang, Y. Mitochondrial dysfunction is associated with hypertrophic cardiomyopathy in Pompe disease-specific induced pluripotent stem cell-derived cardiomyocytes. Cell Prolif. 2024, 57, e13573. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Shi, H.; Li, F.; Duan, Y.; Guo, Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed. Pharmacother. 2024, 178, 117084. [Google Scholar] [CrossRef]
- Tarallo, A.; Damiano, C.; Strollo, S.; Minopoli, N.; Indrieri, A.; Polishchuk, E.; Zappa, F.; Nusco, E.; Fecarotta, S.; Porto, C.; et al. Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Mol. Med. 2021, 13, e14434. [Google Scholar] [CrossRef] [PubMed]
- De Filippi, P.; Errichiello, E.; Toscano, A.; Mongini, T.; Moggio, M.; Ravaglia, S.; Filosto, M.; Servidei, S.; Musumeci, O.; Giannini, F.; et al. Distribution of Exonic Variants in Glycogen Synthesis and Catabolism Genes in Late Onset Pompe Disease (LOPD). Curr. Issues Mol. Biol. 2023, 45, 2847–2860. [Google Scholar] [CrossRef] [PubMed]
- Ravaglia, S.; Malovini, A.; Cirio, S.; Danesino, C.; De Filippi, P.; Moggio, M.; Mongini, T.; Maggi, L.; Servidei, S.; Vianello, A.; et al. Polymorphism in exercise genes and respiratory function in late-onset Pompe disease. J. Appl. Physiol. 2021, 131, 1762–1771. [Google Scholar] [CrossRef]
- De Filippi, P.; Ravaglia, S.; Bembi, B.; Costa, A.; Moglia, A.; Piccolo, G.; Repetto, A.; Dardis, A.; Greco, G.; Ciana, G.; et al. The angiotensin-converting enzyme insertion/deletion polymorphism modifies the clinical outcome in patients with Pompe disease. Genet. Med. 2010, 12, 206–211. [Google Scholar] [CrossRef]
- Baek, R.C.; Palmer, R.; Pomponio, R.J.; Lu, Y.; Ma, X.; McVie-Wylie, A.J. The influence of a polymorphism in the gene encoding angiotensin converting enzyme (ACE) on treatment outcomes in late-onset Pompe patients receiving alglucosidase alfa. Mol. Genet. Metab. Rep. 2016, 8, 48–50. [Google Scholar] [CrossRef]
- Chien, Y.-H.; Tsai, W.-H.; Chang, C.-L.; Chiu, P.-C.; Chou, Y.-Y.; Tsai, F.-J.; Wong, S.-L.; Lee, N.-C.; Hwu, W.-L. Earlier and higher dosing of alglucosidase alfa improve outcomes in patients with infantile-onset Pompe disease: Evidence from real-world experiences. Mol. Genet. Metab. Rep. 2020, 23, 100591. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Krishna, R.; Rayad, N.; Albusaysi, S.; Mitra, A.; Shang, E.; Hon, Y.Y.; AbuAsal, B.; Bakhaidar, R.; Roman, Y.M.; et al. Getting the Dose Right in Drug Development for Rare Diseases: Barriers and Enablers. Clin. Pharmacol. Ther. 2024, 116, 1412–1432. [Google Scholar] [CrossRef] [PubMed]
- Kaddi, C.; Tao, M.; Bergeler, S.; George, K.; Geerts, H.; van der Graaf, P.H.; Batista, J.L.; Foster, M.; Ortemann-Renon, C.; Zaher, A.; et al. Quantitative Systems Pharmacology-Based Digital Twins Approach Supplements Clinical Trial Data for Enzyme Replacement Therapies in Pompe Disease. Clin. Pharmacol. Ther. 2024. [Google Scholar] [CrossRef]
- Berli, S.; Brandi, G.; Keller, E.; Najia, N.; Vitale, J.; Pagnamenta, A. Clinical efficacy of the enzyme replacement therapy in patients with late-onset Pompe disease: A systematic review and a meta-analysis. J. Neurol. 2022, 269, 733–741. [Google Scholar]
- Ballabio, A.; Gieselmann, V. Lysosomal disorders: From storage to cellular damage. Biochim. Biophys. Acta. 2009, 1793, 684–696. [Google Scholar] [CrossRef]
- Tarallo, A.; Parenti, G.; Brunetti-Pierri, N. Precision medicine in action for Pompe disease. Mol. Ther. Nucleic Acids. 2024, 35, 102265. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, S.; Auray-Blais, C.; Gravel, E.; Boutin, M.; Dempsey-Nunez, L.; Jacques, P.-E.; Chenier, S.; Larue, S.; Rioux, M.-F.; Al-Hertani, W.; et al. Diagnosis of late-onset Pompe disease and other muscle disorders by next-generation sequencing. Orphanet J. Rare Dis. 2016, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Angelini, C.; Savarese, M.; Fanin, M.; Nigro, V. Next generation sequencing detection of late onset pompe disease. Muscle Nerve 2016, 53, 981–983. [Google Scholar] [CrossRef]
- Singh, K.; Bijarnia-Mahay, S.; Ramprasad, V.L.; Puri, R.D.; Nair, S.; Sharda, S.; Saxena, R.; Kohli, S.; Kulshreshtha, S.; Ganguli, I.; et al. NGS-based expanded carrier screening for genetic disorders in North Indian population reveals unexpected results—A pilot study. BMC Med. Genet. 2020, 21, 216. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Desai, A.K.; Gupta, P.; Dempsey, K.; Bhambhani, V.; Hopkin, R.J.; Ficicioglu, C.; Tanpaiboon, P.; Craigen, W.J.; Rosenberg, A.S.; et al. Transforming the clinical outcome in CRIM-negative infantile Pompe disease identified via newborn screening: The benefits of early treatment with enzyme replacement therapy and immune tolerance induction. Genet. Med. 2021, 23, 845–855. [Google Scholar] [CrossRef]
- Barbullushi, M.; Idrizi, A.; Bolleku, E.; Laku, A.; Pilaca, A. Pompe disease with heterogeneous presentations within a family. Med. Arch. 2013, 67, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Fares, A.H.; Desai, A.K.; Case, L.E.; Sharon, C.; Klinepeter, A.; Kirby, A.; Lisi, M.T.; Koch, R.L.; Kishnani, P.S. Optimizing clinical outcomes: The journey of twins with CRIM-negative infantile-onset Pompe disease on high-dose enzyme replacement therapy and immunomodulation. Mol. Genet. Metab. Rep. 2024, 41, 101141. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.L.; Chakraborty, P.; Fung-Kee-Fung, K.; Schwab, M.E.; Bali, D.; Young, S.P.; Gelb, M.H.; Khaledi, H.; DiBattista, A.; Smallshaw, S.; et al. In Utero Enzyme-Replacement Therapy for Infantile-Onset Pompe’s Disease. N. Engl. J. Med. 2022, 387, 2150–2158. [Google Scholar] [CrossRef] [PubMed]
- Güngör, D.; Kruijshaar, M.E.; Plug, I.; Rizopoulos, D.; Kanters, T.A.; Wens, S.C.A.; Reuser, A.J.J.; van Doorn, P.A.; van der Ploeg, A.T. Quality of life and participation in daily life of adults with Pompe disease receiving enzyme replacement therapy: 10 years of international follow-up. J. Inherit. Metab. Dis. 2016, 39, 253–260. [Google Scholar] [CrossRef]
- Schoser, B.; Hahn, A.; James, E.; Gupta, D.; Gitlin, M.; Prasad, S. A Systematic Review of the Health Economics of Pompe Disease. PharmacoEcon. Open. 2019, 3, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Jiao, K.; Zhu, B.; Chang, X.; Guo, J.; Fu, J.; Song, X.; Yu, X.; Zhang, X.; Dong, J.; Yan, W.; et al. High-risk screening for late-onset Pompe disease in China: An expanded multicenter study. J. Inherit. Metab. Dis. 2024, 48, e12793. [Google Scholar] [CrossRef]
- Taverna, S.; Cammarata, G.; Colomba, P.; Sciarrino, S.; Zizzo, C.; Francofonte, D.; Zora, M.; Scalia, S.; Brando, C.; Curto, A.L.; et al. Pompe disease: Pathogenesis, molecular genetics and diagnosis. Aging 2020, 12, 15856–15874. [Google Scholar] [CrossRef] [PubMed]
- Myerowitz, R.; Puertollano, R.; Raben, N. Impaired autophagy: The collateral damage of lysosomal storage disorders. EBioMedicine 2021, 63, 103166. [Google Scholar] [CrossRef] [PubMed]
- Farah, B.L.; Yen, P.M.; Koeberl, D.D. Links between autophagy and disorders of glycogen metabolism—Perspectives on pathogenesis and possible treatments. Mol. Genet. Metab. 2020, 129, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, H.; Zhang, L.; Lin, X.; Li, X.; Zhuang, H.; Fan, H.; Meng, T.; He, Z.; Huang, H.; et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 2021, 17, 1142–1156. [Google Scholar] [CrossRef]
- Rossi, D.; Gamberucci, A.; Pierantozzi, E.; Amato, C.; Migliore, L.; Sorrentino, V. Calsequestrin, a key protein in striated muscle health and disease. J. Muscle Res. Cell Motil. 2021, 42, 267–279. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Dong, Z.; Zhu, X.; Zheng, X.; Liu, Z.; Zhou, J.; Yu, S.; Wu, X.; Dong, X. Using an In Vivo Mouse Model to Determine the Exclusion Criteria of Preexisting Anti-AAV9 Neutralizing Antibody Titer of Pompe Disease Patients in Clinical Trials. Viruses 2024, 16, 400. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Vlaar, E.C.; Pijnenburg, J.M.; Rijkers, E.; Demmers, J.A.; Vulto, A.G.; van der Ploeg, A.T.; van Til, N.P.; Pijnappel, W.P. Lentiviral gene therapy with IGF2-tagged GAA normalizes the skeletal muscle proteome in murine Pompe disease. J. Proteom. 2024, 291, 105037. [Google Scholar] [CrossRef] [PubMed]
- Peruzzo, P.; Pavan, E.; Dardis, A. Molecular genetics of Pompe disease: A comprehensive overview. Ann. Transl. Med. 2019, 7, 278. [Google Scholar] [CrossRef]
- Seppälä, E.H.; Reuser, A.J.; Lohi, H. A nonsense mutation in the acid α-glucosidase gene causes Pompe disease in Finnish and Swedish Lapphunds. PLoS ONE 2013, 8, e56825. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Zhu, Y.; Ma, X.; Zhong, W. Case Report: Identification of Compound Heterozygous Mutations in a Patient with Late-Onset Glycogen Storage Disease Type II (Pompe Disease). Front. Neurol. 2022, 13, 839263. [Google Scholar] [CrossRef] [PubMed]
- van der Wal, E.; Bergsma, A.J.; Pijnenburg, J.M.; van der Ploeg, A.T.; Pijnappel, W.W.M.P. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease. Mol. Ther. Nucleic Acids 2017, 7, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, O.; Thieme, A.; Claeys, K.G.; Wenninger, S.; Kley, R.A.; Kuhn, M.; Lukacs, Z.; Deschauer, M.; Gaeta, M.; Toscano, A.; et al. Homozygosity for the common GAA gene splice site mutation c.-32-13T>G in Pompe disease is associated with the classical adult phenotypical spectrum. Neuromuscul. Disord. 2015, 25, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Turaça, L.T.; de Faria, D.O.S.; Kyosen, S.O.; Teixeira, V.D.; Motta, F.L.; Pessoa, J.G.; e Silva, M.R.; de Almeida, S.S.; D'Almeida, V.; Rojas, M.V.M.; et al. Novel GAA mutations in patients with Pompe disease. Gene 2015, 561, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Castellar-Leones, S.M.; Ortiz-Corredor, F.; Manrique-Hernández, D.; Sánchez-Peñarete, D.; Ruiz-Ospina, E.; Soto-Peña, D.; Correa-Arrieta, C. Enzyme replacement therapy and immunotherapy lead to significant functional improvement in two children with Pompe disease: A case report. J. Med. Case Rep. 2024, 18, 328. [Google Scholar] [CrossRef]
- Labella, B.; Piccinelli, S.C.; Risi, B.; Caria, F.; Damioli, S.; Bertella, E.; Poli, L.; Padovani, A.; Filosto, M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023, 13, 1279. [Google Scholar] [CrossRef]
- Hannah, W.B.; Case, L.E.; Smith, E.C.; Walters, C.; Bali, D.; Kishnani, P.S.; Koeberl, D.D. Screening data from 19 patients with late-onset Pompe disease for a phase I clinical trial of AAV8 vector-mediated gene therapy. JIMD Rep. 2023, 64, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębska, A.; Kostera-Pruszczyk, A. Multisystem presentation of Late Onset Pompe Disease: What every consulting neurologist should know. Neurol. Neurochir. Pol. 2023, 57, 143–150. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, L.; Khan, M.; Soufny, R.; Mummy, D.; Driehuys, B.; Mansour, W.; Kishnani, P.S.; ElMallah, M.K. Monitoring and Management of Respiratory Function in Pompe Disease: Current Perspectives. Ther. Clin. Risk Manag. 2023, 19, 713–729. [Google Scholar] [CrossRef]
- Boentert, M.; Prigent, H.; Várdi, K.; Jones, H.N.; Mellies, U.; Simonds, A.K.; Wenninger, S.; Cortés, E.B.; Confalonieri, M. Practical Recommendations for Diagnosis and Management of Respiratory Muscle Weakness in Late-Onset Pompe Disease. Int. J. Mol. Sci. 2016, 17, 1735. [Google Scholar] [CrossRef] [PubMed]
- Korlimarla, A.; Lim, J.A.; Kishnani, P.S.; Sun, B. An emerging phenotype of central nervous system involvement in Pompe disease: From bench to bedside and beyond. Ann. Transl. Med. 2019, 7, 289. [Google Scholar] [CrossRef]
- Korlimarla, A.; Lim, J.A.; McIntosh, P.; Zimmerman, K.; Sun, B.D.; Kishnani, P.S. New Insights into Gastrointestinal Involvement in Late-Onset Pompe Disease: Lessons Learned from Bench and Bedside. J. Clin. Med. 2021, 10, 3395. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.N.; Hobson-Webb, L.D.; Kuchibhatla, M.; Crisp, K.D.; Whyte-Rayson, A.; Batten, M.T.; Zwelling, P.J.; Kishnani, P.S. Tongue weakness and atrophy differentiates late-onset Pompe disease from other forms of acquired/hereditary myopathy. Mol. Genet. Metab. 2021, 133, 261–268. [Google Scholar] [CrossRef]
- Karam, C.; Dimitrova, D.; Yutan, E.; Chahin, N. Bright tongue sign in patients with late-onset Pompe disease. J. Neurol. 2019, 266, 2518–2523. [Google Scholar] [CrossRef] [PubMed]
- Ozdamar, S.E.; Koc, A.F.; Tekce, H.D.; Kotan, D.; Ekmekci, A.H.; Sengun, I.S.; Yuceyar, A.N.; Uluc, K. Expert opinion on the diagnostic odyssey and management of late-onset Pompe disease: A neurologist’s perspective. Front. Neurol. 2023, 14, 1095134. [Google Scholar] [CrossRef] [PubMed]
- Schoser, B.; Raben, N.; Varfaj, F.; Walzer, M.; Toscano, A. Acid α-glucosidase (GAA) activity and glycogen content in muscle biopsy specimens of patients with Pompe disease: A systematic review. Mol. Genet. Metab. Rep. 2024, 39, 101085. [Google Scholar] [CrossRef]
- Dalmia, S.; Sharma, R.; Ramaswami, U.; Hughes, D.; Jahnke, N.; Cole, D.; Smith, S.; Remmington, T. Enzyme replacement therapy for late-onset Pompe disease. Cochrane Database Syst. Rev. 2023, 12, CD012993. [Google Scholar]
- Toscano, A.; Rodolico, C.; Musumeci, O. Multisystem late onset Pompe disease (LOPD): An update on clinical aspects. Ann. Transl. Med. 2019, 7, 284. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, L.; Quan, S. Enzyme replacement therapy for infantile-onset Pompe disease. Cochrane Database Syst. Rev. 2017, 11, CD011539. [Google Scholar] [CrossRef]
- Chen, H.-A.; Hsu, R.-H.; Fang, C.-Y.; Desai, A.K.; Lee, N.-C.; Hwu, W.-L.; Tsai, F.-J.; Kishnani, P.S.; Chien, Y.-H. Optimizing treatment outcomes: Immune tolerance induction in Pompe disease patients undergoing enzyme replacement therapy. Front. Immunol. 2024, 15, 1336599. [Google Scholar] [CrossRef] [PubMed]
- Kohler, L.; Puertollano, R.; Raben, N. Pompe Disease: From Basic Science to Therapy. Neurotherapeutics 2018, 15, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.; Van der Ploeg, A.; Reuser, A.J.; Anson, D.S.; Hopwood, J.J. Isolation and characterisation of a recombinant, precursor form of lysosomal acid alpha-glucosidase. Eur. J. Biochem. 1995, 234, 903–909. [Google Scholar] [CrossRef]
- Hassan, S.; Sidransky, E.; Tayebi, N. The role of epigenetics in lysosomal storage disorders: Uncharted territory. Mol. Genet. Metab. 2017, 122, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Merberg, D.; Moreland, R.; Su, Z.; Li, B.; Crooker, B.; Palmieri, K.; Moore, S.W.; Melber, A.; Boyanapalli, R.; Carey, G.; et al. Combined miRNA transcriptome and proteome analysis of extracellular vesicles in urine and blood from the Pompe mouse model. Ann. Med. 2024, 56, 2402503. [Google Scholar] [CrossRef]
- Tarallo, A.; Carissimo, A.; Gatto, F.; Nusco, E.; Toscano, A.; Musumeci, O.; Coletta, M.; Karali, M.; Acampora, E.; Damiano, C.; et al. microRNAs as biomarkers in Pompe disease. Genet. Med. 2019, 21, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Brusa, C.; Rossi, F.; Rolle, E.; Placentino, V.; Berardinelli, A.; Pagliardini, V.; Porta, F.; Spada, M.; Mongini, T. Functional assessment tools in children with Pompe disease: A pilot comparative study to identify suitable outcome measures for the standard of care. Eur. J. Paediatr. Neurol. 2018, 22, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Claeys, K.G.; D’Hondt, A.; Fache, L.; Peers, K.; Depuydt, C.E. Six-Minute Walk Distance Is a Useful Outcome Measure to Detect Motor Decline in Treated Late-Onset Pompe Disease Patients. Cells 2022, 11, 334. [Google Scholar] [CrossRef]
- Kenney-Jung, D.; Korlimarla, A.; Spiridigliozzi, G.A.; Wiggins, W.; Malinzak, M.; Nichting, G.; Jung, S.-H.; Sun, A.; Wang, R.Y.; Al Shamsi, A.; et al. Severe CNS involvement in a subset of long-term treated children with infantile-onset Pompe disease. Mol. Genet. Metab. 2024, 141, 108119. [Google Scholar] [CrossRef] [PubMed]
- Spiridigliozzi, G.A.; Keeling, L.A.; Stefanescu, M.; Li, C.; Austin, S.; Kishnani, P.S. Cognitive and academic outcomes in long-term survivors of infantile-onset Pompe disease: A longitudinal follow-up. Mol. Genet. Metab. 2017, 121, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Nateqi, J.; Weingartner-Ortner, R.; Gruarin, S.; Marling, H.; Pilgram, V.; Lagler, F.B.; Aigner, E.; Martin, A.G. An artificial intelligence-based approach for identifying rare disease patients using retrospective electronic health records applied for Pompe disease. Front. Neurol. 2023, 14, 1108222. [Google Scholar] [CrossRef] [PubMed]
- Rustamov, J.; Rustamov, Z.; Mohamad, M.S.; Zaki, N.; Al Tenaiji, A.; Al Harbi, M.; Al Jasmi, F. An expert rule-based approach for identifying infantile-onset Pompe disease patients using retrospective electronic health records. Sci. Rep. 2024, 14, 21523. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.; Curran, C.; Gwaltney, C.; DasMahapatra, P. Mobility assessment using wearable technology in patients with late-onset Pompe disease. NPJ Digit. Med. 2019, 2, 70. [Google Scholar] [CrossRef]
- Ricci, G.; Baldanzi, S.; Seidita, F.; Proietti, C.; Carlini, F.; Peviani, S.; Antonini, G.; Vianello, A.; Siciliano, G.; Musumeci, O.; et al. A mobile app for patients with Pompe disease and its possible clinical applications. Neuromuscul. Disord. 2018, 28, 471–475. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moschetti, M.; Venezia, M.; Giacomarra, M.; Marsana, E.M.; Zizzo, C.; Duro, G.; D’Errico, A.; Colomba, P.; Duro, G. Highlights of Precision Medicine, Genetics, Epigenetics and Artificial Intelligence in Pompe Disease. Int. J. Mol. Sci. 2025, 26, 757. https://doi.org/10.3390/ijms26020757
Moschetti M, Venezia M, Giacomarra M, Marsana EM, Zizzo C, Duro G, D’Errico A, Colomba P, Duro G. Highlights of Precision Medicine, Genetics, Epigenetics and Artificial Intelligence in Pompe Disease. International Journal of Molecular Sciences. 2025; 26(2):757. https://doi.org/10.3390/ijms26020757
Chicago/Turabian StyleMoschetti, Marta, Marika Venezia, Miriam Giacomarra, Emanuela Maria Marsana, Carmela Zizzo, Giulia Duro, Annalisa D’Errico, Paolo Colomba, and Giovanni Duro. 2025. "Highlights of Precision Medicine, Genetics, Epigenetics and Artificial Intelligence in Pompe Disease" International Journal of Molecular Sciences 26, no. 2: 757. https://doi.org/10.3390/ijms26020757
APA StyleMoschetti, M., Venezia, M., Giacomarra, M., Marsana, E. M., Zizzo, C., Duro, G., D’Errico, A., Colomba, P., & Duro, G. (2025). Highlights of Precision Medicine, Genetics, Epigenetics and Artificial Intelligence in Pompe Disease. International Journal of Molecular Sciences, 26(2), 757. https://doi.org/10.3390/ijms26020757