Pharmaco-Multiomics: A New Frontier in Precision Psychiatry
Abstract
:1. Introduction
2. Pharmacogenomics in Psychiatry
2.1. Cytochrome P450 Variability and Its Implications in Psychiatric Pharmacotherapy
2.1.1. CYP450 Genetic Variations and Antidepressant Treatment
2.1.2. CYP450 Genetic Variations and Antipsychotic Treatment
2.1.3. CYP450 Genetic Variations and Mood Stabilizer Treatments
2.1.4. Human Leukocyte Antigen (HLA) Gene and Psychiatric Treatment
3. Pharmacometabolomics in Psychiatry
4. Pharmacotranscriptomics in Psychiatry
5. Pharmacomicrobiomics in Psychiatry
6. Pharmacoepigenomics in Psychiatry
7. Pharmacoproteomics in Psychiatry
8. Harnessing AI and Machine Learning to Enhance Precision Psychiatry Through Multiomics Integration
8.1. Tailoring Treatments in Psychiatry Using Integrated Multiomics Data
8.2. Challenges in AI and Machine Learning Deployment for Personalized Psychiatry
Reference | Sample Description | Outcome Measure | Model(s) Used | Primary Performance Metric | Data Used |
---|---|---|---|---|---|
Lin et al. [217] | MDD patients Antidepressants | Treatment response (8 weeks) | Deep learning architecture | AUC: 0.82 for treatment response, 0.81 for remission | - |
Joyce et al. [210] | MDD patients (PGRN-AMPS) SSRI | Treatment response (8 weeks) | Linear penalized regression, XGBoost | AUC (multiomics > metabolomics) | Multiomics, metabolomics |
Chekroud et al. [218] | MDD patients; various antidepressants | Remission (12 weeks) | Tree-based ensemble | Accuracy: 0.59 | Top 25 predictors |
Chang et al. [204] | MDD patients; antidepressants | Treatment response (8 weeks) | Linear regression (ARPNet) | Accuracy: 0.84 | Neuroimaging biomarkers, genetic variants, DNA methylation, demographics information |
Athreya et al. [203] | MDD patients; SSRI | Treatment response (8 weeks) | Random forest | AUC: >0.7, accuracy: >0.69 | SNP datasets |
Eugene et al. [222] | Bipolar patients Lithium | Treatment response | Decision tree, random forest | AUC:0.92 (male; 2 genes) AUC: 1 (female; 3 genes) | Gene expression data |
Cepeda et al. [223] | Patients with and without proxy for treatment-resistant depression (TDR); antidepressants and antipsychotics | Treatment resistance (12 months) | Decision tree | AUC: 0.81 | Health claims databases (CCAE, MDCR, Optum) |
Kautzky et al. [224] | MDD patients; antidepressants | Treatment resistance | Random forest | Accuracy: 0.73 (TRD); accuracy: 0.85 (remission) | Not specified |
Pradier et al. [225] | Bipolar patients; antidepressants | Conversion to bipolar diagnosis within 3 months | LASSO logistic regression, random forest | AUC: 0.80 | - |
9. Challenges and Future Directions in Personalized Psychiatry
9.1. Global Efforts and Initiatives
9.2. Considerations and Perspectives
10. Conclusions
- Interdisciplinary Collaborations: Establish robust collaborations among researchers, clinicians, bioinformaticians, and ethicists. Such interdisciplinary partnerships are essential for developing treatment modalities that are predictive, preventive, and deeply personalized.
- Investment in Technological Infrastructure: Commit substantial investment into developing technological infrastructures and research ecosystems. This is particularly critical in regions like the Middle East, where numerous challenges obstruct the adoption of advanced multiomics strategies.
- Enhanced International Cooperation: Strengthen international cooperation to facilitate efficient data sharing and the pooling of global expertise. Such collaboration is vital for leveraging diverse knowledge and resources to advance psychiatric treatment modalities.
- Integration of AI and Machine Learning: Deepen the integration of AI and machine learning technologies within pharmaco-multiomics. These technologies are key to managing large, complex datasets and enabling sophisticated predictive modeling that can inform personalized treatment plans.
- Overcoming Methodological Barriers: Address critical barriers such as data diversity, sample size, and methodology standardization. It is imperative to resolve these issues to ensure that research findings are replicable and interpretable across different settings.
- Translation of Multiomics Data: With a robust technological and collaborative framework in place, focus on the effective integration of multiomics approaches to convert complex biological data into tailored therapeutic strategies. This will facilitate the creation of customized treatment plans that meet individual patient needs.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CBZ | Carbamazepine |
CPIC | Clinical Pharmacogenetics Implementation Consortium |
DNAm | DNA methylation |
DPWG | Dutch Pharmacogenetics Working Group |
FDA | U.S. Food and Drug Administration |
HLA | Human leukocyte antigen |
MDD | Major depressive disorder |
ncRNA | Non-coding RNA |
PGx | Pharmacogenomics |
PharmGKB | Pharmacogenomics Knowledgebase |
PMs | Poor metabolizers |
SNP | Single-nucleotide polymorphism |
SSRIs | Selective serotonin reuptake inhibitors |
UMs | Ultra-rapid metabolizers |
VPA | Valproic acid |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, WA, USA, 2013; ISBN 0-89042-555-8. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Selected Health Conditions and Likelihood of Improvement with Treatment. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559510/ (accessed on 24 November 2024).
- WHO. Mental Disorders; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Healthy People. Mental Health and Mental Disorders; Healthy People: Frankston, Australia, 2020. [Google Scholar]
- Kirkbride, J.B.; Anglin, D.M.; Colman, I.; Dykxhoorn, J.; Jones, P.B.; Patalay, P.; Pitman, A.; Soneson, E.; Steare, T.; Wright, T.; et al. The Social Determinants of Mental Health and Disorder: Evidence, Prevention and Recommendations. World Psychiatry 2024, 23, 58–90. [Google Scholar] [CrossRef] [PubMed]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression. Arch. Gen. Psychiatry 2010, 67, 220. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in Mental Disorders and Global Disease Burden Implications. JAMA Psychiatry 2015, 72, 334. [Google Scholar] [CrossRef] [PubMed]
- Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx); Institute of Health Metrics and Evaluation: Seattle, WA, USA, 2021. [Google Scholar]
- WHO. Mental Health and COVID-19: Early Evidence of the Pandemic’s Impact: Scientific Brief, 2 March 2022; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Ghuloum, S.; Bener, A.; Abou-Saleh, M.T. Prevalence of Mental Disorders in Adult Population Attending Primary Health Care Setting in Qatari Population. J. Pak. Med. Assoc. 2011, 61, 216–221. [Google Scholar]
- Wadoo, O.; Ahmed, M.A.S.; Reagu, S.; Al Abdulla, S.A.; Al Abdulla, M.A.Y.A. Primary Care Mental Health Services in Qatar. BJPsych Int. 2021, 18, 15–18. [Google Scholar] [CrossRef]
- Arias, D.; Saxena, S.; Verguet, S. Quantifying the Global Burden of Mental Disorders and Their Economic Value. EClinicalMedicine 2022, 54, 101675. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Fahl Mar, K.; Faucett, J.; Khan Schilling, S.; Brown, W.A. Has the Rising Placebo Response Impacted Antidepressant Clinical Trial Outcome? Data from the US Food and Drug Administration 1987–2013. World Psychiatry 2017, 16, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative Efficacy and Acceptability of 21 Antidepressant Drugs for the Acute Treatment of Adults with Major Depressive Disorder: A Systematic Review and Network Meta-Analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef]
- Fabbri, C.; Corponi, F.; Souery, D.; Kasper, S.; Montgomery, S.; Zohar, J.; Rujescu, D.; Mendlewicz, J.; Serretti, A. The Genetics of Treatment-Resistant Depression: A Critical Review and Future Perspectives. Int. J. Neuropsychopharmacol. 2019, 22, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef]
- Undurraga, J.; Baldessarini, R.J. Randomized, Placebo-Controlled Trials of Antidepressants for Acute Major Depression: Thirty-Year Meta-Analytic Review. Neuropsychopharmacology 2012, 37, 851–864. [Google Scholar] [CrossRef]
- Fava, M. Diagnosis and Definition of Treatment-Resistant Depression. Biol. Psychiatry 2003, 53, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Sultana, J.; Cutroneo, P.; Trifirò, G. Clinical and Economic Burden of Adverse Drug Reactions. J. Pharmacol. Pharmacother. 2013, 4, S73–S77. [Google Scholar] [CrossRef] [PubMed]
- Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W.E. Pharmacogenomics and Individualized Drug Therapy. Annu. Rev. Med. 2006, 57, 119–137. [Google Scholar] [CrossRef]
- van Westrhenen, R.; van Schaik, R.H.N.; van Gelder, T.; Birkenhager, T.K.; Bakker, P.R.; Houwink, E.J.F.; Bet, P.M.; Hoogendijk, W.J.G.; van Weelden-Hulshof, M.J.M. Policy and Practice Review: A First Guideline on the Use of Pharmacogenetics in Clinical Psychiatric Practice. Front. Pharmacol. 2021, 12, 640032. [Google Scholar] [CrossRef]
- Ahmed, S.; Zhou, Z.; Zhou, J.; Chen, S.-Q. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genom. Proteom. Bioinform. 2016, 14, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Jukic, M.; Milosavljević, F.; Molden, E.; Ingelman-Sundberg, M. Pharmacogenomics in Treatment of Depression and Psychosis: An Update. Trends Pharmacol. Sci. 2022, 43, 1055–1069. [Google Scholar] [CrossRef]
- Singh, D.B. The Impact of Pharmacogenomics in Personalized Medicine. In Current Applications of Pharmaceutical Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 369–394. [Google Scholar]
- Sim, S.C.; Ingelman-Sundberg, M. The Human Cytochrome P450 (CYP) Allele Nomenclature Website: A Peer-Reviewed Database of CYP Variants and Their Associated Effects. Hum. Genom. 2010, 4, 278. [Google Scholar] [CrossRef]
- Zhou, S.-F. Polymorphism of Human Cytochrome P450 2D6 and Its Clinical Significance. Clin. Pharmacokinet. 2009, 48, 689–723. [Google Scholar] [CrossRef]
- Češková, E.; Šilhán, P. From Personalized Medicine to Precision Psychiatry? Neuropsychiatr. Dis. Treat. 2021, 17, 3663–3668. [Google Scholar] [CrossRef] [PubMed]
- Auwerx, C.; Sadler, M.C.; Reymond, A.; Kutalik, Z. From Pharmacogenetics to Pharmaco-Omics: Milestones and Future Directions. Human Genet. Genom. Adv. 2022, 3, 100100. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.E.; McLeod, H.L. Pharmacogenomics—Drug Disposition, Drug Targets, and Side Effects. N. Engl. J. Med. 2003, 348, 538–549. [Google Scholar] [CrossRef]
- Bousman, C.A.; Bengesser, S.A.; Aitchison, K.J.; Amare, A.T.; Aschauer, H.; Baune, B.T.; Asl, B.B.; Bishop, J.R.; Burmeister, M.; Chaumette, B.; et al. Review and Consensus on Pharmacogenomic Testing in Psychiatry. Pharmacopsychiatry 2021, 54, 5–17. [Google Scholar] [CrossRef]
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruaño, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023, 114, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.; Sangkuhl, K.; Swen, J.; Ellingrod, V.; Müller, D.; Shimoda, K.; Bishop, J.; Kharasch, E.; Skaar, T.; Gaedigk, A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants: 2016 Update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef]
- Brouwer, J.M.J.L.; Nijenhuis, M.; Soree, B.; Guchelaar, H.-J.; Swen, J.J.; van Schaik, R.H.N.; Weide, J.; van der Rongen, G.A.P.J.M.; Buunk, A.-M.; de Boer-Veger, N.J.; et al. Dutch Pharmacogenetics Working Group (DPWG) Guideline for the Gene-Drug Interaction between CYP2C19 and CYP2D6 and SSRIs. Eur. J. Human Genet. 2022, 30, 1114–1120. [Google Scholar] [CrossRef]
- Beunk, L.; Nijenhuis, M.; Soree, B.; de Boer-Veger, N.J.; Buunk, A.-M.; Guchelaar, H.J.; Houwink, E.J.F.; Risselada, A.; Rongen, G.A.P.J.M.; van Schaik, R.H.N.; et al. Dutch Pharmacogenetics Working Group (DPWG) Guideline for the Gene-Drug Interaction between CYP2D6, CYP3A4 and CYP1A2 and Antipsychotics. Eur. J. Human Genet. 2024, 32, 278–285. [Google Scholar] [CrossRef]
- Nijenhuis, M.; Soree, B.; Jama, W.O.M.; de Boer-Veger, N.J.; Buunk, A.M.; Guchelaar, H.-J.; Houwink, E.J.F.; Rongen, G.A.; van Schaik, R.H.N.; Swen, J.J.; et al. Dutch Pharmacogenetics Working Group (DPWG) Guideline for the Gene-Drug Interaction of CYP2D6 and COMT with Atomoxetine and Methylphenidate. Eur. J. Human Genet. 2023, 31, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.T.; Bishop, J.R.; Sangkuhl, K.; Nurmi, E.L.; Mueller, D.J.; Dinh, J.C.; Gaedigk, A.; Klein, T.E.; Caudle, K.E.; McCracken, J.T.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Cytochrome P450 (CYP) 2D6 Genotype and Atomoxetine Therapy. Clin. Pharmacol. Ther. 2019, 106, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Phillips, E.J.; Sukasem, C.; Whirl-Carrillo, M.; Müller, D.J.; Dunnenberger, H.M.; Chantratita, W.; Goldspiel, B.; Chen, Y.; Carleton, B.C.; George, A.L.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for HLA Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update. Clin. Pharmacol. Ther. 2018, 103, 574–581. [Google Scholar] [CrossRef]
- ISPG. The International Society of Psychiatric Genetics; ISPG: Singapore, 2019. [Google Scholar]
- Sims, R.J.; Chen, C.-F.; Santos-Rosa, H.; Kouzarides, T.; Patel, S.S.; Reinberg, D. Human but Not Yeast CHD1 Binds Directly and Selectively to Histone H3 Methylated at Lysine 4 via Its Tandem Chromodomains. J. Biol. Chem. 2005, 280, 41789–41792. [Google Scholar] [CrossRef]
- Abdullah-Koolmees, H.; van Keulen, A.M.; Nijenhuis, M.; Deneer, V.H.M. Pharmacogenetics Guidelines: Overview and Comparison of the DPWG, CPIC, CPNDS, and RNPGx Guidelines. Front. Pharmacol. 2021, 11, 595219. [Google Scholar] [CrossRef] [PubMed]
- Caudle, K.; Klein, T.; Hoffman, J.; Muller, D.; Whirl-Carrillo, M.; Gong, L.; McDonagh, E.; Sangkuhl, K.; Thorn, C.; Schwab, M.; et al. Incorporation of Pharmacogenomics into Routine Clinical Practice: The Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline Development Process. Curr. Drug Metab. 2014, 15, 209–217. [Google Scholar] [CrossRef]
- Yoon, D.Y.; Lee, S.; Ban, M.S.; Jang, I.-J.; Lee, S. Pharmacogenomic Information from CPIC and DPWG Guidelines and Its Application on Drug Labels. Transl. Clin. Pharmacol. 2020, 28, 189. [Google Scholar] [CrossRef]
- Shekhani, R.; Steinacher, L.; Swen, J.J.; Ingelman-Sundberg, M. Evaluation of Current Regulation and Guidelines of Pharmacogenomic Drug Labels: Opportunities for Improvements. Clin. Pharmacol. Ther. 2020, 107, 1240–1255. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Pircalabioru, G.G.; Bezirtzoglou, E. The Role of Cytochromes P450 in Infection. Front. Immunol. 2018, 9, 89. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Waterman, M.R.; Egli, M. Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol. Sci. 2016, 37, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Riaz, S.; Muhammad Din, S.; Usman Tareen, M.; Tariq, F.; Latif, Y.; Siddiqi, S.; Sultan, A.; Mansoor, A. Genetic Polymorphism of CYP2C19 in Pakistani Population. Iran. J. Pharm. Res. 2019, 18, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Foster, A.; Mobley, E.; Wang, Z. Complicated Pain Management in a CYP450 2D6 Poor Metabolizer. Pain. Pract. 2007, 7, 352–356. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Taylor, C.; Crosby, I.; Yip, V.; Maguire, P.; Pirmohamed, M.; Turner, R.M. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes 2020, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, T.; Taylor, D.; Johnson, C.F. Which First-Line Antidepressant? Br. J. General. Pract. 2019, 69, 114–115. [Google Scholar] [CrossRef]
- Darby-Stewart, A.; Dachs, R.J.; Graber, M.A. Antidepressants for Initial Treatment of Depression. Am. Fam. Physician 2010, 81, 1205. [Google Scholar] [PubMed]
- Koenig, A.M.; Thase, M.E. First-Line Pharmacotherapies for Depression—What Is the Best Choice? Pol. Arch. Med. Wewn. 2009, 119, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Akuly, H.A.; Hanna, T.A.; Ochoa, C.O.; Patti, S.J.; Ghaffar, Y.A.; Kaye, A.D.; Viswanath, O.; Urits, I.; Boyer, A.G.; et al. Selective Serotonin Reuptake Inhibitors and Adverse Effects: A Narrative Review. Neurol. Int. 2021, 13, 387–401. [Google Scholar] [CrossRef]
- Cacabelos, R.; Torrellas, C. Epigenetics of Aging and Alzheimer’s Disease: Implications for Pharmacogenomics and Drug Response. Int. J. Mol. Sci. 2015, 16, 30483–30543. [Google Scholar] [CrossRef]
- Brøsen, K. Differences in Interactions of SSRIs. Int. Clin. Psychopharmacol. 1998, 13, S45–S48. [Google Scholar] [CrossRef] [PubMed]
- Vo, N.; Goodman, R.H. CREB-Binding Protein and P300 in Transcriptional Regulation. J. Biol. Chem. 2001, 276, 13505–13508. [Google Scholar] [CrossRef] [PubMed]
- Fricke-Galindo, I.; Céspedes-Garro, C.; Rodrigues-Soares, F.; Naranjo, M.E.G.; Delgado, Á.; de Andrés, F.; López-López, M.; Peñas-Lledó, E.; LLerena, A. Interethnic Variation of CYP2C19 Alleles, ‘Predicted’ Phenotypes and ‘Measured’ Metabolic Phenotypes across World Populations. Pharmacogenomics J. 2016, 16, 113–123. [Google Scholar] [CrossRef]
- Hicks, J.; Bishop, J.; Sangkuhl, K.; Müller, D.; Ji, Y.; Leckband, S.; Leeder, J.; Graham, R.; Chiulli, D.; LLerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. 2021, 110, 563–572. [Google Scholar] [CrossRef]
- Schenk, P.W.; van Vliet, M.; Mathot, R.A.A.; van Gelder, T.; Vulto, A.G.; van Fessem, M.A.C.; Verploegh-Van Rij, S.; Lindemans, J.; Bruijn, J.A.; van Schaik, R.H.N. The CYP2C19*17 Genotype Is Associated with Lower Imipramine Plasma Concentrations in a Large Group of Depressed Patients. Pharmacogenomics J. 2010, 10, 219–225. [Google Scholar] [CrossRef]
- Kirchheiner, J.; Nickchen, K.; Bauer, M.; Wong, M.-L.; Licinio, J.; Roots, I.; Brockmöller, J. Pharmacogenetics of Antidepressants and Antipsychotics: The Contribution of Allelic Variations to the Phenotype of Drug Response. Mol. Psychiatry 2004, 9, 442–473. [Google Scholar] [CrossRef]
- Fanelli, D.; Weller, G.; Liu, H. New Serotonin-Norepinephrine Reuptake Inhibitors and Their Anesthetic and Analgesic Considerations. Neurol. Int. 2021, 13, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Hillhouse, T.M.; Porter, J.H. A Brief History of the Development of Antidepressant Drugs: From Monoamines to Glutamate. Exp. Clin. Psychopharmacol. 2015, 23, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Morabito, P.; Spina, E.; Rosaria Muscatello, M. The Role of Levomilnacipran in the Management of Major Depressive Disorder: A Comprehensive Review. Curr. Neuropharmacol. 2016, 14, 191–199. [Google Scholar] [CrossRef]
- Eap, C.B.; Gründer, G.; Baumann, P.; Ansermot, N.; Conca, A.; Corruble, E.; Crettol, S.; Dahl, M.L.; de Leon, J.; Greiner, C.; et al. Tools for Optimising Pharmacotherapy in Psychiatry (Therapeutic Drug Monitoring, Molecular Brain Imaging and Pharmacogenetic Tests): Focus on Antidepressants. World J. Biol. Psychiatry 2021, 22, 561–628. [Google Scholar] [CrossRef]
- Puozzo, C.; Panconi, E.; Deprez, D. Pharmacology and Pharmacokinetics of Milnacipran. Int. Clin. Psychopharmacol. 2002, 17, S25–S35. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.M.; Waseem, M. Tricyclic Antidepressant Toxicity; StatPearls: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Laura Dean, M.D. Imipramine Therapy and CYP2D6 and CYP2C19 Genotype. In Medical Genetics Summaries; NIH: Bethesda, MD, USA, 2017. [Google Scholar]
- Anttila, S.A.K.; Leinonen, E.V.J. A Review of the Pharmacological and Clinical Profile of Mirtazapine. CNS Drug Rev. 2001, 7, 249–264. [Google Scholar] [CrossRef]
- Langmia, I.M.; Just, K.S.; Yamoune, S.; Müller, J.P.; Stingl, J.C. Pharmacogenetic and Drug Interaction Aspects on Ketamine Safety in Its Use as Antidepressant—Implications for Precision Dosing in a Global Perspective. Br. J. Clin. Pharmacol. 2022, 88, 5149–5165. [Google Scholar] [CrossRef] [PubMed]
- Lally, J.; MacCabe, J.H. Antipsychotic Medication in Schizophrenia: A Review. Br. Med. Bull. 2015, 114, 169–179. [Google Scholar] [CrossRef]
- Altar, C.A.; Hornberger, J.; Shewade, A.; Cruz, V.; Garrison, J.; Mrazek, D. Clinical Validity of Cytochrome P450 Metaboliand Serotonin Gene Variants in Psychiatric Pharmacotherapy. Int. Rev. Psychiatry 2013, 25, 509–533. [Google Scholar] [CrossRef]
- Walden, L.M.; Brandl, E.J.; Tiwari, A.K.; Cheema, S.; Freeman, N.; Braganza, N.; Kennedy, J.L.; Müller, D.J. Genetic Testing for CYP2D6 and CYP2C19 Suggests Improved Outcome for Antidepressant and Antipsychotic Medication. Psychiatry Res. 2019, 279, 111–115. [Google Scholar] [CrossRef]
- Ravyn, D.; Ravyn, V.; Lowney, R.; Nasrallah, H.A. CYP450 Pharmacogenetic Treatment Strategies for Antipsychotics: A Review of the Evidence. Schizophr. Res. 2013, 149, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Spina, E.; de Leon, J. Clinical Applications of CYP Genotyping in Psychiatry. J. Neural Transm. 2015, 122, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.F.; Preissner, S.C.; Nickel, J.; Dunkel, M.; Preissner, R.; Preissner, S. The Transformer Database: Biotransformation of Xenobiotics. Nucleic Acids Res. 2014, 42, D1113–D1117. [Google Scholar] [CrossRef] [PubMed]
- Carrascal-Laso, L.; Isidoro-García, M.; Ramos-Gallego, I.; Franco-Martín, M. Review: Influence of the CYP450 Genetic Variation on the Treatment of Psychotic Disorders. J. Clin. Med. 2021, 10, 4275. [Google Scholar] [CrossRef]
- Brandl, E.J.; Chowdhury, N.I.; Tiwari, A.K.; Lett, T.A.P.; Meltzer, H.Y.; Kennedy, J.L.; Müller, D.J. Genetic Variation in CYP3A43 Is Associated with Response to Antipsychotic Medication. J. Neural Transm. 2015, 122, 29–34. [Google Scholar] [CrossRef]
- Kim, K.-A.; Joo, H.-J.; Lee, H.-M.; Park, J.-Y. Influence of ABCB1 and CYP3A5 Genetic Polymorphisms on the Pharmacokinetics of Quetiapine in Healthy Volunteers. Pharmacogenet Genom. 2014, 24, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, C.; Ochoa, D.; Román, M.; Saiz-Rodríguez, M.; Wojnicz, A.; Gómez-Sánchez, C.I.; Martín-Vílchez, S.; Abad-Santos, F. Influence of CYP2D6,CYP3A4,CYP3A5 and ABCB1 Polymorphisms on Pharmacokinetics and Safety of Aripiprazole in Healthy Volunteers. Basic Clin. Pharmacol. Toxicol. 2018, 122, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Soranzo, N.; Cavalleri, G.L.; Weale, M.E.; Wood, N.W.; Depondt, C.; Marguerie, R.; Sisodiya, S.M.; Goldstein, D.B. Identifying Candidate Causal Variants Responsible for Altered Activity of the ABCB1 Multidrug Resistance Gene. Genome Res. 2004, 14, 1333–1344. [Google Scholar] [CrossRef]
- Suzuki, Y.; Tsuneyama, N.; Fukui, N.; Sugai, T.; Watanabe, J.; Ono, S.; Saito, M.; Someya, T. Impact of the ABCB1 Gene Polymorphism on Plasma 9-Hydroxyrisperidone and Active Moiety Levels in Japanese Patients with Schizophrenia. J. Clin. Psychopharmacol. 2013, 33, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmöller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional Polymorphisms of the Human Multidrug-Resistance Gene: Multiple Sequence Variations and Correlation of One Allele with P-Glycoprotein Expression and Activity in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, K.; Tansey, K.; Dernovšek, M.Z.; Hauser, J.; Henigsberg, N.; Maier, W.; Mors, O.; Placentino, A.; Rietschel, M.; Souery, D.; et al. Genetic Differences in Cytochrome P450 Enzymes and Antidepressant Treatment Response. J. Psychopharmacol. 2014, 28, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Austin-Zimmerman, I.; Wronska, M.; Wang, B.; Irizar, H.; Thygesen, J.H.; Bhat, A.; Denaxas, S.; Fatemifar, G.; Finan, C.; Harju-Seppänen, J.; et al. The Influence of CYP2D6 and CYP2C19 Genetic Variation on Diabetes Mellitus Risk in People Taking Antidepressants and Antipsychotics. Genes 2021, 12, 1758. [Google Scholar] [CrossRef]
- Young, R.M.; Lawford, B.R.; Barnes, M.; Burton, S.C.; Ritchie, T.; Ward, W.K.; Noble, E.P. Prolactin Levels in Antipsychotic Treatment of Patients with Schizophrenia Carrying the DRD2*A1 Allele. Br. J. Psychiatry 2004, 185, 147–151. [Google Scholar] [CrossRef]
- Shad, M.U. Genetic Testing for Antipsychotic Pharmacotherapy: Bench to Bedside. Behav. Sci. 2021, 11, 97. [Google Scholar] [CrossRef] [PubMed]
- Nath, M.; Gupta, V. Mood Stabilizers; StatPearls: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Iannaccone, T.; Sellitto, C.; Manzo, V.; Colucci, F.; Giudice, V.; Stefanelli, B.; Iuliano, A.; Corrivetti, G.; Filippelli, A. Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals 2021, 14, 204. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yin, T.; Ma, H.-Y.; Liu, D.-Q.; Sheng, Y.-H.; Wang, C.; Zhou, B.-T. Effects of CYP3A4/5 and ABCB1 Genetic Polymorphisms on Carbamazepine Metabolism and Transport in Chinese Patients with Epilepsy Treated with Carbamazepine in Monotherapy and Bitherapy. Epilepsy Res. 2015, 117, 52–57. [Google Scholar] [CrossRef]
- Panomvana, D.; Traiyawong, T.; Towanabut, S. Effect of CYP3A5 Genotypes on the Pharmacokinetics of Carbamazepine When Used as Monotherapy or Co-Administered with Phenytoin, Phenobarbital or Valproic Acid in Thai Patients. J. Pharm. Pharm. Sci. 2013, 16, 502. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Rodríguez, M.; Almenara, S.; Navares-Gómez, M.; Ochoa, D.; Román, M.; Zubiaur, P.; Koller, D.; Santos, M.; Mejía, G.; Borobia, A.M.; et al. Effect of the Most Relevant CYP3A4 and CYP3A5 Polymorphisms on the Pharmacokinetic Parameters of 10 CYP3A Substrates. Biomedicines 2020, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Franco, V.; Perucca, E. The Pharmacogenomics of Epilepsy. Expert. Rev. Neurother. 2015, 15, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Paola Cruz-Tapias, J.C.; Anaya, J.-M. Major Histocompatibility Complex: Antigen Processing and Presentation. In Autoimmunity: From Bench to Bedside; NIH: Bethesda, MD, USA, 2013. [Google Scholar]
- Nudel, R.; Benros, M.E.; Krebs, M.D.; Allesøe, R.L.; Lemvigh, C.K.; Bybjerg-Grauholm, J.; Børglum, A.D.; Daly, M.J.; Nordentoft, M.; Mors, O.; et al. Immunity and Mental Illness: Findings from a Danish Population-Based Immunogenetic Study of Seven Psychiatric and Neurodevelopmental Disorders. Eur. J. Human Genet. 2019, 27, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Tamouza, R.; Krishnamoorthy, R.; Leboyer, M. Understanding the Genetic Contribution of the Human Leukocyte Antigen System to Common Major Psychiatric Disorders in a World Pandemic Context. Brain Behav. Immun. 2021, 91, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, L.M. Immune Proteins in Brain Development and Synaptic Plasticity. Neuron 2009, 64, 93–109. [Google Scholar] [CrossRef] [PubMed]
- JJeiziner, C.; Wernli, U.; Suter, K.; Hersberger, K.E.; zu Schwabedissen, H.E.M. HLA-associated Adverse Drug Reactions—Scoping Review. Clin. Transl. Sci. 2021, 14, 1648–1658. [Google Scholar] [CrossRef]
- Le Clerc, S.; Taing, L.; Fond, G.; Meary, A.; Llorca, P.-M.; Blanc, O.; Beaune, P.; Rajagopal, K.; Jamain, S.; Tamouza, R.; et al. A Double Amino-Acid Change in the HLA-A Peptide-Binding Groove Is Associated with Response to Psychotropic Treatment in Patients with Schizophrenia. Transl. Psychiatry 2015, 5, e608. [Google Scholar] [CrossRef]
- Yang, S.-C.; Chen, C.-B.; Lin, M.-Y.; Zhang, Z.-Y.; Jia, X.-Y.; Huang, M.; Zou, Y.-F.; Chung, W.-H. Genetics of Severe Cutaneous Adverse Reactions. Front. Med. 2021, 8, 652091. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, U.; Ross, C.J.D.; Castro-Pastrana, L.I.; Rieder, M.J.; Shear, N.H.; Hayden, M.R.; Carleton, B.C. HLA-A*31:01 and HLA-B*15:02 as Genetic Markers for Carbamazepine Hypersensitivity in Children. Clin. Pharmacol. Ther. 2013, 94, 142–149. [Google Scholar] [CrossRef]
- Wallace, M.L.; Frank, E.; Kraemer, H.C. A Novel Approach for Developing and Interpreting Treatment Moderator Profiles in Randomized Clinical Trials. JAMA Psychiatry 2013, 70, 1241. [Google Scholar] [CrossRef] [PubMed]
- Shiina, T.; Hosomichi, K.; Inoko, H.; Kulski, J.K. The HLA Genomic Loci Map: Expression, Interaction, Diversity and Disease. J. Hum. Genet. 2009, 54, 15–39. [Google Scholar] [CrossRef]
- Pang, H.; Jia, W.; Hu, Z. Emerging Applications of Metabolomics in Clinical Pharmacology. Clin. Pharmacol. Ther. 2019, 106, 544–556. [Google Scholar] [CrossRef]
- Andrew Clayton, T.; Lindon, J.C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J.-P.; Le Net, J.-L.; Baker, D.; Walley, R.J.; et al. Pharmaco-Metabonomic Phenotyping and Personalized Drug Treatment. Nature 2006, 440, 1073–1077. [Google Scholar] [CrossRef]
- Ji, Y.; Schaid, D.J.; Desta, Z.; Kubo, M.; Batzler, A.J.; Snyder, K.; Mushiroda, T.; Kamatani, N.; Ogburn, E.; Hall-Flavin, D.; et al. Citalopram and Escitalopram Plasma Drug and Metabolite Concentrations: Genome-wide Associations. Br. J. Clin. Pharmacol. 2014, 78, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Neavin, D.; Kaddurah-Daouk, R.; Weinshilboum, R. Pharmacometabolomics Informs Pharmacogenomics. Metabolomics 2016, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Neavin, D.; Liu, D.; Biernacka, J.; Hall-Flavin, D.; Bobo, W.V.; Frye, M.A.; Skime, M.; Jenkins, G.D.; Batzler, A.; et al. TSPAN5, ERICH3 and Selective Serotonin Reuptake Inhibitors in Major Depressive Disorder: Pharmacometabolomics-Informed Pharmacogenomics. Mol. Psychiatry 2016, 21, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Hansen, K.B.; Boyle, N.J.; Han, K.; Muske, G.; Huang, X.; Egebjerg, J.; Sánchez, C. An Allosteric Binding Site at the Human Serotonin Transporter Mediates the Inhibition of Escitalopram by R-Citalopram: Kinetic Binding Studies with the ALI/VFL–SI/TT Mutant. Neurosci. Lett. 2009, 462, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, J.P.R.; Plenge, P.; Sachs, B.D.; Pehrson, A.L.; Cajina, M.; Du, Y.; Roberts, W.; Rudder, M.L.; Dalvi, P.; Robinson, T.J.; et al. The Interaction of Escitalopram and R-Citalopram at the Human Serotonin Transporter Investigated in the Mouse. Psychopharmacology 2014, 231, 4527–4540. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, D.; Riboldi, I.; Crocamo, C.; Paglia, G.; Carrà, G.; Bartoli, F. Evidence from Preclinical and Clinical Metabolomics Studies on the Antidepressant Effects of Ketamine and Esketamine. Neurosci. Lett. 2024, 831, 137791. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.J.; Kajy, M.; Ward, K.M.; Burghardt, P.R. Metabolomics, Lipidomics, and Antipsychotics: A Systematic Review. Biomedicines 2023, 11, 3295. [Google Scholar] [CrossRef] [PubMed]
- de Bartolomeis, A.; Vellucci, L.; Austin, M.C.; De Simone, G.; Barone, A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022, 12, 909. [Google Scholar] [CrossRef]
- Labrie, V.; Lipina, T.; Roder, J.C. Mice with Reduced NMDA Receptor Glycine Affinity Model Some of the Negative and Cognitive Symptoms of Schizophrenia. Psychopharmacology 2008, 200, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Effinger, D.; Hirschberger, S.; Yoncheva, P.; Schmid, A.; Heine, T.; Newels, P.; Schütz, B.; Meng, C.; Gigl, M.; Kleigrewe, K.; et al. A Ketogenic Diet Substantially Reshapes the Human Metabolome. Clin. Nutr. 2023, 42, 1202–1212. [Google Scholar] [CrossRef]
- Yurista, S.R.; Chong, C.-R.; Badimon, J.J.; Kelly, D.P.; de Boer, R.A.; Westenbrink, B.D. Therapeutic Potential of Ketone Bodies for Patients With Cardiovascular Disease. J. Am. Coll. Cardiol. 2021, 77, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.P.; Allott, K.A.; Murphy, B.P.; Yuen, H.P.; Proffitt, T.-M.; Papas, A.; Moral, J.; Pham, T.; O’Regan, M.K.; Phassouliotis, C.; et al. Adjunctive Taurine in First-Episode Psychosis. J. Clin. Psychiatry 2016, 77, e1610–e1617. [Google Scholar] [CrossRef] [PubMed]
- Canyelles, M.; Borràs, C.; Rotllan, N.; Tondo, M.; Escolà-Gil, J.C.; Blanco-Vaca, F. Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease? Int. J. Mol. Sci. 2023, 24, 1940. [Google Scholar] [CrossRef] [PubMed]
- Hoyles, L.; Pontifex, M.G.; Rodriguez-Ramiro, I.; Anis-Alavi, M.A.; Jelane, K.S.; Snelling, T.; Solito, E.; Fonseca, S.; Carvalho, A.L.; Carding, S.R.; et al. Regulation of Blood–Brain Barrier Integrity by Microbiome-Associated Methylamines and Cognition by Trimethylamine N-Oxide. Microbiome 2021, 9, 235. [Google Scholar] [CrossRef]
- Schooneman, M.G.; Vaz, F.M.; Houten, S.M.; Soeters, M.R. Acylcarnitines: Reflecting or inflicting insulin resistance? Diabetes 2013, 62, 1–8. [Google Scholar] [CrossRef]
- McCoin, C.S.; Knotts, T.A.; Adams, S.H. Acylcarnitines—Old Actors Auditioning for New Roles in Metabolic Physiology. Nat. Rev. Endocrinol. 2015, 11, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; Vilskersts, R.; Nordberg, D.; Attwood, M.M.; Smesny, S.; Sen, Z.D.; Guo, A.C.; Oler, E.; et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022, 74, 506–551. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gao, D.; Jiang, Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Rutkowsky, J.M.; Knotts, T.A.; Ono-Moore, K.D.; McCoin, C.S.; Huang, S.; Schneider, D.; Singh, S.; Adams, S.H.; Hwang, D.H. Acylcarnitines Activate Proinflammatory Signaling Pathways. Am. J. Physiol.-Endocrinol. Metab. 2014, 306, E1378–E1387. [Google Scholar] [CrossRef]
- Cai, H.-L.; Li, H.-D.; Yan, X.-Z.; Sun, B.; Zhang, Q.; Yan, M.; Zhang, W.-Y.; Jiang, P.; Zhu, R.-H.; Liu, Y.-P.; et al. Metabolomic Analysis of Biochemical Changes in the Plasma and Urine of First-Episode Neuroleptic-Naïve Schizophrenia Patients after Treatment with Risperidone. J. Proteome Res. 2012, 11, 4338–4350. [Google Scholar] [CrossRef]
- Liu, D.; An, Z.; Li, P.; Chen, Y.; Zhang, R.; Liu, L.; He, J.; Abliz, Z. A Targeted Neurotransmitter Quantification and Nontargeted Metabolic Profiling Method for Pharmacometabolomics Analysis of Olanzapine by Using UPLC-HRMS. RSC Adv. 2020, 10, 18305–18314. [Google Scholar] [CrossRef]
- Atagün, M.İ.; Şıkoğlu, E.M.; Can, S.S.; Uğurlu, G.K.; Kaymak, S.U.; Çayköylü, A.; Algın, O.; Phillips, M.L.; Moore, C.M.; Öngür, D. Neurochemical Differences between Bipolar Disorder Type I and II in Superior Temporal Cortices: A Proton Magnetic Resonance Spectroscopy Study. J. Affect. Disord. 2018, 235, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Kraus, C.; Kadriu, B.; Lanzenberger, R.; Zarate, C.A.; Kasper, S. Prognosis and Improved Outcomes in Major Depression: A Review. Transl. Psychiatry 2019, 9, 127. [Google Scholar] [CrossRef]
- Le-Niculescu, H.; Roseberry, K.; Gill, S.S.; Levey, D.F.; Phalen, P.L.; Mullen, J.; Williams, A.; Bhairo, S.; Voegtline, T.; Davis, H.; et al. Precision Medicine for Mood Disorders: Objective Assessment, Risk Prediction, Pharmacogenomics, and Repurposed Drugs. Mol. Psychiatry 2021, 26, 2776–2804. [Google Scholar] [CrossRef] [PubMed]
- Cook, I.A.; Congdon, E.; Krantz, D.E.; Hunter, A.M.; Coppola, G.; Hamilton, S.P.; Leuchter, A.F. Time Course of Changes in Peripheral Blood Gene Expression During Medication Treatment for Major Depressive Disorder. Front. Genet. 2019, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Mangiavacchi, A.; Morelli, G.; Orlando, V. Behind the Scenes: How RNA Orchestrates the Epigenetic Regulation of Gene Expression. Front. Cell Dev. Biol. 2023, 11, 1123975. [Google Scholar] [CrossRef]
- Mariani, N.; Cattane, N.; Pariante, C.; Cattaneo, A. Gene Expression Studies in Depression Development and Treatment: An Overview of the Underlying Molecular Mechanisms and Biological Processes to Identify Biomarkers. Transl. Psychiatry 2021, 11, 354. [Google Scholar] [CrossRef]
- Carrillo-Roa, T.; Labermaier, C.; Weber, P.; Herzog, D.P.; Lareau, C.; Santarelli, S.; Wagner, K.V.; Rex-Haffner, M.; Harbich, D.; Scharf, S.H.; et al. Common Genes Associated with Antidepressant Response in Mouse and Man Identify Key Role of Glucocorticoid Receptor Sensitivity. PLoS Biol. 2017, 15, e2002690. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Timberlake, M.A.; Prall, K.; Dwivedi, Y. The Recent Progress in Animal Models of Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 77, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Hong, S.-I.; Kang, S.; Choi, D.-S. Rodent Models for Psychiatric Disorders: Problems and Promises. Lab. Anim. Res. 2020, 36, 9. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Nestler, E.J. Animal Models of Depression: Molecular Perspectives. In Molecular and Functional Models in Neuropsychiatry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 121–147. [Google Scholar]
- Dudek, K.A.; Dion-Albert, L.; Kaufmann, F.N.; Tuck, E.; Lebel, M.; Menard, C. Neurobiology of Resilience in Depression: Immune and Vascular Insights from Human and Animal Studies. Eur. J. Neurosci. 2021, 53, 183–221. [Google Scholar] [CrossRef]
- Lorsch, Z.S.; Hamilton, P.J.; Ramakrishnan, A.; Parise, E.M.; Salery, M.; Wright, W.J.; Lepack, A.E.; Mews, P.; Issler, O.; McKenzie, A.; et al. Stress Resilience Is Promoted by a Zfp189-Driven Transcriptional Network in Prefrontal Cortex. Nat. Neurosci. 2019, 22, 1413–1423. [Google Scholar] [CrossRef]
- Cathomas, F.; Murrough, J.W.; Nestler, E.J.; Han, M.-H.; Russo, S.J. Neurobiology of Resilience: Interface Between Mind and Body. Biol. Psychiatry 2019, 86, 410–420. [Google Scholar] [CrossRef]
- Scarpa, J.R.; Fatma, M.; Loh, Y.-H.E.; Traore, S.R.; Stefan, T.; Chen, T.H.; Nestler, E.J.; Labonté, B. Shared Transcriptional Signatures in Major Depressive Disorder and Mouse Chronic Stress Models. Biol. Psychiatry 2020, 88, 159–168. [Google Scholar] [CrossRef]
- Hervé, M.; Bergon, A.; Le Guisquet, A.-M.; Leman, S.; Consoloni, J.-L.; Fernandez-Nunez, N.; Lefebvre, M.-N.; El-Hage, W.; Belzeaux, R.; Belzung, C.; et al. Translational Identification of Transcriptional Signatures of Major Depression and Antidepressant Response. Front. Mol. Neurosci. 2017, 10, 248. [Google Scholar] [CrossRef]
- Ramos-da-Silva, L.; Carlson, P.T.; Silva-Costa, L.C.; Martins-de-Souza, D.; de Almeida, V. Molecular Mechanisms Associated with Antidepressant Treatment on Major Depression. Complex. Psychiatry 2021, 7, 49–59. [Google Scholar] [CrossRef]
- Kumar, S.; Gal, Z.; Gonda, X.; Huse, R.J.; Juhasz, G.; Bagdy, G.; Petschner, P. Transcriptomic Changes Following Chronic Administration of Selective Serotonin Reuptake Inhibitors: A Review of Animal Studies. Neuropsychopharmacol. Hung. 2019, 21, 26–35. [Google Scholar]
- Gandal, M.J.; Zhang, P.; Hadjimichael, E.; Walker, R.L.; Chen, C.; Liu, S.; Won, H.; van Bakel, H.; Varghese, M.; Wang, Y.; et al. Transcriptome-Wide Isoform-Level Dysregulation in ASD, Schizophrenia, and Bipolar Disorder. Science 2018, 362, eaat8127. [Google Scholar] [CrossRef]
- Fromer, M.; Roussos, P.; Sieberts, S.K.; Johnson, J.S.; Kavanagh, D.H.; Perumal, T.M.; Ruderfer, D.M.; Oh, E.C.; Topol, A.; Shah, H.R.; et al. Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia. Nat. Neurosci. 2016, 19, 1442–1453. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shukla, R.; Alganem, K.; Zhang, X.; Eby, H.M.; Devine, E.A.; Depasquale, E.; Reigle, J.; Simmons, M.; Hahn, M.K.; et al. Transcriptional Profile of Pyramidal Neurons in Chronic Schizophrenia Reveals Lamina-Specific Dysfunction of Neuronal Immunity. Mol. Psychiatry 2021, 26, 7699–7708. [Google Scholar] [CrossRef]
- Perzel Mandell, K.A.; Eagles, N.J.; Deep-Soboslay, A.; Tao, R.; Han, S.; Wilton, R.; Szalay, A.S.; Hyde, T.M.; Kleinman, J.E.; Jaffe, A.E.; et al. Molecular Phenotypes Associated with Antipsychotic Drugs in the Human Caudate Nucleus. Mol. Psychiatry 2022, 27, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.V.; Mirnics, K.; Nisenbaum, L.K.; Vawter, M.P. Olanzapine Reversed Brain Gene Expression Changes Induced by Phencyclidine Treatment in Non-Human Primates. Complex. Psychiatry 2015, 1, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.K.; Tsang, T.M.; Harris, L.W.; Guest, P.C.; Holmes, E.; Bahn, S. Evidence for Disease and Antipsychotic Medication Effects in Post-Mortem Brain from Schizophrenia Patients. Mol. Psychiatry 2011, 16, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Alnafisah, R.S.; Reigle, J.; Eladawi, M.A.; O’Donovan, S.M.; Funk, A.J.; Meller, J.; Mccullumsmith, R.E.; Shukla, R. Assessing the Effects of Antipsychotic Medications on Schizophrenia Functional Analysis: A Postmortem Proteome Study. Neuropsychopharmacology 2022, 47, 2033–2041. [Google Scholar] [CrossRef]
- Choi, K.H.; Higgs, B.W.; Weis, S.; Song, J.; Llenos, I.C.; Dulay, J.R.; Yolken, R.H.; Webster, M.J. Effects of Typical and Atypical Antipsychotic Drugs on Gene Expression Profiles in the Liver of Schizophrenia Subjects. BMC Psychiatry 2009, 9, 57. [Google Scholar] [CrossRef]
- Mehler-Wex, C.; Grünblatt, E.; Zeiske, S.; Gille, G.; Rausch, D.; Warnke, A.; Gerlach, M. Microarray Analysis Reveals Distinct Gene Expression Patterns in the Mouse Cortex Following Chronic Neuroleptic and Stimulant Treatment: Implications for Body Weight Changes. J. Neural Transm. 2006, 113, 1383–1393. [Google Scholar] [CrossRef]
- Grotzinger, A.D.; Singh, K.; Miller-Fleming, T.W.; Lam, M.; Mallard, T.T.; Chen, Y.; Liu, Z.; Ge, T.; Smoller, J.W. Transcriptome-Wide Structural Equation Modeling of 13 Major Psychiatric Disorders for Cross-Disorder Risk and Drug Repurposing. JAMA Psychiatry 2023, 80, 811. [Google Scholar] [CrossRef]
- Dudley, J.T.; Deshpande, T.; Butte, A.J. Exploiting Drug-Disease Relationships for Computational Drug Repositioning. Brief. Bioinform. 2011, 12, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Reay, W.R.; Cairns, M.J. Advancing the Use of Genome-Wide Association Studies for Drug Repurposing. Nat. Rev. Genet. 2021, 22, 658–671. [Google Scholar] [CrossRef]
- So, H.-C.; Chau, C.K.-L.; Chiu, W.-T.; Ho, K.-S.; Lo, C.-P.; Yim, S.H.-Y.; Sham, P.-C. Analysis of Genome-Wide Association Data Highlights Candidates for Drug Repositioning in Psychiatry. Nat. Neurosci. 2017, 20, 1342–1349. [Google Scholar] [CrossRef]
- Wang, S.; Ju, D.; Zeng, X. Mechanisms and Clinical Implications of Human Gut Microbiota-Drug Interactions in the Precision Medicine Era. Biomedicines 2024, 12, 194. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Dikeocha, I.J.; Al-Kabsi, A.M.; Miftahussurur, M.; Alshawsh, M.A. Pharmacomicrobiomics: Influence of Gut Microbiota on Drug and Xenobiotic Metabolism. FASEB J. 2022, 36, e22350. [Google Scholar] [CrossRef]
- Klünemann, M.; Andrejev, S.; Blasche, S.; Mateus, A.; Phapale, P.; Devendran, S.; Vappiani, J.; Simon, B.; Scott, T.A.; Kafkia, E.; et al. Bioaccumulation of Therapeutic Drugs by Human Gut Bacteria. Nature 2021, 597, 533–538. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Ye, J.; Sun, Z.; He, Y.; Zhao, Y.; Ren, S.; Zhang, G.; Liu, M.; Zheng, P.; et al. Multi-Omics Reveal Microbial Determinants Impacting the Treatment Outcome of Antidepressants in Major Depressive Disorder. Microbiome 2023, 11, 195. [Google Scholar] [CrossRef]
- Tiano, J.P. The Human Microbiome Project … and the Intramural Connection; NIH: Bethesda, MD, USA, 2013. [Google Scholar]
- Astudillo-de la Vega, H.; Alonso-Luna, O.; Ali-Pérez, J.; López-Camarillo, C.; Ruiz-Garcia, E. Oncobiome at the Forefront of a Novel Molecular Mechanism to Understand the Microbiome and Cancer. In Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 147–156. [Google Scholar]
- Cussotto, S.; Strain, C.R.; Fouhy, F.; Strain, R.G.; Peterson, V.L.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Differential Effects of Psychotropic Drugs on Microbiome Composition and Gastrointestinal Function. Psychopharmacology 2019, 236, 1671–1685. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Sandhu, K.V.; Griffin, B.T.; Dinan, T.G.; Cryan, J.F.; Hyland, N.P. Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacol. Rev. 2019, 71, 198–224. [Google Scholar] [CrossRef]
- Skonieczna-Żydecka, K.; Łoniewski, I.; Misera, A.; Stachowska, E.; Maciejewska, D.; Marlicz, W.; Galling, B. Second-Generation Antipsychotics and Metabolism Alterations: A Systematic Review of the Role of the Gut Microbiome. Psychopharmacology 2019, 236, 1491–1512. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, F.E.C.; Lizcano Martinez, S.; Liscano, Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients 2024, 16, 1352. [Google Scholar] [CrossRef]
- Aresti Sanz, J.; El Aidy, S. Microbiota and Gut Neuropeptides: A Dual Action of Antimicrobial Activity and Neuroimmune Response. Psychopharmacology 2019, 236, 1597–1609. [Google Scholar] [CrossRef]
- Smith, D.A.; Sadler, M.C.; Altman, R.B. Promises and Challenges in Pharmacoepigenetics. Camb. Prism. Precis. Med. 2023, 1, e18. [Google Scholar] [CrossRef] [PubMed]
- Tyrka, A.R.; Price, L.H.; Marsit, C.; Walters, O.C.; Carpenter, L.L. Childhood Adversity and Epigenetic Modulation of the Leukocyte Glucocorticoid Receptor: Preliminary Findings in Healthy Adults. PLoS ONE 2012, 7, e30148. [Google Scholar] [CrossRef]
- Andari, E.; Nishitani, S.; Kaundinya, G.; Caceres, G.A.; Morrier, M.J.; Ousley, O.; Smith, A.K.; Cubells, J.F.; Young, L.J. Epigenetic Modification of the Oxytocin Receptor Gene: Implications for Autism Symptom Severity and Brain Functional Connectivity. Neuropsychopharmacology 2020, 45, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, M.; Wang, X.; He, Y.; Xia, Y.; Sweeney, J.A.; Kopp, R.F.; Liu, C.; Chen, C. Drug Response-Related DNA Methylation Changes in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front. Neurosci. 2021, 15, 674273. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, C.; Lv, Q.; Bao, C.; Sun, H.; Ma, G.; Fang, Y.; Yi, Z.; Cai, W. Association of DNA Methylation in BDNF with Escitalopram Treatment Response in Depressed Chinese Han Patients. Eur. J. Clin. Pharmacol. 2018, 74, 1011–1020. [Google Scholar] [CrossRef]
- Tadić, A.; Müller-Engling, L.; Schlicht, K.F.; Kotsiari, A.; Dreimüller, N.; Kleimann, A.; Bleich, S.; Lieb, K.; Frieling, H. Methylation of the Promoter of Brain-Derived Neurotrophic Factor Exon IV and Antidepressant Response in Major Depression. Mol. Psychiatry 2014, 19, 281–283. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Chen, S.; Yue, Y.; Xu, Z.; Yuan, Y. DNA Methylations of Brain-Derived Neurotrophic Factor Exon VI Are Associated with Major Depressive Disorder and Antidepressant-Induced Remission in Females. J. Affect. Disord. 2021, 295, 101–107. [Google Scholar] [CrossRef]
- Lieb, K.; Dreimüller, N.; Wagner, S.; Schlicht, K.; Falter, T.; Neyazi, A.; Müller-Engling, L.; Bleich, S.; Tadić, A.; Frieling, H. BDNF Plasma Levels and BDNF Exon IV Promoter Methylation as Predictors for Antidepressant Treatment Response. Front. Psychiatry 2018, 9, 511. [Google Scholar] [CrossRef]
- Fakhoury, M. New Insights into the Neurobiological Mechanisms of Major Depressive Disorders. Gen. Hosp. Psychiatry 2015, 37, 172–177. [Google Scholar] [CrossRef]
- Chilmonczyk, Z.; Bojarski, A.; Pilc, A.; Sylte, I. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands. Int. J. Mol. Sci. 2015, 16, 18474–18506. [Google Scholar] [CrossRef] [PubMed]
- Tiger, M.; Varnäs, K.; Okubo, Y.; Lundberg, J. The 5-HT1B Receptor—A Potential Target for Antidepressant Treatment. Psychopharmacology 2018, 235, 1317–1334. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Z.; Shen, T.; Chen, L.; Tan, T.; Gao, C.; Chen, B.; Yuan, Y.; Zhang, Z. The Impact of HTR1A and HTR1B Methylation Combined with Stress/Genotype on Early Antidepressant Efficacy. Psychiatry Clin. Neurosci. 2022, 76, 51–57. [Google Scholar] [CrossRef]
- Kang, H.-J.; Kim, J.-M.; Stewart, R.; Kim, S.-Y.; Bae, K.-Y.; Kim, S.-W.; Shin, I.-S.; Shin, M.-G.; Yoon, J.-S. Association of SLC6A4 Methylation with Early Adversity, Characteristics and Outcomes in Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 44, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Morinobu, S.; Fuchikami, M.; Segawa, M.; Yokomaku, K.; Kataoka, T.; Okamoto, Y.; Yamawaki, S.; Inoue, T.; Kusumi, I.; et al. The Potential of SLC6A4 Gene Methylation Analysis for the Diagnosis and Treatment of Major Depression. J. Psychiatr. Res. 2014, 53, 47–53. [Google Scholar] [CrossRef]
- Iga, J.; Watanabe, S.; Numata, S.; Umehara, H.; Nishi, A.; Kinoshita, M.; Inoshita, M.; Shimodera, S.; Fujita, H.; Ohmori, T. Association Study of Polymorphism in the Serotonin Transporter Gene Promoter, Methylation Profiles, and Expression in Patients with Major Depressive Disorder. Human Psychopharmacol. Clin. Exp. 2016, 31, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Domschke, K.; Tidow, N.; Schwarte, K.; Deckert, J.; Lesch, K.-P.; Arolt, V.; Zwanzger, P.; Baune, B.T. Serotonin Transporter Gene Hypomethylation Predicts Impaired Antidepressant Treatment Response. Int. J. Neuropsychopharmacol. 2014, 17, 1167–1176. [Google Scholar] [CrossRef]
- Schiele, M.A.; Zwanzger, P.; Schwarte, K.; Arolt, V.; Baune, B.T.; Domschke, K. Serotonin Transporter Gene Promoter Hypomethylation as a Predictor of Antidepressant Treatment Response in Major Depression: A Replication Study. Int. J. Neuropsychopharmacol. 2021, 24, 191–199. [Google Scholar] [CrossRef]
- Bayles, R.; Baker, E.K.; Jowett, J.B.M.; Barton, D.; Esler, M.; El-Osta, A.; Lambert, G. Methylation of the SLC6a2 Gene Promoter in Major Depression and Panic Disorder. PLoS ONE 2013, 8, e83223. [Google Scholar] [CrossRef]
- Ryan, J.; Pilkington, L.; Neuhaus, K.; Ritchie, K.; Ancelin, M.-L.; Saffery, R. Investigating the Epigenetic Profile of the Inflammatory Gene IL-6 in Late-Life Depression. BMC Psychiatry 2017, 17, 354. [Google Scholar] [CrossRef]
- Dahl, J.; Ormstad, H.; Aass, H.C.D.; Malt, U.F.; Bendz, L.T.; Sandvik, L.; Brundin, L.; Andreassen, O.A. The Plasma Levels of Various Cytokines Are Increased during Ongoing Depression and Are Reduced to Normal Levels after Recovery. Psychoneuroendocrinology 2014, 45, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Nonen, S.; Kato, M.; Wakeno, M.; Takekita, Y.; Kinoshita, T.; Kugawa, F. Therapeutic Response to Paroxetine in Major Depressive Disorder Predicted by DNA Methylation. Neuropsychobiology 2017, 75, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Belzeaux, R.; Lin, R.; Ju, C.; Chay, M.-A.; Fiori, L.M.; Lutz, P.-E.; Turecki, G. Transcriptomic and Epigenomic Biomarkers of Antidepressant Response. J. Affect. Disord. 2018, 233, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Fiori, L.M.; Lin, R.; Ju, C.; Belzeaux, R.; Turecki, G. Using Epigenetic Tools to Investigate Antidepressant Response. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–272. [Google Scholar]
- Sales, A.J.; Joca, S.R.L. Effects of DNA Methylation Inhibitors and Conventional Antidepressants on Mice Behaviour and Brain DNA Methylation Levels. Acta Neuropsychiatr. 2016, 28, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.B.; Melas, P.A.; Wegener, G.; Mathe, A.A.; Lavebratt, C. Antidepressant-Like Effect of Sodium Butyrate Is Associated with an Increase in TET1 and in 5-Hydroxymethylation Levels in the Bdnf Gene. Int. J. Neuropsychopharmacol. 2015, 18, pyu032. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Jiang, Q.-S.; Liu, Y.-J.; Hu, X.-Y.; Wang, L.-J.; Zhou, Q.-X.; Qiu, H.-M. Antidepressant Mechanisms of Venlafaxine Involving Increasing Histone Acetylation and Modulating Tyrosine Hydroxylase and Tryptophan Hydroxylase Expression in Hippocampus of Depressive Rats. Neuroreport 2019, 30, 255–261. [Google Scholar] [CrossRef]
- Sales, A.J.; Biojone, C.; Terceti, M.S.; Guimarães, F.S.; Gomes, M.V.; Joca, S.R. Antidepressant-like Effect Induced by Systemic and Intra-hippocampal Administration of DNA Methylation Inhibitors. Br. J. Pharmacol. 2011, 164, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-C.; Lin, K.-D.; Tien, K.-J.; Tu, S.-T.; Hsiao, J.-Y.; Chang, S.-J.; Lin, S.-R.; Shing, S.-J.; Chen, H.-C. Common Polymorphisms of the Peroxisome Proliferator-Activated Receptor–γ (Pro12Ala) and Peroxisome Proliferator-Activated Receptor–γ Coactivator–1 (Gly482Ser) and the Response to Pioglitazone in Chinese Patients with Type 2 Diabetes Mellitus. Metabolism 2010, 59, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Cassoli, J.S.; Guest, P.C.; Santana, A.G.; Martins-de-Souza, D. Employing Proteomics to Unravel the Molecular Effects of Antipsychotics and Their Role in Schizophrenia. Proteom. Clin. Appl. 2016, 10, 442–455. [Google Scholar] [CrossRef]
- Schwarz, E.; Guest, P.C.; Steiner, J.; Bogerts, B.; Bahn, S. Identification of Blood-Based Molecular Signatures for Prediction of Response and Relapse in Schizophrenia Patients. Transl. Psychiatry 2012, 2, e82. [Google Scholar] [CrossRef] [PubMed]
- Uher, R.; Maier, W.; Hauser, J.; Marušič, A.; Schmael, C.; Mors, O.; Henigsberg, N.; Souery, D.; Placentino, A.; Rietschel, M.; et al. Differential Efficacy of Escitalopram and Nortriptyline on Dimensional Measures of Depression. Br. J. Psychiatry 2009, 194, 252–259. [Google Scholar] [CrossRef]
- McGuffin, P. GENome-Based Therapeutic Drugs for DEPression. Available online: http://isrctn.org/ (accessed on 27 November 2024).
- Malki, K.; Campbell, J.; Davies, M.; Keers, R.; Uher, R.; Ward, M.; Paya-Cano, J.; Aitchinson, K.J.; Binder, E.; Sluyter, F.; et al. Pharmacoproteomic Investigation into Antidepressant Response in Two Mouse Inbred Strains. Proteomics 2012, 12, 2355–2365. [Google Scholar] [CrossRef]
- Athreya, A.P.; Neavin, D.; Carrillo-Roa, T.; Skime, M.; Biernacka, J.; Frye, M.A.; Rush, A.J.; Wang, L.; Binder, E.B.; Iyer, R.K.; et al. Pharmacogenomics-Driven Prediction of Antidepressant Treatment Outcomes: A Machine-Learning Approach with Multi-trial Replication. Clin. Pharmacol. Ther. 2019, 106, 855–865. [Google Scholar] [CrossRef]
- Chang, B.; Choi, Y.; Jeon, M.; Lee, J.; Han, K.-M.; Kim, A.; Ham, B.-J.; Kang, J. ARPNet: Antidepressant Response Prediction Network for Major Depressive Disorder. Genes 2019, 10, 907. [Google Scholar] [CrossRef]
- Maciukiewicz, M.; Marshe, V.S.; Hauschild, A.-C.; Foster, J.A.; Rotzinger, S.; Kennedy, J.L.; Kennedy, S.H.; Müller, D.J.; Geraci, J. GWAS-Based Machine Learning Approach to Predict Duloxetine Response in Major Depressive Disorder. J. Psychiatr. Res. 2018, 99, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, R.; Malki, K.; Maier, W.; Rietschel, M.; Mors, O.; Hauser, J.; Henigsberg, N.; Dernovsek, M.Z.; Souery, D.; Stahl, D.; et al. Combining Clinical Variables to Optimize Prediction of Antidepressant Treatment Outcomes. J. Psychiatr. Res. 2016, 78, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.J.; Andreescu, C.; Price, J.C.; Edelman, K.L.; Reynolds, C.F.; Aizenstein, H.J. Machine Learning Approaches for Integrating Clinical and Imaging Features in Late-life Depression Classification and Response Prediction. Int. J. Geriatr. Psychiatry 2015, 30, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Kautzky, A.; Baldinger, P.; Souery, D.; Montgomery, S.; Mendlewicz, J.; Zohar, J.; Serretti, A.; Lanzenberger, R.; Kasper, S. The Combined Effect of Genetic Polymorphisms and Clinical Parameters on Treatment Outcome in Treatment-Resistant Depression. Eur. Neuropsychopharmacol. 2015, 25, 441–453. [Google Scholar] [CrossRef]
- Dwyer, D.B.; Falkai, P.; Koutsouleris, N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annu. Rev. Clin. Psychol. 2018, 14, 91–118. [Google Scholar] [CrossRef]
- Joyce, J.B.; Grant, C.W.; Liu, D.; MahmoudianDehkordi, S.; Kaddurah-Daouk, R.; Skime, M.; Biernacka, J.; Frye, M.A.; Mayes, T.; Carmody, T.; et al. Multi-Omics Driven Predictions of Response to Acute Phase Combination Antidepressant Therapy: A Machine Learning Approach with Cross-Trial Replication. Transl. Psychiatry 2021, 11, 513. [Google Scholar] [CrossRef]
- Gillett, G.; Tomlinson, A.; Efthimiou, O.; Cipriani, A. Predicting Treatment Effects in Unipolar Depression: A Meta-Review. Pharmacol. Ther. 2020, 212, 107557. [Google Scholar] [CrossRef]
- Perlman, K.; Benrimoh, D.; Israel, S.; Rollins, C.; Brown, E.; Tunteng, J.-F.; You, R.; You, E.; Tanguay-Sela, M.; Snook, E.; et al. A Systematic Meta-Review of Predictors of Antidepressant Treatment Outcome in Major Depressive Disorder. J. Affect. Disord. 2019, 243, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Lin, C.-H.; Lane, H.-Y. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. Int. J. Mol. Sci. 2020, 21, 969. [Google Scholar] [CrossRef]
- van Westrhenen, R.; Aitchison, K.J.; Ingelman-Sundberg, M.; Jukić, M.M. Pharmacogenomics of Antidepressant and Antipsychotic Treatment: How Far Have We Got and Where Are We Going? Front. Psychiatry 2020, 11, 94. [Google Scholar] [CrossRef]
- Fabbri, C.; Kasper, S.; Kautzky, A.; Zohar, J.; Souery, D.; Montgomery, S.; Albani, D.; Forloni, G.; Ferentinos, P.; Rujescu, D.; et al. A Polygenic Predictor of Treatment-Resistant Depression Using Whole Exome Sequencing and Genome-Wide Genotyping. Transl. Psychiatry 2020, 10, 50. [Google Scholar] [CrossRef]
- Pisanu, C.; Squassina, A. Treatment-Resistant Schizophrenia: Insights From Genetic Studies and Machine Learning Approaches. Front. Pharmacol. 2019, 10, 617. [Google Scholar] [CrossRef]
- Lin, E.; Kuo, P.-H.; Liu, Y.-L.; Yu, Y.W.-Y.; Yang, A.C.; Tsai, S.-J. A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers. Front. Psychiatry 2018, 9, 290. [Google Scholar] [CrossRef]
- Chekroud, A.M.; Zotti, R.J.; Shehzad, Z.; Gueorguieva, R.; Johnson, M.K.; Trivedi, M.H.; Cannon, T.D.; Krystal, J.H.; Corlett, P.R. Cross-Trial Prediction of Treatment Outcome in Depression: A Machine Learning Approach. Lancet Psychiatry 2016, 3, 243–250. [Google Scholar] [CrossRef]
- Thakkar, A.; Gupta, A.; De Sousa, A. Artificial Intelligence in Positive Mental Health: A Narrative Review. Front. Digit. Health 2024, 6, 1280235. [Google Scholar] [CrossRef]
- Ostojic, D.; Lalousis, P.A.; Donohoe, G.; Morris, D.W. The Challenges of Using Machine Learning Models in Psychiatric Research and Clinical Practice. Eur. Neuropsychopharmacol. 2024, 88, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, T.W.; Brenman, M.; Ye, X. The Ethical Concerns of Artificial Intelligence in Urban Planning. In Journal of the American Planning Association; Taylor & Francis: Milton Park, UK, 2024; pp. 1–14. [Google Scholar] [CrossRef]
- Eugene, A.R.; Masiak, J.; Eugene, B. Predicting Lithium Treatment Response in Bipolar Patients Using Gender-Specific Gene Expression Biomarkers and Machine Learning. F1000Research 2018, 7, 474. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, M.S.; Reps, J.; Fife, D.; Blacketer, C.; Stang, P.; Ryan, P. Finding Treatment-Resistant Depression in Real-World Data: How a Data-Driven Approach Compares with Expert-Based Heuristics. Depress. Anxiety 2018, 35, 220–228. [Google Scholar] [CrossRef]
- Kautzky, A.; Baldinger-Melich, P.; Kranz, G.S.; Vanicek, T.; Souery, D.; Montgomery, S.; Mendlewicz, J.; Zohar, J.; Serretti, A.; Lanzenberger, R.; et al. A New Prediction Model for Evaluating Treatment-Resistant Depression. J. Clin. Psychiatry 2017, 78, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Pradier, M.F.; Hughes, M.C.; McCoy, T.H.; Barroilhet, S.A.; Doshi-Velez, F.; Perlis, R.H. Predicting Change in Diagnosis from Major Depression to Bipolar Disorder after Antidepressant Initiation. Neuropsychopharmacology 2021, 46, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Agrawal, A.; Bulik, C.M.; Andreassen, O.A.; Børglum, A.D.; Breen, G.; Cichon, S.; Edenberg, H.J.; Faraone, S.V.; Gelernter, J.; et al. Psychiatric Genomics: An Update and an Agenda. Am. J. Psychiatry 2018, 175, 15–27. [Google Scholar] [CrossRef]
- FENS. European College of Neuropsychopharmacology (ECNP); FENS: Madrid, Spain. Available online: https://www.fens.org/membership/societies/european-college-of-neuropsychopharmacology-ecnp (accessed on 17 October 2024).
- Elliott, L.T.; Sharp, K.; Alfaro-Almagro, F.; Shi, S.; Miller, K.L.; Douaud, G.; Marchini, J.; Smith, S.M. Genome-Wide Association Studies of Brain Imaging Phenotypes in UK Biobank. Nature 2018, 562, 210–216. [Google Scholar] [CrossRef]
- Ross, C.J.D.; Visscher, H.; Sistonen, J.; Brunham, L.R.; Pussegoda, K.; Loo, T.T.; Rieder, M.J.; Koren, G.; Carleton, B.C.; Hayden, M.R. The Canadian Pharmacogenomics Network for Drug Safety: A Model for Safety Pharmacology. Thyroid 2010, 20, 681–687. [Google Scholar] [CrossRef]
- Picard, N.; Boyer, J.-C.; Etienne-Grimaldi, M.-C.; Barin-Le Guellec, C.; Thomas, F.; Loriot, M.-A. Pharmacogenetics-Based Personalized Therapy: Levels of Evidence and Recommendations from the French Network of Pharmacogenetics (RNPGx). Therapies 2017, 72, 185–192. [Google Scholar] [CrossRef]
- ASHP. Endorsed Documents; ASHP: Bethesda, MD, USA. Available online: https://www.ashp.org/pharmacy-practice/policy-positions-and-guidelines/browse-by-document-type/endorsed-documents?loginreturnUrl=SSOCheckOnly (accessed on 20 November 2024).
- Duong, B.Q.; Arwood, M.J.; Hicks, J.K.; Beitelshees, A.L.; Franchi, F.; Houder, J.T.; Limdi, N.A.; Cook, K.J.; Owusu Obeng, A.; Petry, N.; et al. Development of Customizable Implementation Guides to Support Clinical Adoption of Pharmacogenomics: Experiences of the Implementing GeNomics in PracTicE (IGNITE) Network. Pharmgenom. Pers. Med. 2020, 13, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Orlando, L.A.; Sperber, N.R.; Voils, C.; Nichols, M.; Myers, R.A.; Wu, R.R.; Rakhra-Burris, T.; Levy, K.D.; Levy, M.; Pollin, T.I.; et al. Developing a Common Framework for Evaluating the Implementation of Genomic Medicine Interventions in Clinical Care: The IGNITE Network’s Common Measures Working Group. Genet. Med. 2018, 20, 655–663. [Google Scholar] [CrossRef]
- Oslin, D.W.; Chapman, S.; Duvall, S.L.; Gelernter, J.; Ingram, E.P.; Kranzler, H.R.; Lehmann, L.S.; Lynch, J.A.; Lynch, K.G.; Pyne, J.M.; et al. Study Design and Implementation of the PRecision Medicine In MEntal Health Care (PRIME Care) Trial. Contemp. Clin. Trials 2021, 101, 106247. [Google Scholar] [CrossRef]
- Swen, J.J.; van der Wouden, C.H.; Manson, L.E.; Abdullah-Koolmees, H.; Blagec, K.; Blagus, T.; Böhringer, S.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.-C.; et al. A 12-Gene Pharmacogenetic Panel to Prevent Adverse Drug Reactions: An Open-Label, Multicentre, Controlled, Cluster-Randomised Crossover Implementation Study. Lancet 2023, 401, 347–356. [Google Scholar] [CrossRef] [PubMed]
- IQ Consortium. IQ Machine Intelligence for Quantitative Modeling in Drug Discovery & Development Applications; IQ Consortium: Washington, WA, USA, 2022. [Google Scholar]
- FDA; University of Maryland. Application of Artificial Intelligence & Machine Learning for Precision Medicine; FDA & University of Maryland: Silver Spring, MD, USA, 2023. [Google Scholar]
- Liu, Q.; Joshi, A.; Standing, J.F.; van der Graaf, P.H. Artificial Intelligence/Machine Learning: The New Frontier of Clinical Pharmacology and Precision Medicine. Clin. Pharmacol. Ther. 2024, 115, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.H.; Taylor, J.J.; Horn, A.; Fox, M.D. Bringing Human Brain Connectomics to Clinical Practice in Psychiatry. Biol. Psychiatry 2023, 93, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Sharew, N.T.; Clark, S.R.; Schubert, K.O.; Amare, A.T. Pharmacogenomic Scores in Psychiatry: Systematic Review of Current Evidence. Transl. Psychiatry 2024, 14, 322. [Google Scholar] [CrossRef] [PubMed]
Class | Drug | Informative PGx (PharmGKB Level 2, 3, and 4) | Actionable PGx (PharmGKB Level 1) | Variant | Recommendation | CPIC/DPWG |
---|---|---|---|---|---|---|
Antidepressants | Citalopram | ABCB1 BDNF CACNA1C COL26A1 CREB1, METTL21A CRHR2 CYP2D6 DTNBP1 ERICH3 FKBP5 GLDC GRIA3 GRK5 GSK3B HTR1B HTR2A NEDD4L PAPLN REEP5 RFK RORA SERPINE1 SRP19 TPH2 BDNF CYP2D19 CYP2D6 HTR2A SLC6A4 TPH1 TSPAN5 | CYP2C19 | CYP2C19*1; CYP2C19*2; CYP2C19*3; CYP2C19*17 CYP2C19*4 | UM, LP, and PM: consideration of a clinically appropriate antidepressant not predominantly metabolized by CYP2C19 for CYP2C19 In case citalopram or escitalopram are clinically appropriate, dose alterations are recommended. | CPIC |
Antidepressants | Escitalopram | BDNF BMP5 CYP1A2 CYP2D6 ERICH3 FKBP5 GLDC GRK5 HTR1B HTR2A HTR2C HTR7 IL11 RFK SCL6A4 TSPAN5 | CYP2C19 | CYP2C19*1; CYP2C19*2; CYP2C19*3; CYP2C19*17 | UM, LP, and PM: consideration of a clinically appropriate antidepressant not predominantly metabolized by CYP2C19 for CYP2C19 In case citalopram or escitalopram are clinically appropriate, dose alterations are recommended. | CPIC |
Antidepressants | Fluvoxamine | ABCB1 COMT FGF2 HTR1A MDGA2 SLC6A4 HTR2A | CYP2D6 | CYP2D6*1; CYP2D6*4; CYP2D6*5; CYP2D6*6; CYP2D6*10; CYP2D6*14 | PM: 25–50% reduction in recommended starting dose and slower titration schedule or use of an alternative drug not metabolized by CYP2D6 | CPIC |
Antidepressants | Paroxetine | ABCB1 BDNF COMT CYP1A2 DRD3 FKBP5 GDNF HTR1A HTR1B HTR2A HTR7, RPP30 MDGA2 REEP5 SLC6A4 SRP19 HTR2A HTR3B TPH1 | CYP2D6 | CYP2D6*1; CYP2D6*1xN; CYP2D6*2; CYP2D6*2xN; CYP2D6*3; CYP2D6*4; CYP2D6*5; CYP2D6*9; CYP2D6*10; CYP2D6*14; CYP2D6*41 | UM: alternative drug not predominantly metabolized by CYP2D6. PM: 50% reduction in recommended starting dose, slower titration schedule, and a 50% lower maintenance dose | CPIC |
Antidepressants | Sertraline | ABCB1 ACE CYP2D6 GNB3, P3H3 HTR1A REEP5 SRP19 HTR2A SLC6A4 | CYP2C19, CYP2B6 | CYP2B6*1; CYP2B6*4; CYP2B6*6; CYP2B6*9 CYP2C19*1; CYP2C19*2; CYP2C19*3; CYP2C19*17 | CYP2C19 PM: 50% reduction in recommended starting dose and titrate to response or selection of an alternative drug not predominantly metabolized by CYP2C19 | CPIC |
Antidepressants | Imipramine | - | CYP2C19, CYP2D6 | CYP2C19*1; CYP2C19*2; CYP2C19*3; CYP2C19*17 CYP2D6*1; CYP2D6*3; CYP2D6*4; CYP2D6*5; CYP2D6*6; CYP2D6*1xN; CYP2D6*2xN | CYP2D6 IM: a 25% dose reduction should be considered. | CPIC |
Antidepressants | Clomipramine | ABCB1 FKBP5 HTR1B SLC6A4 | CYP2C19, CYP2D6 | CYP2C19*1; CYP2C19*2; CYP2C19*3; CYP2C19*17 CYP2D6*1; CYP2D6*1xN; CYP2D6*2; CYP2D6*3; CYP2D6*4; CYP2D6*5; CYP2D6*6; CYP2D6*10; CYP2D6*41 | IM: 25% dose reduction | CPIC |
Antidepressants | Nortriptyline | - | CYP2D6 | - | IM: 25% dose reduction UM/PM: alternative drug should be considered. If nortriptyline is warranted, consider a 50% dose reduction in CYP2D6-poor metabolizers. | CPIC |
Antidepressants | Amitriptyline | ABCB1 CYP2D6 (CYP2D6*1, CYP2D6*87, CYP2D6*88, CYP2D6*89, CYP2D6*90,CYP2D6*91,CYP2D6*93, CYP2D6*94, CYP2D6*95, CYP2D6*97, CYP2D6*98) | CYP2C19, CYP2D6 | CYP2C19*1; CYP2C19*2; CYP2C19*3; CYP2C19*17 CYP2D6*1; CYP2D6*1xN; CYP2D6*2; CYP2D6*3; CYP2D6*4; CYP2D6*5; CYP2D6*6; CYP2D6*10; CYP2D6*41 | CYP2D6 UM/PM or CYP2C19 UM/RM/PM: alternative drug PM: If amitriptyline is warranted, consider a 50% dose reduction. CYP2D6 IM: a 25% dose reduction should be considered. | CPIC |
Antidepressants | Venlafaxine | ABCB1 COMT CYP2C19 (CYP2C19*2) CYP2D6 (CYP2D6*1, CYP2D6*87, CYP2D6*88, CYP2D6*89, CYP2D6*90, CYP2D6*91, CYP2D6*93, CYP2D6*94, CYP2D6*95, CYP2D6*97, CYP2D6*98) FKBP5 GABRA6 GABRP GABRQ GRIA3 HTR2A SLC6A2 TPH2 CYP2C19 (CYP2C19*1; CYP2C19*2) HTR2A SLC6A4 | CYP2D6 | CYP2D6*1; CYP2D6*3; CYP2D6*4; CYP2D6*6; CYP2D6*81; CYP2D6*5; CYP2D6*10 | PM: alternative antidepressant not predominantly metabolized by CYP2D6 | CPIC |
Antipsychotics | Aripiprazole | ABCB1 ANKK1 DRD2 FAAH MC4R RABEP1 SH2B1 TAAR6 | CYP2D6 | CYP2D6*1; CYP2D6*4; CYP2D6*5; CYP2D6*6; CYP2D6*10; CYP2D6*41 | PM: reduce maximum dose | DPWG |
Antipsychotics | Risperidone | ABCB1 ADRB2 AKT1 ANKK, DRD2 CCL2 CNR1 COMT CYP1B1 CYP2D6 (CYP2D6*1, CYP2D6*87, CYP2D6*88, CYP2D6*89, CYP2D6*90,CYP2D6*91, CYP2D6*93, CYP2D6*94, CYP2D6*95, CYP2D6*97, CYP2D6*98) CYP2E1 DRD2 DRD3 EIF2AK4 EPM2A FAAH GRID2 GRIN2B GRM3 GRM7 HRH3 HRH4 HTR1A HTR2A HTR2C HTT, MSANTD1 LEP MC4R NR1I2 PPA2 RABEP1 RGS4 SH2B1 SLC6A4 TJP1 TNFRSF11A UGT1A1, UGT1A10,UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9 ABCB1 ANKK1, DRD2 COMT DRD2 | CYP2D6 | CYP2D6*1; CYP2D6*1xN, CYP2D6*3; CYP2D6*4; CYP2D6*5; CYP2D6*6; CYP2D6*10; CYP2D6*14 | PM: decrease dose UM: alternative drug or titration of the dose according to the maximum dose of the active metabolite | DPWG |
Antipsychotics | Zuclopenthixol | - | CYP2D6 | CYP2D6*1, CYP2D6*3, CYP2D6*4 | PM/IM: dose reduction UM: increase dose (not exceeding 1.5x normal dose) if needed | DPWG |
ADHD | Atomoxetine | CYP2D6 (CYP2D6*1, CYP2D6*87, CYP2D6*88, CYP2D6*89, CYP2D6*90, CYP2D6*91, CYP2D6*93, CYP2D6*94, CYP2D6*95, CYP2D6*97, CYP2D6*98, CYP2D6*4, CYP2D6*5) SLC6A2 | CYP2D6 | CYP2D6*1; CYP2D6*3; CYP2D6*4; CYP2D6*4xN; CYP2D6*5; CYP2D6*6; CYP2D6*10; CYP2D6*17; CYP2D6*92; CYP2D6*96 | UM: be alert to reduced efficacy or select alternative drug as precaution PM: be alert to side effects | DPWG |
Anticonvulsants | Carbamazepine | SCN1A ABCB1 ABCC2 BAG6, PRRC2A CYP1A1 CYP1A2 CYP3A4 CYP3A5 EPHX1 GABRA1 HLA-A (HLA-A*24:02; HLA-A*11:01, HLA-A*02:01) HLA-B (HLA-B*46:01, HLA-B*15:18, HLA-B*15:21, HLA-B*51:01, HLA-B*59:01, HLA-b*58:01, HLA-B*40:01) HLA-C HLA-DRB1 HSPA1A, HSPA1L LTA, TNF NR1I2 SCN2A UGT2B7 HNF4A SCN1A SCN2A | HLA-A, HLA-B | HLA-A*31:01 HLA-B*15:02; HLA-B*15:11 | Alternative drug for carbamazepine-naive patients carrying at least one copy of either HLA-B*15:02 or HLA-A*31:01 | CPIC |
Anticonvulsants | Oxcarbazepine | ABCB1 HLA-A HLA-B (HLA-B*27:09, HLA-B*13:02, HLA-B*38:02, HLA-B*48:04, HLA-B*15:19, HLA-B*15:27, HLA-B*40:02, HLA-B*15:18, HLA-B*40:01, HLA-B*15:02) HLA-DRB1 SCN2A UGT1A10, UGT1A7, UGT1A8, UGT1A9 UGT2B7 ABCC2 SCN1A | HLA-B | B*15:02 | Alternative drug for oxcarbazepine-naive patients carrying at least one copy of HLA-B*15:02 | CPIC |
Reference | Participant | Treatment(s) | Duration (Weeks) | Outcome Measures | Genetic Marks Assessed | Sample Type | Key Findings |
---|---|---|---|---|---|---|---|
Hsieh et al. [197] | MDD patients (Taiwan) | SSRIs and benzodiazepines or hypnotics (no mood stabilizers or antipsychotic drugs) | 4 | HAM-D17 | 14 CpG sites in BDNF exon IX | Peripheral blood | Higher methylation level at CpG 24 and CpG 324 of BDNF exon IX associated with improved response |
Schiele et al. [186] | MDD patients (Caucasian) | Antidepressants | 6 | HAM-D21 | 9 CpG sites in SLC6A4 promoter region | Blood cells | Higher methylation of CpG sites correlated with treatment response |
Xu, Chen, et al. [181] | MDD patients (Chinese, Han) | Antidepressants | 2 | HAM-D17 LES CTQ | 181 CpG sites in HTR1A and HTR1B | Peripheral blood | Methylation of HTR1A-2-143 and HTR1B-3-61 associated with response; interaction with rs6298 genotype |
Wang, Zhang, et al. [174] | MDD patients (Chinese, Han) | Escitalopram | 8 | HAMD-17 LES CTQ | 90 CpG sites in BDNF | Peripheral blood | Methylation at four BDNF amplicons associated with response (higher DNA methylation associated with better treatment response) |
Takeuchi et al. [190] | MDD patients (Japanese) | Paroxetine | 6 | HAM-D 21 change | Genome-wide DNA methylation | Peripheral blood | Methylation of PPFIA4 CpG cg00594917 and HS3ST1 CpG cg07260927 associated with response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhieb, D.; Bastaki, K. Pharmaco-Multiomics: A New Frontier in Precision Psychiatry. Int. J. Mol. Sci. 2025, 26, 1082. https://doi.org/10.3390/ijms26031082
Dhieb D, Bastaki K. Pharmaco-Multiomics: A New Frontier in Precision Psychiatry. International Journal of Molecular Sciences. 2025; 26(3):1082. https://doi.org/10.3390/ijms26031082
Chicago/Turabian StyleDhieb, Dhoha, and Kholoud Bastaki. 2025. "Pharmaco-Multiomics: A New Frontier in Precision Psychiatry" International Journal of Molecular Sciences 26, no. 3: 1082. https://doi.org/10.3390/ijms26031082
APA StyleDhieb, D., & Bastaki, K. (2025). Pharmaco-Multiomics: A New Frontier in Precision Psychiatry. International Journal of Molecular Sciences, 26(3), 1082. https://doi.org/10.3390/ijms26031082