Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells
Abstract
:1. Introduction
2. Results
2.1. Concentration-Dependent Mub-D Effect on hDPSC and hBMSC Viability
2.2. Mub-D Effect on hDPSC and hBMSC Proliferation
2.3. Osteogenic/Odontogenic Effect of Mub-D in hDPSCs and hBMSCs
2.4. Effect of Mub-D on Gene Expression in hDPSCs and hBMSCs
3. Discussion
4. Materials and Methods
4.1. Collection and Culture of Cells
4.2. Mutanobactin-D Synthesis and Use
4.3. Cell Viability
4.4. Cell Proliferation Analyses
4.5. Cell Differentiation Assays
4.6. Mineralisation Assessed via Alizarin Red Staining
4.7. RNA Extraction, Reverse Transcription, and Quantitative Real-Time PCR (qRT-PCR)
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abusleme, L.; Dupuy, A.K.; Dutzan, N.; Silva, N.; Burleson, J.A.; Strausbaugh, L.D.; Gamonal, J.; Diaz, P.I. The Subgingival Microbiome in Health and Periodontitis and Its Relationship with Community Biomass and Inflammation. ISME J. 2013, 7, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.L.; Mark Welch, J.L.; Kauffman, K.M.; McLean, J.S.; He, X. The Oral Microbiome: Diversity, Biogeography and Human Health. Nat. Rev. Microbiol. 2024, 22, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, P.; Chen, S.; Duan, H.; Xie, L. Microbiota and Gut Health: Promising Prospects for Clinical Trials from Bench to Bedside. Adv. Gut Microbiome Res. 2022, 2022, 2290052. [Google Scholar] [CrossRef]
- Nath, S.; Sethi, S.; Bastos, J.L.; Constante, H.M.; Mejia, G.; Haag, D.; Kapellas, K.; Jamieson, L. The Global Prevalence and Severity of Dental Caries among Racially Minoritized Children: A Systematic Review and Meta-Analysis. Caries Res. 2023, 57, 485–508. [Google Scholar] [CrossRef]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental Caries. Nat. Rev. Dis. Primers 2017, 3, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.E.; Yasmin, S.O.; Wolfrum, S.; Carreira, E.M. Total Synthesis of Mutanobactins A, B from the Human Microbiome: Macrocyclization and Thiazepanone Assembly in a Single Step. Angew. Chem. Int. Ed. 2022, 61, e202203051. [Google Scholar] [CrossRef]
- Pultar, F.; Hansen, M.E.; Wolfrum, S.; Böselt, L.; Fróis-Martins, R.; Bloch, S.; Kravina, A.G.; Pehlivanoglu, D.; Schäffer, C.; LeibundGut-Landmann, S.; et al. Mutanobactin D from the Human Microbiome: Total Synthesis, Configurational Assignment, and Biological Evaluation. J. Am. Chem. Soc. 2021, 143, 10389–10402. [Google Scholar] [CrossRef] [PubMed]
- Joyner, P.M.; Liu, J.; Zhang, Z.; Merritt, J.; Qi, F.; Cichewicz, R.H. Mutanobactin A from the Human Oral Pathogen Streptococcus Mutans Is a Cross-Kingdom Regulator of the Yeast-Mycelium Transition. Org. Biomol. Chem. 2010, 8, 5486–5489. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, L.; You, J.; King, J.B.; Cichewicz, R.H. Fungal Biofilm Inhibitors from a Human Oral Microbiome-Derived Bacterium. Org. Biomol. Chem. 2012, 10, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Zvanych, R.; Lukenda, N.; Li, X.; Kim, J.J.; Tharmarajah, S.; Magarvey, N.A. Systems Biosynthesis of Secondary Metabolic Pathways within the Oral Human Microbiome Member Streptococcus Mutans. Mol. Biosyst. 2015, 11, 97–104. [Google Scholar] [CrossRef]
- Magloire, H.; Romeas, A.; Melin, M.; Couble, M.L.; Bleicher, F.; Farges, J.C. Molecular Regulation of Odontoblast Activity under Dentin Injury. Adv. Dent. Res. 2001, 15, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Mitsiadis, T.A.; Catón, J.; Pagella, P.; Orsini, G.; Jimenez-Rojo, L. Monitoring Notch Signaling-Associated Activation of Stem Cell Niches within Injured Dental Pulp. Front. Physiol. 2017, 8, 372. [Google Scholar] [CrossRef] [PubMed]
- Balic, A.; Perver, D.; Pagella, P.; Rehrauer, H.; Stadlinger, B.; Moor, A.E.; Vogel, V.; Mitsiadis, T.A. Extracellular Matrix Remodelling in Dental Pulp Tissue of Carious Human Teeth through the Prism of Single-Cell RNA Sequencing. Int. J. Oral. Sci. 2023, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Gao, J.; Yue, J.; Yan, W.; Fang, F.; Wu, B. Changes in Proliferation and Osteogenic Differentiation of Stem Cells from Deep Caries in Vitro. J. Endod. 2012, 38, 796–802. [Google Scholar] [CrossRef]
- Farges, J.-C.; Alliot-Licht, B.; Renard, E.; Ducret, M.; Gaudin, A.; Smith, A.J.; Cooper, P.R. Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediat. Inflamm. 2015, 2015, 230251. [Google Scholar] [CrossRef]
- Bjørndal, L. The Caries Process and Its Effect on the Pulp: The Science Is Changing and So Is Our Understanding. J. Endod. 2008, 34, S2–S5. [Google Scholar] [CrossRef]
- Pagella, P.; de Vargas Roditi, L.; Stadlinger, B.; Moor, A.E.; Mitsiadis, T.A. A Single-Cell Atlas of Human Teeth. iScience 2021, 24, 102405. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, L.; Wang, S.; Huang, B.; Jing, Y.; Su, J. Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Front. Cell Dev. Biol. 2021, 9, 787118. [Google Scholar] [CrossRef] [PubMed]
- Bianco, P.; Riminucci, M.; Gronthos, S.; Robey, P.G. Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications. Stem Cells 2001, 19, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Bugueno, I.M.; Alastra, G.; Balic, A.; Stadlinger, B.; Mitsiadis, T.A. Limited Adipogenic Differentiation Potential of Human Dental Pulp Stem Cells Compared to Human Bone Marrow Stem Cells. Int. J. Mol. Sci. 2024, 25, 11105. [Google Scholar] [CrossRef]
- Huang, G.-J.; Gronthos, S.; Shi, S. Mesenchymal Stem Cells Derived from Dental Tissues vs. Those from Other Sources: Their Biology and Role in Regenerative Medicine. J. Dent. Res. 2009, 88, 792. [Google Scholar] [CrossRef] [PubMed]
- Pagella, P.; Miran, S.; Neto, E.; Martin, I.; Lamghari, M.; Mitsiadis, T.A. Human Dental Pulp Stem Cells Exhibit Enhanced Properties in Comparison to Human Bone Marrow Stem Cells on Neurites Outgrowth. FASEB J. 2020, 34, 5499–5511. [Google Scholar] [CrossRef] [PubMed]
- Gholami Farashah, M.S.; Mohammadi, A.; Javadi, M.; Soleimani Rad, J.; Shakouri, S.K.; Meshgi, S.; Roshangar, L. Bone Marrow Mesenchymal Stem Cells’ Osteogenic Potential: Superiority or Non-Superiority to Other Sources of Mesenchymal Stem Cells? Cell Tissue Bank. 2023, 24, 663–681. [Google Scholar] [CrossRef] [PubMed]
- Kunimatsu, R.; Nakajima, K.; Awada, T.; Tsuka, Y.; Abe, T.; Ando, K.; Hiraki, T.; Kimura, A.; Tanimoto, K. Comparative Characterization of Stem Cells from Human Exfoliated Deciduous Teeth, Dental Pulp, and Bone Marrow-Derived Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2018, 501, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem Cell Properties of Human Dental Pulp Stem Cells. J. Dent. Res. 2002, 81, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Aghajani, F.; Hooshmand, T.; Khanmohammadi, M.; Khanjani, S.; Edalatkhah, H.; Zarnani, A.-H.; Kazemnejad, S. Comparative Immunophenotypic Characteristics, Proliferative Features, and Osteogenic Differentiation of Stem Cells Isolated from Human Permanent and Deciduous Teeth with Bone Marrow. Mol. Biotechnol. 2016, 58, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Al Madhoun, A.; Sindhu, S.; Haddad, D.; Atari, M.; Ahmad, R.; Al-Mulla, F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front. Cell Dev. Biol. 2021, 9, 717624. [Google Scholar] [CrossRef]
- Mazzoni, E.; Mazziotta, C.; Iaquinta, M.R.; Lanzillotti, C.; Fortini, F.; D’Agostino, A.; Trevisiol, L.; Nocini, R.; Barbanti-Brodano, G.; Mescola, A.; et al. Enhanced Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by a Hybrid Hydroxylapatite/Collagen Scaffold. Front. Cell Dev. Biol. 2021, 8, 610570. [Google Scholar] [CrossRef]
- Bermúdez, M.; Hoz, L.; Montoya, G.; Nidome, M.; Pérez-Soria, A.; Romo, E.; Soto-Barreras, U.; Garnica-Palazuelos, J.; Aguilar-Medina, M.; Ramos-Payán, R.; et al. Bioactive Synthetic Peptides for Oral Tissues Regeneration. Front. Mater. 2021, 8, 655495. [Google Scholar] [CrossRef]
- Dissanayaka, W.L.; Hargreaves, K.M.; Jin, L.; Samaranayake, L.P.; Zhang, C. The Interplay of Dental Pulp Stem Cells and Endothelial Cells in an Injectable Peptide Hydrogel on Angiogenesis and Pulp Regeneration in Vivo. Tissue Eng. Part. A 2015, 21, 550–563. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ Regen. Med. 2019, 4, 1–15. [Google Scholar] [CrossRef]
- Iohara, K.; Murakami, M.; Takeuchi, N.; Osako, Y.; Ito, M.; Ishizaka, R.; Utunomiya, S.; Nakamura, H.; Matsushita, K.; Nakashima, M. A Novel Combinatorial Therapy with Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration. Stem Cells Transl. Med. 2013, 2, 521–533. [Google Scholar] [CrossRef]
- Braut, A.; Kollar, E.J.; Mina, M. Analysis of the Odontogenic and Osteogenic Potentials of Dental Pulp in Vivo Using a Col1a1-2.3-GFP Transgene. Int. J. Dev. Biol. 2003, 47, 281–292. [Google Scholar] [PubMed]
- Moraes, D.A.; Sibov, T.T.; Pavon, L.F.; Alvim, P.Q.; Bonadio, R.S.; Da Silva, J.R.; Pic-Taylor, A.; Toledo, O.A.; Marti, L.C.; Azevedo, R.B.; et al. A Reduction in CD90 (THY-1) Expression Results in Increased Differentiation of Mesenchymal Stromal Cells. Stem Cell Res. Ther. 2016, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Jin, Y. Role of Oct4 in Maintaining and Regaining Stem Cell Pluripotency. Stem Cell Res. Ther. 2010, 1, 39. [Google Scholar] [CrossRef]
- Kotova, A.V.; Lobov, A.A.; Dombrovskaya, J.A.; Sannikova, V.Y.; Ryumina, N.A.; Klausen, P.; Shavarda, A.L.; Malashicheva, A.B.; Enukashvily, N.I. Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, Osteogenic Differentiation and Proteome. Biomedicines 2021, 9, 1606. [Google Scholar] [CrossRef]
- Wang, J.; Su, W.; Zhang, T.; Zhang, S.; Lei, H.; Ma, F.; Shi, M.; Shi, W.; Xie, X.; Di, C. Aberrant Cyclin D1 Splicing in Cancer: From Molecular Mechanism to Therapeutic Modulation. Cell Death Dis. 2023, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Regulation of Osteoblast Differentiation by Runx2. Adv. Exp. Med. Biol. 2010, 658, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Zhang, J.; Feng, X.; Wu, S.; Huang, D.; Hu, J.; Zhu, S.; Song, D. Runx2 Modified Dental Pulp Stem Cells (DPSCs) Enhance New Bone Formation during Rapid Distraction Osteogenesis (DO). Differentiation 2016, 92, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, S.; Lovisa, S.; Ambrose, C.G.; McAndrews, K.M.; Sugimoto, H.; Kalluri, R. Type-I Collagen Produced by Distinct Fibroblast Lineages Reveals Specific Function during Embryogenesis and Osteogenesis Imperfecta. Nat. Commun. 2021, 12, 7199. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; D’Souza, R.; Feng, J.Q. Dentin Matrix Protein 1 (DMP1): New and Important Roles for Biomineralization and Phosphate Homeostasis. J. Dent. Res. 2007, 86, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Jani, P.H.; Gibson, M.P.; Liu, C.; Zhang, H.; Wang, X.; Lu, Y.; Qin, C. Transgenic Expression of Dspp Partially Rescued the Long Bone Defects of Dmp1-Null Mice. Matrix Biol. 2016, 52–54, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Yamakoshi, Y. Dentin Sialophophoprotein (DSPP) and Dentin. J. Oral. Biosci. JAOB Jpn. Assoc. Oral. Biol. 2008, 50, 33. [Google Scholar] [CrossRef]
- Farshdousti Hagh, M.; Noruzinia, M.; Mortazavi, Y.; Soleimani, M.; Kaviani, S.; Abroun, S.; Dehghani Fard, A.; Mahmoodinia, M. Different Methylation Patterns of RUNX2, OSX, DLX5 and BSP in Osteoblastic Differentiation of Mesenchymal Stem Cells. Cell J. 2015, 17, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tang, W.; Li, Y.; Yang, F.; Dowd, D.R.; MacDonald, P.N. Osteoblast-Specific Transcription Factor Osterix Increases Vitamin D Receptor Gene Expression in Osteoblasts. PLoS ONE 2011, 6, e26504. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Naderi-Manesh, H.; Vali, H.; Baghaban Eslaminejad, M.; Azam Sayahpour, F.; Sheibani, S.; Faghihi, S. Contribution of Osteocalcin-Mimetic Peptide Enhances Osteogenic Activity and Extracellular Matrix Mineralization of Human Osteoblast-like Cells. Colloids Surf. B Biointerfaces 2019, 173, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Papagerakis, P.; Berdal, A.; Mesbah, M.; Peuchmaur, M.; Malaval, L.; Nydegger, J.; Simmer, J.; Macdougall, M. Investigation of Osteocalcin, Osteonectin, and Dentin Sialophosphoprotein in Developing Human Teeth. Bone 2002, 30, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Martin-Iglesias, S.; Milian, L.; Sancho-Tello, M.; Salvador-Clavell, R.; Martín de Llano, J.J.; Carda, C.; Mata, M. BMP-2 Enhances Osteogenic Differentiation of Human Adipose-Derived and Dental Pulp Stem Cells in 2D and 3D In Vitro Models. Stem Cells Int. 2022, 2022, 4910399. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Harris, M.A.; Cui, Y.; Mishina, Y.; Harris, S.E.; Gluhak-Heinrich, J. Bmp2 Is Required for Odontoblast Differentiation and Pulp Vasculogenesis. J. Dent. Res. 2012, 91, 58–64. [Google Scholar] [CrossRef]
- Mason, C.; Dunnill, P. A Brief Definition of Regenerative Medicine. Regen. Med. 2008, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cossu, G.; Birchall, M.; Brown, T.; De Coppi, P.; Culme-Seymour, E.; Gibbon, S.; Hitchcock, J.; Mason, C.; Montgomery, J.; Morris, S.; et al. Lancet Commission: Stem Cells and Regenerative Medicine. Lancet 2018, 391, 883–910. [Google Scholar] [CrossRef]
- Orsini, G.; Pagella, P.; Mitsiadis, T.A. Modern Trends in Dental Medicine: An Update for Internists. Am. J. Med. 2018, 131, 1425–1430. [Google Scholar] [CrossRef]
- Barry, F.P.; Murphy, J.M. Mesenchymal Stem Cells: Clinical Applications and Biological Characterization. Int. J. Biochem. Cell Biol. 2004, 36, 568–584. [Google Scholar] [CrossRef] [PubMed]
- Waters, S.L.; Schumacher, L.J.; El Haj, A.J. Regenerative Medicine Meets Mathematical Modelling: Developing Symbiotic Relationships. npj Regen. Med. 2021, 6, 24. [Google Scholar] [CrossRef]
- El Haj, A.J. Regenerative Medicine: “Are We There Yet?”. Tissue Eng. Part. A 2019, 25, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Touré, S.B.; Kleiderman, E.; Knoppers, B.M. Bridging Stem Cell Research and Medicine: A Learning Health System. Regen. Med. 2018, 13, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Gothard, D.; Smith, E.L.; Kanczler, J.M.; Rashidi, H.; Qutachi, O.; Henstock, J.; Rotherham, M.; El Haj, A.; Shakesheff, K.M.; Oreffo, R.O.C. Tissue Engineered Bone Using Select Growth Factors: A Comprehensive Review of Animal Studies and Clinical Translation Studies in Man. Eur. Cell Mater. 2014, 28, 166–207; discussion 207–208. [Google Scholar] [CrossRef] [PubMed]
- Mitsiadis, T.A.; Orsini, G.; Jimenez-Rojo, L. Stem Cell-Based Approaches in Dentistry. Eur. Cell Mater. 2015, 30, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Angelova Volponi, A.; Zaugg, L.K.; Neves, V.; Liu, Y.; Sharpe, P.T. Tooth Repair and Regeneration. Curr. Oral. Health Rep. 2018, 5, 295–303. [Google Scholar] [CrossRef]
- Iohara, K.; Zayed, M.; Takei, Y.; Watanabe, H.; Nakashima, M. Treatment of Pulpectomized Teeth With Trypsin Prior to Transplantation of Mobilized Dental Pulp Stem Cells Enhances Pulp Regeneration in Aged Dogs. Front. Bioeng. Biotechnol. 2020, 8, 983. [Google Scholar] [CrossRef] [PubMed]
- D’Aquino, R.; De Rosa, A.; Lanza, V.; Tirino, V.; Laino, L.; Graziano, A.; Desiderio, V.; Laino, G.; Papaccio, G. Human Mandible Bone Defect Repair by the Grafting of Dental Pulp Stem/Progenitor Cells and Collagen Sponge Biocomplexes. Eur. Cell Mater. 2009, 18, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Pagella, P.; Cordiale, A.; Marconi, G.D.; Trubiani, O.; Rasponi, M.; Mitsiadis, T.A. Bioengineered Tooth Emulation Systems for Regenerative and Pharmacological Purposes. Eur. Cell Mater. 2021, 41, 502–516. [Google Scholar] [CrossRef] [PubMed]
- Antony, D.; Sheth, P.; Swenson, A.; Smoller, C.; Maguire, K.; Grossberg, G. Recent Advances in Alzheimer’s Disease Therapy: Clinical Trials and Literature Review of Novel Enzyme Inhibitors Targeting Amyloid Precursor Protein. Expert. Opin. Pharmacother. 2024, 1–11, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, V.; Theis, T.; Johal, A.S.; Seth, A.; Gore, J.; Arsha, N.; Patel, M.; Hao, H.B.; Kurian, N.; Schachner, M. Application of Antibodies to Neuronally Expressed Nogo-A Increases Neuronal Survival and Neurite Outgrowth. Int. J. Mol. Sci. 2020, 21, 5417. [Google Scholar] [CrossRef]
- Wahl, A.S.; Omlor, W.; Rubio, J.C.; Chen, J.L.; Zheng, H.; Schröter, A.; Gullo, M.; Weinmann, O.; Kobayashi, K.; Helmchen, F.; et al. Neuronal Repair. Asynchronous Therapy Restores Motor Control by Rewiring of the Rat Corticospinal Tract after Stroke. Science 2014, 344, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Yang, A.; Yang, J.; Zhang, S.; Xing, Z.; Wang, X.; Mei, W.; Jiang, C.; Lin, J.; Wu, X.; et al. Sintilimab (Anti-PD-1 Antibody) Combined with High-Dose Methotrexate, Temozolomide, and Rituximab (Anti-CD20 Antibody) in Primary Central Nervous System Lymphoma: A Phase 2 Study. Signal Transduct. Target. Ther. 2024, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Wang, J.S.; Pronk, L.; Muskens, B.; Teufel, M.; Bashir, B.; Burris, H. A Phase I Dose Escalation Study of the LRP5 Antagonist BI 905681 in Patients with Advanced and Metastatic Solid Tumors. ESMO Open 2024, 9, 103730. [Google Scholar] [CrossRef]
- Liu, B.; Wu, J.; Sun, X.; Meng, Q.; Zhang, J. Sustained Delivery of Osteogenic Growth Peptide through Injectable Photoinitiated Composite Hydrogel for Osteogenesis. Front. Bioeng. Biotechnol. 2023, 11, 1228250. [Google Scholar] [CrossRef] [PubMed]
- Haugen, H.J.; Lyngstadaas, S.P.; Rossi, F.; Perale, G. Bone Grafts: Which Is the Ideal Biomaterial? J. Clin. Periodontol. 2019, 46 (Suppl. 21), 92–102. [Google Scholar] [CrossRef] [PubMed]
- Iline-Vul, T.; Adiram-Filiba, N.; Matlahov, I.; Geiger, Y.; Abayev, M.; Keinan-Adamsky, K.; Akbey, U.; Oschkinat, H.; Goobes, G. Understanding the Roles of Functional Peptides in Designing Apatite and Silica Nanomaterials Biomimetically Using NMR Techniques. Curr. Opin. Colloid. Interface Sci. 2018, 33, 44–52. [Google Scholar] [CrossRef]
- Alkilzy, M.; Tarabaih, A.; Santamaria, R.M.; Splieth, C.H. Self-Assembling Peptide P11-4 and Fluoride for Regenerating Enamel. J. Dent. Res. 2018, 97, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xu, C.; Shi, H.; Cheng, Q. PTH1-34 Improves Bone Healing by Promoting Angiogenesis and Facilitating MSCs Migration and Differentiation in a Stabilized Fracture Mouse Model. PLoS ONE 2019, 14, e0226163. [Google Scholar] [CrossRef]
- Sharon, J.L.; Puleo, D.A. The Use of N-Terminal Immobilization of Pth(1-34) on Plga to Enhance Bioactivity. Biomaterials 2008, 29, 3137–3142. [Google Scholar] [CrossRef]
- Hahn, J. 8-Year Onlay Bone Graft and Ridge Augmentation with PepGen P-15: A Clinical and Radiographic Case Study. Implant. Dent. 2004, 13, 228–231. [Google Scholar] [CrossRef]
- Cheng, C.T.; Vyas, P.S.; McClain, E.J.; Hoelen, T.-C.A.; Arts, J.J.C.; McLaughlin, C.; Altman, D.T.; Yu, A.K.; Cheng, B.C. The Osteogenic Peptide P-15 for Bone Regeneration: A Narrative Review of the Evidence for a Mechanism of Action. Bioengineering 2024, 11, 599. [Google Scholar] [CrossRef]
- Goyal, J.; Sachdeva, S.; Salaria, S.K.; Vakil, N.; Mittal, A. Comparative Assessment of Periodontal Regeneration in Periodontal Intraosseous Defects Treated with PepGen P-15 Unaided or in Blend with Platelet-Rich Fibrin: A Clinical and High-Resolution Computed Tomography Scan-Assisted Volumetric Analysis. J. Indian. Soc. Periodontol. 2020, 24, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Mitsiadis, T.A.; Graf, D. Cell Fate Determination during Tooth Development and Regeneration. Birth Defects Res. C Embryo Today 2009, 87, 199–211. [Google Scholar] [CrossRef]
- Mitsiadis, T.A.; Rahiotis, C. Parallels between Tooth Development and Repair: Conserved Molecular Mechanisms Following Carious and Dental Injury. J. Dent. Res. 2004, 83, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Tziafas, D.; Smith, A.J.; Lesot, H. Designing New Treatment Strategies in Vital Pulp Therapy. J. Dent. 2000, 28, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Bluteau, G.; Luder, H.U.; De Bari, C.; Mitsiadis, T.A. Stem Cells for Tooth Engineering. Eur. Cell Mater. 2008, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Catón, J.; Bostanci, N.; Remboutsika, E.; De Bari, C.; Mitsiadis, T.A. Future Dentistry: Cell Therapy Meets Tooth and Periodontal Repair and Regeneration. J. Cell Mol. Med. 2011, 15, 1054–1065. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal Human Dental Pulp Stem Cells (DPSCs) in Vitro and in Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [PubMed]
- Mitsiadis, T.A.; Feki, A.; Papaccio, G.; Catón, J. Dental Pulp Stem Cells, Niches, and Notch Signaling in Tooth Injury. Adv. Dent. Res. 2011, 23, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Monterubbianesi, R.; Bencun, M.; Pagella, P.; Woloszyk, A.; Orsini, G.; Mitsiadis, T.A. A Comparative in Vitro Study of the Osteogenic and Adipogenic Potential of Human Dental Pulp Stem Cells, Gingival Fibroblasts and Foreskin Fibroblasts. Sci. Rep. 2019, 9, 1761. [Google Scholar] [CrossRef]
- Lai, C.F.; Shen, J.; Balic, A.; Pagella, P.; Schwab, M.E.; Mitsiadis, T.A. Nogo-A Regulates the Fate of Human Dental Pulp Stem Cells toward Osteogenic, Adipogenic, and Neurogenic Differentiation. Cells 2022, 11, 3415. [Google Scholar] [CrossRef] [PubMed]
- Pagella, P.; Neto, E.; Lamghari, M.; Mitsiadis, T.A. Investigation of Orofacial Stem Cell Niches and Their Innervation through Microfluidic Devices. Eur. Cell Mater. 2015, 29, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Pagella, P.; de Vargas Roditi, L.; Stadlinger, B.; Moor, A.E.; Mitsiadis, T.A. Notch Signaling in the Dynamics of Perivascular Stem Cells and Their Niches. Stem Cells Transl. Med. 2021, 10, 1433–1445. [Google Scholar] [CrossRef] [PubMed]
- Pagella, P.; Nombela-Arrieta, C.; Mitsiadis, T.A. Distinct Expression Patterns of Cxcl12 in Mesenchymal Stem Cell Niches of Intact and Injured Rodent Teeth. Int. J. Mol. Sci. 2021, 22, 3024. [Google Scholar] [CrossRef]
- Chen, J.; Lan, Y.; Baek, J.-A.; Gao, Y.; Jiang, R. Wnt/Beta-Catenin Signaling Plays an Essential Role in Activation of Odontogenic Mesenchyme during Early Tooth Development. Dev. Biol. 2009, 334, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Rolando, C.; Parolisi, R.; Boda, E.; Schwab, M.E.; Rossi, F.; Buffo, A. Distinct Roles of Nogo-A and Nogo Receptor 1 in the Homeostatic Regulation of Adult Neural Stem Cell Function and Neuroblast Migration. J. Neurosci. 2012, 32, 17788–17799. [Google Scholar] [CrossRef] [PubMed]
- Dontu, G.; Jackson, K.W.; McNicholas, E.; Kawamura, M.J.; Abdallah, W.M.; Wicha, M.S. Role of Notch Signaling in Cell-Fate Determination of Human Mammary Stem/Progenitor Cells. Breast Cancer Res. 2004, 6, R605–R615. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, L.; Zheng, Y.; Yuan, G.; Yang, G.; He, F.; Chen, Y. BMP Activity Is Required for Tooth Development from the Lamina to Bud Stage. J. Dent. Res. 2012, 91, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Song, J.; Zhang, H.; Huang, E.; Song, D.; Tollemar, V.; Wang, J.; Wang, J.; Mohammed, M.; Wei, Q.; et al. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering. Genes. Dis. 2016, 3, 263–276. [Google Scholar] [CrossRef]
- Kornsuthisopon, C.; Photichailert, S.; Nowwarote, N.; Tompkins, K.A.; Osathanon, T. Wnt Signaling in Dental Pulp Homeostasis and Dentin Regeneration. Arch. Oral. Biol. 2022, 134, 105322. [Google Scholar] [CrossRef] [PubMed]
- Téclès, O.; Laurent, P.; Zygouritsas, S.; Burger, A.-S.; Camps, J.; Dejou, J.; About, I. Activation of Human Dental Pulp Progenitor/Stem Cells in Response to Odontoblast Injury. Arch. Oral. Biol. 2005, 50, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Mitsiadis, T.A.; Roméas, A.; Lendahl, U.; Sharpe, P.T.; Farges, J.C. Notch2 Protein Distribution in Human Teeth under Normal and Pathological Conditions. Exp. Cell Res. 2003, 282, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Walboomers, X.F.; Van Kuppevelt, T.H.; Daamen, W.F.; Van Damme, P.A.; Bian, Z.; Jansen, J.A. In Vivo Evaluation of Human Dental Pulp Stem Cells Differentiated towards Multiple Lineages. J. Tissue Eng. Regen. Med. 2008, 2, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Ducret, M.; Fabre, H.; Degoul, O.; Atzeni, G.; McGuckin, C.; Forraz, N.; Mallein-Gerin, F.; Perrier-Groult, E.; Alliot-Licht, B.; Farges, J.-C. Immunophenotyping Reveals the Diversity of Human Dental Pulp Mesenchymal Stromal Cells In Vivo and Their Evolution upon In Vitro Amplification. Front. Physiol. 2016, 7, 512. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Nör, J.E. The Perivascular Niche and Self-Renewal of Stem Cells. Front. Physiol. 2015, 6, 367. [Google Scholar] [CrossRef] [PubMed]
- Gomathi, K.; Akshaya, N.; Srinaath, N.; Moorthi, A.; Selvamurugan, N. Regulation of Runx2 by Post-Translational Modifications in Osteoblast Differentiation. Life Sci. 2020, 245, 117389. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, Y.; Osimiri, L.; Zhang, C. Osteoblast-Specific Transcription Factor Osterix (Osx) Is an Upstream Regulator of Satb2 during Bone Formation. J. Biol. Chem. 2011, 286, 32995–33002. [Google Scholar] [CrossRef]
- Eslaminejad, M.B.; Bordbar, S.; Nazarian, H. Odontogenic Differentiation of Dental Pulp-Derived Stem Cells on Tricalcium Phosphate Scaffolds. J. Dent. Sci. 2013, 8, 306–313. [Google Scholar] [CrossRef]
- Chen, S.; Rani, S.; Wu, Y.; Unterbrink, A.; Gu, T.T.; Gluhak-Heinrich, J.; Chuang, H.-H.; MacDougall, M. Differential Regulation of Dentin Sialophosphoprotein Expression by Runx2 during Odontoblast Cytodifferentiation*. J. Biol. Chem. 2005, 280, 29717–29727. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, S.; Xie, Y.; Pi, Y.; Feng, J.Q. Differential Regulation of Dentin Matrix Protein 1 Expression during Odontogenesis. Cells Tissues Organs 2005, 181, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Siew Ching, H.; Thirumulu Ponnuraj, K.; Luddin, N.; Ab Rahman, I.; Nik Abdul Ghani, N.R. Early Odontogenic Differentiation of Dental Pulp Stem Cells Treated with Nanohydroxyapatite–Silica–Glass Ionomer Cement. Polymers 2020, 12, 2125. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, J.; Li, C.; Yu, Y. Role of Bone Morphogenetic Protein-2 in Osteogenic Differentiation of Mesenchymal Stem Cells. Mol. Med. Rep. 2015, 12, 4230–4237. [Google Scholar] [CrossRef] [PubMed]
- Franca, C.M.; de Souza Balbinot, G.; Cunha, D.; Saboia, V.D.P.A.; Ferracane, J.; Bertassoni, L.E. In-Vitro Models of Biocompatibility Testing for Restorative Dental Materials: From 2D Cultures to Organs on-a-Chip. Acta Biomater. 2022, 150, 58–66. [Google Scholar] [CrossRef]
- Fontoura, J.C.; Viezzer, C.; Dos Santos, F.G.; Ligabue, R.A.; Weinlich, R.; Puga, R.D.; Antonow, D.; Severino, P.; Bonorino, C. Comparison of 2D and 3D Cell Culture Models for Cell Growth, Gene Expression and Drug Resistance. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110264. [Google Scholar] [CrossRef]
- Huang, C.; Sanaei, F.; Verdurmen, W.P.R.; Yang, F.; Ji, W.; Walboomers, X.F. The Application of Organs-on-a-Chip in Dental, Oral, and Craniofacial Research. J. Dent. Res. 2023, 102, 364–375. [Google Scholar] [CrossRef]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016, 2016, pdb.prot087379. [Google Scholar] [CrossRef] [PubMed]
- Crane, A.M.; Bhattacharya, S.K. The Use of Bromodeoxyuridine Incorporation Assays to Assess Corneal Stem Cell Proliferation. Methods Mol. Biol. 2013, 1014, 65–70. [Google Scholar] [CrossRef]
Gene | Accession No. | Forward Primer 5′-3′ | Reverse Primer 3′-5′ |
---|---|---|---|
GAPDH | NM_002046.5 | AGGGCTGCTTTTAACTCTGGT | CCCCACTTGATTTTGGAGGGA |
BMP2 | NM_001200.2 | ATGGATTCGTGGTGGAAGTG | GTGGAGTTCAGATGATCAGC |
CCDN1 | NM_053056.3 | GCTGCGAAGTGGAAACCATC | CCTCCTTCTGCACACATTTGAA |
CD90 | NM_006288.3 | GAAGGTCCTCTACTTATCCGCC | TGATGCCCTCACACTTGACCAG |
COL1A1 | NM_000088.1 | GATTCCCTGGACCTAAAGGTGC | AGCCTCTCCATCTTTGCCAGCA |
DSPP | NM_014208.3 | GCATCCAGGGACCAAGTAAGCA | CTTGGACAACAGCGACATCCT |
OCT4 | NM_001285986.2 | CTTTCTCAGGGGGACCAGTG | GGGACCGAGGAGTACAGTGC |
RUNX2 | NG_008020.1 | GCCAGGGTCTAGGAGTTGTT | ACCCACCACCCTATTTCCTG |
OSX | NM_152860.1 | CCTCTGCGGGACTCAACAAC | AGCCCATTAGTGCTTGTAAAGG |
DMP-1 | NM_004407.1 | GAGCAGTGAGTCATCAGAAGGC | GAGAAGCCACCAGCTAGCCTAT |
OCN | NM_199173 | CGCTACCTGTATCAATGGCTGG | CTCCTGAAAGCCGATGTGGTCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolic, S.; Alastra, G.; Pultar, F.; Lüthy, L.; Stadlinger, B.; Carreira, E.M.; Bugueno, I.M.; Mitsiadis, T.A. Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells. Int. J. Mol. Sci. 2025, 26, 1144. https://doi.org/10.3390/ijms26031144
Nikolic S, Alastra G, Pultar F, Lüthy L, Stadlinger B, Carreira EM, Bugueno IM, Mitsiadis TA. Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells. International Journal of Molecular Sciences. 2025; 26(3):1144. https://doi.org/10.3390/ijms26031144
Chicago/Turabian StyleNikolic, Sandra, Giuseppe Alastra, Felix Pultar, Lukas Lüthy, Bernd Stadlinger, Erick M. Carreira, Isaac Maximiliano Bugueno, and Thimios A. Mitsiadis. 2025. "Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells" International Journal of Molecular Sciences 26, no. 3: 1144. https://doi.org/10.3390/ijms26031144
APA StyleNikolic, S., Alastra, G., Pultar, F., Lüthy, L., Stadlinger, B., Carreira, E. M., Bugueno, I. M., & Mitsiadis, T. A. (2025). Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells. International Journal of Molecular Sciences, 26(3), 1144. https://doi.org/10.3390/ijms26031144