An Oxymetazoline-Based Nasal Solution Removes Bacteria–Blood Debris on Dental Surfaces and Has Antimicrobial Activity Toward Streptococcus mutans
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α-1 | alpha-1 |
ABAC | alkylbenzyldimethylammonium chlorides |
BHI | brain heart infusion |
BKC | benzalkonium chloride |
CV | crystal violet |
DI | Distilled |
EDTA | edetate disodium |
FS | ferric sulfate |
NS-OXY | nasal solution containing OXY |
OD | optical density |
OTC | over-the-counter |
OXY | oxymetazoline (XYL) |
PCR | polymerase chain reaction |
SB | sheep’s blood |
XYL | Xylometazoline |
ZOI | zone of inhibition |
References
- Higgins, T.S.; Hwang, P.H.; Kingdom, T.T.; Orlandi, R.R.; Stammberger, H.; Han, J.K. Systematic Review of Topical Vasoconstrictors in Endoscopic Sinus Surgery. Laryngoscope 2011, 121, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Deckx, L.; De Sutter, A.I.; Guo, L.; Mir, N.A.; van Driel, M.L. Nasal Decongestants in Monotherapy for the Common Cold. Cochrane. Database. Syst. Rev. 2016, 10, CD009612. [Google Scholar] [CrossRef] [PubMed]
- Cartabuke, R.S.; Anderson, B.J.; Elmaraghy, C.; Rice, J.; Tumin, D.; Tobias, J.D. Hemodynamic and Pharmacokinetic Analysis of Oxymetazoline Use during Nasal Surgery in Children. Laryngoscope 2019, 129, 2775–2781. [Google Scholar] [CrossRef] [PubMed]
- Ciancio, S.G.; Hutcheson, M.C.; Ayoub, F.; Pantera, E.A.J.; Pantera, C.T.; Garlapo, D.A.; Sobieraj, B.D.; Almubarak, S.A. Safety and Efficacy of a Novel Nasal Spray for Maxillary Dental Anesthesia. J. Dent. Res. 2013, 92, 43S–48S. [Google Scholar] [CrossRef]
- Nowakowska, D.; Saczko, J.; Szewczyk, A.; Michel, O.; Ziętek, M.; Weżgowiec, J.; Więckiewicz, W.; Kulbacka, M. In Vitro Effects of Vasoconstrictive Retraction Agents on Primary Human Gingival Fibroblasts. Exp. Ther. Med. 2020, 19, 2037–2044. [Google Scholar] [CrossRef]
- Jones, R.S. Conceptual Model for Using Imidazoline Derivative Solutions in Pulpal Management. J. Clin. Med. 2021, 10, 1212. [Google Scholar] [CrossRef]
- Chou, A.-K.; Chiu, C.-C.; Zhu, G.-C.; Wang, J.-J.; Chen, Y.-W.; Hung, C.-H. Naphazoline and Oxymetazoline Are Superior to Epinephrine in Enhancing the Cutaneous Analgesia of Lidocaine in Rats. Fundam. Clin. Pharmacol. 2023, 37, 296–304. [Google Scholar] [CrossRef]
- Olgart, L. Neural Control of Pulpal Blood Flow. Crit. Rev. Oral. Biol. Med. 1996, 7, 159–171. [Google Scholar] [CrossRef]
- Edwall, L.; Kindlová, M. The Effect of Sympathetic Nerve Stimulation on the Rate of Disappearance of Tracers from Various Oral Tissues. Acta. Odontol. Scand. 1971, 29, 387–400. [Google Scholar] [CrossRef]
- Graf, P.; Juto, J.E. Decongestion Effect and Rebound Swelling of the Nasal Mucosa during 4-Week Use of Oxymetazoline. ORL J. Otorhinolaryngol. Relat. Spec. 1994, 56, 157–160. [Google Scholar] [CrossRef]
- Minyan, W.; Dunn, W.R.; Blaylock, N.A.; Chan, S.L.; Wilson, V.G. Evidence for a Non-Adrenoceptor, Imidazoline-Mediated Contractile Response to Oxymetazoline in the Porcine Isolated Rectal Artery. Br. J. Pharmacol. 2001, 132, 1359–1363. [Google Scholar] [CrossRef] [PubMed]
- Cartabuke, R.; Tobias, J.D.; Jatana, K.R. Topical Nasal Decongestant Oxymetazoline: Safety Considerations for Perioperative Pediatric Use. Pediatrics 2021, 148, e2021054271. [Google Scholar] [CrossRef] [PubMed]
- Schröder, U. Effect of an Extra-Pulpal Blood Clot on Healing Following Experimental Pulpotomy and Capping with Calcium Hydroxide. Odontol. Revy 1973, 24, 257–268. [Google Scholar] [PubMed]
- Hørsted, P.; El Attar, K.; Langeland, K. Capping of Monkey Pulps with Dycal and a Ca-Eugenol Cement. Oral. Surg. Oral. Med. Oral. Pathol. 1981, 52, 531–553. [Google Scholar] [CrossRef]
- Sonmez, D.; Duruturk, L. Success Rate of Calcium Hydroxide Pulpotomy in Primary Molars Restored with Amalgam and Stainless Steel Crowns. Br. Dent. J. 2010, 208, E18. [Google Scholar] [CrossRef]
- Caicedo, R.; Abbott, P.; Alongi, D.; Alarcon, M. Clinical, Radiographic and Histological Analysis of the Effects of Mineral Trioxide Aggregate Used in Direct Pulp Capping and Pulpotomies of Primary Teeth. Aust. Dent. J. 2006, 51, 297–305. [Google Scholar] [CrossRef]
- Pinto, K.P.; Barbosa, A.F.A.; Silva, E.J.N.L.; Santos, A.P.P.; Sassone, L.M. What Is the Microbial Profile in Persistent Endodontic Infections? A Scoping Review. J. Endod. 2023, 49, 786–798.e7. [Google Scholar] [CrossRef]
- Lima, A.R.; Herrera, D.R.; Francisco, P.A.; Pereira, A.C.; Lemos, J.; Abranches, J.; Gomes, B.P.F.A. Detection of Streptococcus Mutans in Symptomatic and Asymptomatic Infected Root Canals. Clin. Oral. Investig. 2021, 25, 3535–3542. [Google Scholar] [CrossRef]
- Maisonneuve, E.; Chevrier, J.; Dubus, M.; Varin, J.; Sergheraert, J.; Gangloff, S.C.; Reffuveille, F.; Mauprivez, C.; Kerdjoudj, H. Infection of Human Dental Pulp Stromal Cells by Streptococcus Mutans: Shedding Light on Bacteria Pathogenicity and Pulp Inflammation. Front. Cell Dev. Biol. 2020, 8, 785. [Google Scholar] [CrossRef]
- Inenaga, C.; Hokamura, K.; Nakano, K.; Nomura, R.; Naka, S.; Ohashi, T.; Ooshima, T.; Kuriyama, N.; Hamasaki, T.; Wada, K.; et al. A Potential New Risk Factor for Stroke: Streptococcus Mutans With Collagen-Binding Protein. World Neurosurg. 2018, 113, e77–e81. [Google Scholar] [CrossRef]
- Nomura, R.; Matayoshi, S.; Otsugu, M.; Kitamura, T.; Teramoto, N.; Nakano, K. Contribution of Severe Dental Caries Induced by Streptococcus Mutans to the Pathogenicity of Infective Endocarditis. Infect. Immun. 2020, 88, e00897-19. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.M.; Cavill, R.H. Electron Microscope Study of Effect of Benzalkonium Chloride and Edetate Disodium on Cell Envelope of Pseudomonas Aeruginosa. J. Pharm. Sci. 1976, 65, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Tezvergil-Mutluay, A.; Mutluay, M.M.; Gu, L.; Zhang, K.; Agee, K.A.; Carvalho, R.M.; Manso, A.; Carrilho, M.; Tay, F.R.; Breschi, L.; et al. The Anti-MMP Activity of Benzalkonium Chloride. J. Dent. 2011, 39, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Alovisi, M.; Pasqualini, D.; Mandras, N.; Roana, J.; Costamagna, P.; Comba, A.; Cavalli, R.; Luganini, A.; Iandolo, A.; Cavallo, L.; et al. Confocal Laser Scanner Evaluation of Bactericidal Effect of Chitosan Nanodroplets Loaded with Benzalkonium Chloride. J. Clin. Med. 2022, 11, 1650. [Google Scholar] [CrossRef]
- Yamamoto, M.; Inokoshi, M.; Tamura, M.; Shimizubata, M.; Nozaki, K.; Takahashi, R.; Yoshihara, K.; Minakuchi, S. Development of 4-META/MMA-TBB Resin with Added Benzalkonium Chloride or Cetylpyridinium Chloride as Antimicrobial Restorative Materials for Root Caries. J. Mech. Behav. Biomed. Mater. 2021, 124, 104838. [Google Scholar] [CrossRef]
- Kurt, A.; Tüzüner, T.; Baygın, Ö. Antibacterial Characteristics of Glass Ionomer Cements Containing Antibacterial Agents: An in Vitro Study. Eur. Arch. Paediatr. Dent. 2020, 22, 49–56. [Google Scholar] [CrossRef]
- Torres-Garcia, M.L.; Llavore, L.D.; Bungay, A.; Sarol, J.D.J.; Pineda, R.R.; Peñas, K.D. Benzalkonium Chloride in an Orthodontic Adhesive: Its Effect on Rat Enamel Demineralization Using Color-Based Image Analysis. Am. J. Orthod. Dentofacial. Orthop. 2019, 155, 88–97. [Google Scholar] [CrossRef]
- Botelho, M.G. Fractional Inhibitory Concentration Index of Combinations of Antibacterial Agents against Cariogenic Organisms. J. Dent. 2000, 28, 565–570. [Google Scholar] [CrossRef]
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of Dental Caries in Primary and Permanent Teeth in Children and Young Adults. J. Clin. Microbiol. 2008, 46, 1407–1417. [Google Scholar] [CrossRef]
- Bandi, M.; Mallineni, S.K.; Nuvvula, S. Clinical Applications of Ferric Sulfate in Dentistry: A Narrative Review. J. Conserv. Dent. 2017, 20, 278–281. [Google Scholar]
- Smith, N.L.; Seale, N.S.; Nunn, M.E. Ferric Sulfate Pulpotomy in Primary Molars: A Retrospective Study. Pediatr. Dent. 2000, 22, 192–199. [Google Scholar] [PubMed]
- Vargas, K.G.; Packham, B. Radiographic Success of Ferric Sulfate and Formocresol Pulpotomies in Relation to Early Exfoliation. Pediatr. Dent. 2005, 27, 233–237. [Google Scholar] [PubMed]
- Aksoy, B.; Güngör, H.C.; Uysal, S.; Gonzales, C.D.; Ölmez, S. Ferric Sulfate Pulpotomy in Primary Teeth with Different Base Materials: A 2-Year Randomized Controlled Trial. Quintessence Int. 2022, 53, 782–789. [Google Scholar] [PubMed]
- Thrush, D.N. Cardiac Arrest after Oxymetazoline Nasal Spray. J. Clin. Anesth. 1995, 7, 512–514. [Google Scholar] [CrossRef]
- Ramesh, A.S.; Cartabuke, R.; Essig, G.; Tobias, J.D. Oxymetazoline-Induced Postoperative Hypertension. Pediatr. Anesth. Crit. Care. J. 2013, 1, 72–77. [Google Scholar]
- Latham, G.J.; Jardine, D.S. Oxymetazoline and Hypertensive Crisis in a Child: Can We Prevent It? Pediatr. Anesth. 2013, 23, 952–956. [Google Scholar] [CrossRef]
- Latham, G.J. In Reference to Hemodynamic and Pharmacokinetic Analysis of Oxymetazoline Use during Nasal Surgery in Children. Laryngoscope 2019, 129, E347. [Google Scholar] [CrossRef]
- Dokuyucu, R.; Gokce, H.; Sahan, M.; Sefil, F.; Tas, Z.A.; Tutuk, O.; Ozturk, A.; Tumer, C.; Cevik, C. Systemic Side Effects of Locally Used Oxymetazoline. Int. J. Clin. Exp. Med. 2015, 8, 2674–2678. [Google Scholar]
- Nordt, S.P.; Vivero, L.E.; Cantrell, F.L. Not Just a Drop in the Bucket-Inversion of Oxymetazoline Nasal Decongestant Container Increases Potential for Severe Pediatric Poisoning. J. Pediatr. 2016, 168, 240–241. [Google Scholar] [CrossRef]
- Pupo, Y.M.; Farago, P.V.; Nadal, J.M.; Esmerino, L.A.; Maluf, D.F.; Zawadzki, S.F.; Michél, M.D.; dos Santos, F.A.; Gomes, O.M.M.; Gomes, J.C. An Innovative Quaternary Ammonium Methacrylate Polymer Can Provide Improved Antimicrobial Properties for a Dental Adhesive System. J. Biomater. Sci. Polym. Ed. 2013, 24, 1443–1458. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.S.; Pride, M.A.; Kumar, D. An Oxymetazoline-Based Nasal Solution Removes Bacteria–Blood Debris on Dental Surfaces and Has Antimicrobial Activity Toward Streptococcus mutans. Int. J. Mol. Sci. 2025, 26, 1242. https://doi.org/10.3390/ijms26031242
Jones RS, Pride MA, Kumar D. An Oxymetazoline-Based Nasal Solution Removes Bacteria–Blood Debris on Dental Surfaces and Has Antimicrobial Activity Toward Streptococcus mutans. International Journal of Molecular Sciences. 2025; 26(3):1242. https://doi.org/10.3390/ijms26031242
Chicago/Turabian StyleJones, Robert S., Morgan Annina Pride, and Dhiraj Kumar. 2025. "An Oxymetazoline-Based Nasal Solution Removes Bacteria–Blood Debris on Dental Surfaces and Has Antimicrobial Activity Toward Streptococcus mutans" International Journal of Molecular Sciences 26, no. 3: 1242. https://doi.org/10.3390/ijms26031242
APA StyleJones, R. S., Pride, M. A., & Kumar, D. (2025). An Oxymetazoline-Based Nasal Solution Removes Bacteria–Blood Debris on Dental Surfaces and Has Antimicrobial Activity Toward Streptococcus mutans. International Journal of Molecular Sciences, 26(3), 1242. https://doi.org/10.3390/ijms26031242