Predicting Which Mitophagy Proteins Are Dysregulated in Spinocerebellar Ataxia Type 3 (SCA3) Using the Auto-p2docking Pipeline
Abstract
:1. Introduction
2. Results
2.1. The Auto-p2docking Pipeline
2.2. Mitophagy Pathway Proteins That Are Ataxin-3 Interactors
2.3. Ataxin-3 Interactors That Belong to the Mitophagy Pathway and Are Predicted to Have Different Binding Affinities with the WT and Expanded Forms
2.4. Predictions Regarding Mitophagy in SCA3/MJD
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bettencourt, C.; Lima, M. Machado-Joseph Disease: From first descriptions to new perspectives. Orphanet J. Rare Dis. 2011, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Laço, M.N.; Oliveira, C.R.; Paulson, H.L.; Rego, A.C. Compromised mitochondrial complex II in models of Machado–Joseph disease. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2011, 1822, 139–149. [Google Scholar] [CrossRef]
- Ruano, L.; Melo, C.; Silva, M.C.; Coutinho, P. The Global Epidemiology of Hereditary Ataxia and Spastic Paraplegia: A Systematic Review of Prevalence Studies. Neuroepidemiology 2014, 42, 174–183. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Okamoto, T.; Taniwaki, M.; Aizawa, M.; Inoue, M.; Katayama, S.; Kawakami, H.; Nakamura, S.; Nishimura, M.; Akiguchi, I.; et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 1994, 8, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Matos, C.A.; de Almeida, L.P.; Nóbrega, C. Machado–Joseph disease/spinocerebellar ataxia type 3: Lessons from disease pathogenesis and clues into therapy. J. Neurochem. 2018, 148, 8–28. [Google Scholar] [CrossRef] [PubMed]
- Totzeck, F.; Andrade-Navarro, M.A.; Mier, P. The Protein Structure Context of PolyQ Regions. PLoS ONE 2017, 12, e0170801. [Google Scholar] [CrossRef]
- Sousa e Silva, R.; Sousa, A.D.; Vieira, J.; Vieira, C.P. The Josephin domain (JD) containing proteins are predicted to bind to the same interactors: Implications for spinocerebellar ataxia type 3 (SCA3) studies using Drosophila melanogaster mutants. Front. Mol. Neurosci. 2023, 16, 1140719. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Vieira, J.; Vázquez, N.; López-Fernández, H.; Fdez-Riverola, F.; Reboiro-Jato, M.; Sousa, A.D.; Vieira, C.P. ATXN1 N-terminal region explains the binding differences of wild-type and expanded forms. BMC Med Genom. 2019, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Paulson, H.; Perez, M.; Trottier, Y.; Trojanowski, J.; Subramony, S.; Das, S.; Vig, P.; Mandel, J.-L.; Fischbeck, K.; Pittman, R. Intranuclear Inclusions of Expanded Polyglutamine Protein in Spinocerebellar Ataxia Type 3. Neuron 1997, 19, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Shao, J.; Miller, V.M.; Williams, A.; Paulson, H.L. Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 9310–9315. [Google Scholar] [CrossRef] [PubMed]
- Todd, T.W.; Lim, J. Aggregation formation in the polyglutamine diseases: Protection at a cost? Mol. Cells 2013, 36, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, C.; Nascimento-Ferreira, I.; Onofre, I.; Albuquerque, D.; Conceição, M.; Déglon, N.; de Almeida, L.P. Overexpression of Mutant Ataxin-3 in Mouse Cerebellum Induces Ataxia and Cerebellar Neuropathology. Cerebellum 2012, 12, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Trigo, D.; Avelar, C.; Fernandes, M.; Sá, J.; Silva, O.d.C.e. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett. 2022, 596, 1095–1110. [Google Scholar] [CrossRef]
- Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef]
- Monzio Compagnoni, G.; Di Fonzo, A.; Corti, S.; Comi, G.P.; Bresolin, N.; Masliah, E. The Role of Mitochondria in Neurodegenerative Diseases: The Lesson from Alzheimer’s Disease and Parkinson’s Disease. Mol. Neurobiol. 2020, 57, 2959–2980. [Google Scholar] [CrossRef]
- Morciano, G.; Patergnani, S.; Bonora, M.; Pedriali, G.; Tarocco, A.; Bouhamida, E.; Marchi, S.; Ancora, G.; Anania, G.; Wieckowski, M.R.; et al. Mitophagy in Cardiovascular Diseases. J. Clin. Med. 2020, 9, 892. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Pan, S.; Zhang, J.; Li, N.; Geng, Q. Mitophagy: A novel perspective for insighting into cancer and cancer treatment. Cell Prolif. 2022, 55, e13327. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Geng, Y.; Lin, Q. The role of mitophagy in metabolic diseases and its exercise intervention. Front. Physiol. 2024, 15, 1339128. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; Valtorta, M.; Tedeschi, G.; Galbusera, E.; Pastori, V.; Bigi, A.; Nonnis, S.; Grassi, E.; Fusi, P. Study of subcellular localization and proteolysis of ataxin-3. Neurobiol. Dis. 2008, 30, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.V.; Oppermann, F.S.; Rauen, M.J.; Fog, K.; Schmidt, T.; Schmidt, J.; Harmuth, T.; Hartmann-Petersen, R.; Thirstrup, K. Mass spectrometry analyses of normal and polyglutamine expanded ataxin-3 reveal novel interaction partners involved in mitochondrial function. Neurochem. Int. 2018, 112, 5–17. [Google Scholar] [CrossRef]
- Wiatr, K.; Marczak, Ł.; Pérot, J.B.; Brouillet, E.; Flament, J.; Figiel, M. Broad influence of mutant ataxin-3 on the proteome of the adult brain, young neurons, and axons reveals central molecular processes and biomarkers in SCA3/MJD using knock-in mouse model. Front. Mol. Neurosci. 2021, 14, 658339. [Google Scholar] [CrossRef]
- Almeida, F.; Ferreira, I.L.; Naia, L.; Marinho, D.; Vilaça-Ferreira, A.C.; Costa, M.D.; Duarte-Silva, S.; Maciel, P.; Rego, A.C. Mitochondrial Dysfunction and Decreased Cytochrome c in Cell and Animal Models of Machado–Joseph Disease. Cells 2023, 12, 2397. [Google Scholar] [CrossRef] [PubMed]
- Kazachkova, N.; Raposo, M.; Montiel, R.; Cymbron, T.; Bettencourt, C.; Silva-Fernandes, A.; Duarte-Silva, S.; Maciel, P.; Lima, M. Patterns of Mitochondrial DNA Damage in Blood and Brain Tissues of a Transgenic Mouse Model of Machado-Joseph Disease. Neurodegener. Dis. 2013, 11, 206–214. [Google Scholar] [CrossRef]
- Ramos, A.; Kazachkova, N.; Silva, F.; Maciel, P.; Silva-Fernandes, A.; Duarte-Silva, S.; Santos, C.; Lima, M. Differential mtDNA Damage Patterns in a Transgenic Mouse Model of Machado–Joseph Disease (MJD/SCA3). J. Mol. Neurosci. 2014, 55, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Kuo, C.; Cheng, W.; Liu, C.; Hsieh, M. Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. J. Neurosci. Res. 2009, 87, 1884–1891. [Google Scholar] [CrossRef]
- Fritsch, L.E.; Moore, M.E.; Sarraf, S.A.; Pickrell, A.M. Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration. J. Mol. Biol. 2019, 432, 2510–2524. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Ko, J.; Park, Y.S.; Park, J.; Hwang, J.; Koh, H.C. Clearance of damaged mitochondria through PINK1 stabilization by JNK and ERK MAPK signaling in chlorpyrifos-treated neuroblastoma cells. Mol. Neurobiol. 2017, 54, 1844–1857. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, G.; Liu, L.; Feng, L.; Wang, X.; Jin, H. Regulation and function of mitophagy in development and cancer. Autophagy 2013, 9, 1720–1736. [Google Scholar] [CrossRef]
- Durcan, T.M.; Fon, E.A. USP8 and PARK2/parkin-mediated mitophagy. Autophagy 2015, 11, 428–429. [Google Scholar] [CrossRef] [PubMed]
- Villa, E.; Marchetti, S.; Ricci, J.-E. No Parkin Zone: Mitophagy without Parkin. Trends Cell Biol. 2018, 28, 882–895. [Google Scholar] [CrossRef]
- Quiles, J.M.; Najor, R.H.; Gonzalez, E.; Jeung, M.; Liang, W.; Burbach, S.M.; Zumaya, E.A.; Diao, R.Y.; Lampert, M.A.; Gustafsson, Å.B. Deciphering functional roles and interplay between Beclin1 and Beclin2 in autophagosome formation and mitophagy. Sci. Signal. 2023, 16, eabo4457. [Google Scholar] [CrossRef] [PubMed]
- Van Humbeeck, C.; Cornelissen, T.; Hofkens, H.; Mandemakers, W.; Gevaert, K.; De Strooper, B.; Vandenberghe, W. Parkin interacts with Ambra1 to induce mitophagy. J. Neurosci. 2011, 31, 10249–10261. [Google Scholar] [CrossRef] [PubMed]
- Strappazzon, F.; Nazio, F.; Corrado, M.; Cianfanelli, V.; Romagnoli, A.; Fimia, G.M.; Campello, S.; Nardacci, R.; Piacentini, M.; Campanella, M.; et al. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ. 2014, 22, 419–432. [Google Scholar] [CrossRef]
- Cornelissen, T.; Haddad, D.; Wauters, F.; Van Humbeeck, C.; Mandemakers, W.; Koentjoro, B.; Sue, C.; Gevaert, K.; De Strooper, B.; Verstreken, P.; et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 2014, 23, 5227–5242. [Google Scholar] [CrossRef]
- Bingol, B.; Tea, J.S.; Phu, L.; Reichelt, M.; Bakalarski, C.E.; Song, Q.; Foreman, O.; Kirkpatrick, D.S.; Sheng, M. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014, 510, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, S.; Ito, N.; Shiiba, I.; Shimura, H.; Yanagi, S. Ubiquitin-mediated mitochondrial regulation by MITOL/MARCHF5 at a glance. J. Biochem. 2022, 173, 1–11. [Google Scholar] [CrossRef]
- Jian, F.; Chen, D.; Chen, L.; Yan, C.; Lu, B.; Zhu, Y.; Chen, S.; Shi, A.; Chan, D.C.; Song, Z. Sam50 Regulates PINK1-Parkin-Mediated Mitophagy by Controlling PINK1 Stability and Mitochondrial Morphology. Cell Rep. 2018, 23, 2989–3005. [Google Scholar] [CrossRef] [PubMed]
- Abudu, Y.P.; Shrestha, B.K.; Zhang, W.; Palara, A.; Brenne, H.B.; Larsen, K.B.; Wolfson, D.L.; Dumitriu, G.; Øie, C.I.; Ahluwalia, B.S.; et al. SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. J. Cell Biol. 2021, 220, e202009092. [Google Scholar] [CrossRef]
- Yang, K.-C.; Ma, X.; Liu, H.; Murphy, J.; Barger, P.M.; Mann, D.L.; Diwan, A. Tumor Necrosis Factor Receptor–Associated Factor 2 Mediates Mitochondrial Autophagy. Circ. Hear. Fail. 2015, 8, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, W.; Wang, Y.; Wu, R.; Dai, Y.; Deng, Y.; Wang, S.; Yuan, J.; Tan, R. p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic. Biol. Med. 2023, 208, 846–858. [Google Scholar] [CrossRef]
- Hoshino, A.; Mita, Y.; Okawa, Y.; Ariyoshi, M.; Iwai-Kanai, E.; Ueyama, T.; Ikeda, K.; Ogata, T.; Matoba, S. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 2013, 4, 2308. [Google Scholar] [CrossRef]
- Yu, S.; Du, M.; Yin, A.; Mai, Z.; Wang, Y.; Zhao, M.; Wang, X.; Chen, T. Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation. Int. J. Biochem. Cell Biol. 2020, 122, 105720. [Google Scholar] [CrossRef] [PubMed]
- Villa, E.; Proïcs, E.; Rubio-Patiño, C.; Obba, S.; Zunino, B.; Bossowski, J.P.; Rozier, R.M.; Chiche, J.; Mondragón, L.; Riley, J.S.; et al. Parkin-Independent Mitophagy Controls Chemotherapeutic Response in Cancer Cells. Cell Rep. 2017, 20, 2846–2859. [Google Scholar] [CrossRef]
- Szargel, R.; Shani, V.; Abd Elghani, F.; Mekies, L.N.; Liani, E.; Rott, R.; Engelender, S. The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum. Mol. Genet. 2016, 25, 3476–3490. [Google Scholar] [CrossRef]
- Fu, M.; St-Pierre, P.; Shankar, J.; Wang, P.T.C.; Joshi, B.; Nabi, I.R. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell 2013, 24, 1153–1162. [Google Scholar] [CrossRef]
- Dlamini, M.B.; Gao, Z.; Hasenbilige; Jiang, L.; Geng, C.; Li, Q.; Shi, X.; Liu, Y.; Cao, J. The crosstalk between mitochondrial dysfunction and endoplasmic reticulum stress promoted ATF4-mediated mitophagy induced by hexavalent chromium. Environ. Toxicol. 2021, 36, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Bouman, L.; Schlierf, A.; Lutz, A.K.; Shan, J.; Deinlein, A.; Kast, J.; Galehdar, Z.; Palmisano, V.; Patenge, N.; Berg, D.; et al. Parkin is transcriptionally regulated by ATF4: Evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 2010, 18, 769–782. [Google Scholar] [CrossRef]
- Ivankovic, D.; Chau, K.Y.; Schapira, A.H.; Gegg, M.E. Mitochondrial and lysosomal biogenesis are activated following PINK 1/parkin-mediated mitophagy. J. Neurochem. 2016, 136, 388–402. [Google Scholar] [CrossRef]
- Nezich, C.L.; Wang, C.; Fogel, A.I.; Youle, R.J. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 2015, 210, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Bucha, S.; Mukhopadhyay, D.; Bhattacharyya, N.P. E2F1 activates MFN2 expression by binding to the promoter and decreases mitochondrial fission and mitophagy in HeLa cells. FEBS J. 2019, 286, 4525–4541. [Google Scholar] [CrossRef]
- Matsumoto, G.; Shimogori, T.; Hattori, N.; Nukina, N. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 2015, 24, 4429–4442. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Sawa-Makarska, J.; Khuu, G.; Lam, W.K.; Adriaenssens, E.; Fracchiolla, D.; Shoebridge, S.; Bernklau, D.; Padman, B.S.; Skulsuppaisarn, M.; et al. Unconventional initiation of PINK1/Parkin mitophagy by Optineurin. Mol. Cell 2023, 83, 1693–1709.e9. [Google Scholar] [CrossRef]
- Wild, P.; Farhan, H.; McEwan, D.G.; Wagner, S.; Rogov, V.V.; Brady, N.R.; Richter, B.; Korac, J.; Waidmann, O.; Choudhary, C.; et al. Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth. Science 2011, 333, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Uoselis, L.; Nguyen, T.N.; Lazarou, M. Mitochondrial degradation: Mitophagy and beyond. Mol. Cell 2023, 83, 3404–3420. [Google Scholar] [CrossRef]
- Yamano, K.; Wang, C.; Sarraf, S.A.; Münch, C.; Kikuchi, R.; Noda, N.N.; Hizukuri, Y.; Kanemaki, M.T.; Harper, W.; Tanaka, K.; et al. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife 2018, 7, e31326. [Google Scholar] [CrossRef] [PubMed]
- Shafique, A.; Brughera, M.; Lualdi, M.; Alberio, T. The Role of Rab Proteins in Mitophagy: Insights into Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 6268. [Google Scholar] [CrossRef] [PubMed]
- Yamano, K.; Fogel, A.I.; Wang, C.; Van Der Bliek, A.M.; Youle, R.J. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 2014, 3, e01612. [Google Scholar] [CrossRef] [PubMed]
- Poole, L.P.; Bock-Hughes, A.; Berardi, D.E.; Macleod, K.F. ULK1 promotes mitophagy via phosphorylation and stabilization of BNIP3. Sci. Rep. 2021, 11, 20526. [Google Scholar] [CrossRef]
- Zhang, J.; Ney, P.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009, 16, 939–946. [Google Scholar] [CrossRef]
- Ding, W.-X.; Ni, H.-M.; Li, M.; Liao, Y.; Chen, X.; Stolz, D.B.; Dorn, G.W., 2nd; Yin, X.-M. Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming. J. Biol. Chem. 2010, 285, 27879. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.-J.; Wang, Z.-Y.; Xu, L.; Chen, X.-H.; Li, X.-X.; Liao, W.-T.; Ma, H.-K.; Jiang, M.-D.; Xu, T.-T.; Xu, J.; et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 2020, 36, 101671. [Google Scholar] [CrossRef] [PubMed]
- Poole, L.P.; Macleod, K.F. Mitophagy in tumorigenesis and metastasis. Cell. Mol. Life Sci. 2021, 78, 3817–3851. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Kamboj, A.; Gibson, S.B.; Anderson, C.M. Poly(ADP-Ribose) Polymerase-1 Causes Mitochondrial Damage and Neuron Death Mediated by Bnip3. J. Neurosci. 2014, 34, 15975–15987. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xia, X.; Tong, Y. Multiple roles of mitochondrial autophagy receptor FUNDC1 in mitochondrial events and kidney disease. Front. Cell Dev. Biol. 2024, 12, 1453365. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, Z.; Wang, Y.; Tan, Z.; Zhu, C.; Li, Y.; Han, Z.; Chen, L.; Gao, R.; Liu, L.; et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 2016, 12, 689–702. [Google Scholar] [CrossRef]
- Di Rita, A.; Peschiaroli, A.; D′ Acunzo, P.; Strobbe, D.; Hu, Z.; Gruber, J.; Nygaard, M.; Lambrughi, M.; Melino, G.; Papaleo, E.; et al. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat. Commun. 2018, 9, 3755. [Google Scholar] [CrossRef]
- Bhujabal, Z.; Birgisdottir, Å.B.; Sjøttem, E.; Brenne, H.B.; Øvervatn, A.; Habisov, S.; Kirkin, V.; Lamark, T.; Johansen, T. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. Embo Rep. 2017, 18, 947–961. [Google Scholar] [CrossRef]
- Otsu, K.; Murakawa, T.; Yamaguchi, O. BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32. Autophagy 2015, 11, 1932–1933. [Google Scholar] [CrossRef]
- Terešak, P.; Lapao, A.; Subic, N.; Boya, P.; Elazar, Z.; Simonsen, A. Regulation of PRKN-independent mitophagy. Autophagy 2021, 18, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Le Guerroué, F.; Eck, F.; Jung, J.; Starzetz, T.; Mittelbronn, M.; Kaulich, M.; Behrends, C. Autophagosomal Content Profiling Reveals an LC3C-Dependent Piecemeal Mitophagy Pathway. Mol. Cell 2017, 68, 786–796.e6. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, V.; Klionsky, D.J. PHB2/prohibitin 2: An inner membrane mitophagy receptor. Cell Res. 2017, 27, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chiang, W.-C.; Sumpter, R., Jr.; Mishra, P.; Levine, B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell 2017, 168, 224–238.e10. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sun, X.; Hu, D.; Wang, Y.-J.; Fujioka, H.; Vyas, R.; Chakrapani, S.; Joshi, A.U.; Luo, Y.; Mochly-Rosen, D.; et al. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington’s disease. Nat. Commun. 2016, 7, 12646. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Li, P.; Hang, Q.; Chong, Y.; Long, W.; Wei, X.; Sun, D.; Liu, Y. NLRX1 and STING alleviate renal ischemia-reperfusion injury by regulating LC3 lipidation during mitophagy. Exp. Cell Res. 2024, 443, 114323. [Google Scholar] [CrossRef] [PubMed]
- Renault, V.M.; Thekkat, P.U.; Hoang, K.L.; White, J.L.; A Brady, C.; Broz, D.K.; Venturelli, O.S.; Johnson, T.M.; Oskoui, P.R.; Xuan, Z.; et al. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 2011, 30, 3207–3221. [Google Scholar] [CrossRef]
- Durcan, T.M.; Kontogiannea, M.; Thorarinsdottir, T.; Fallon, L.; Williams, A.J.; Djarmati, A.; Fantaneanu, T.; Paulson, H.L.; Fon, E.A. The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum. Mol. Genet. 2010, 20, 141–154. [Google Scholar] [CrossRef]
- Harmuth, T.; Weber, J.J.; Zimmer, A.J.; Sowa, A.S.; Schmidt, J.; Fitzgerald, J.C.; Schöls, L.; Riess, O.; Hübener-Schmid, J. Mitochondrial Dysfunction in Spinocerebellar Ataxia Type 3 Is Linked to VDAC1 Deubiquitination. Int. J. Mol. Sci. 2022, 23, 5933. [Google Scholar] [CrossRef]
- Chou, A.-H.; Yeh, T.H.; Kuo, Y.L.; Kao, Y.C.; Jou, M.J.; Hsu, C.Y.; Tsai, S.R.; Kakizuka, A.; Wang, H.L. Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol. Dis. 2006, 21, 333–345. [Google Scholar] [CrossRef]
- Deng, Y.; Lin, Y.; Wu, X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 2002, 16, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-M.; Bratton, S.B.; Butterworth, M.; MacFarlane, M.; Cohen, G.M. Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J. Biol. Chem. 2002, 277, 11345–11351. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Wang, H.; Fan, H.; Zhu, X.; Zhou, J.; Fei, E.; Wang, G. Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. Hum. Mol. Genet. 2009, 18, 4268–4281. [Google Scholar] [CrossRef] [PubMed]
- Boeddrich, A.; Gaumer, S.; Haacke, A.; Tzvetkov, N.; Albrecht, M.; Evert, B.O.; Müller, E.C.; Lurz, R.; Breuer, P.; Schugardt, N.; et al. An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J. 2006, 25, 1547–1558. [Google Scholar] [CrossRef]
- Laço, M.N.; Cortes, L.; Travis, S.M.; Paulson, H.L.; Rego, A.C. Valosin-Containing Protein (VCP/p97) Is an Activator of Wild-Type Ataxin-3. PLoS ONE 2012, 7, e43563. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.M.; Wrobel, L.; Ashkenazi, A.; Fernandez-Estevez, M.; Tan, K.; Bürli, R.W.; Rubinsztein, D.C. VCP/p97 regulates Beclin-1-dependent autophagy initiation. Nat. Chem. Biol. 2021, 17, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Nascimento-Ferreira, I.; Santos-Ferreira, T.; Sousa-Ferreira, L.; Auregan, G.; Onofre, I.; Alves, S.; Dufour, N.; Gould, V.F.C.; Koeppen, A.; Déglon, N.; et al. Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado–Joseph disease. Brain 2011, 134, 1400–1415. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Bento, C.F.; Ricketts, T.; Vicinanza, M.; Siddiqi, F.; Pavel, M.; Squitieri, F.; Hardenberg, M.C.; Imarisio, S.; Menzies, F.M.; et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 2017, 545, 108–111. [Google Scholar] [CrossRef]
- Chapman, T.P.; Corridoni, D.; Shiraishi, S.; Pandey, S.; Aulicino, A.; Wigfield, S.; Costa, M.D.C.; Thézénas, M.-L.; Paulson, H.; Fischer, R.; et al. Ataxin-3 Links NOD2 and TLR2 Mediated Innate Immune Sensing and Metabolism in Myeloid Cells. Front. Immunol. 2019, 10, 1495. [Google Scholar] [CrossRef] [PubMed]
- Scardino, V.; Di Filippo, J.I.; Cavasotto, C.N. How good are AlphaFold models for docking-based virtual screening? Iscience 2023, 26, 105920. [Google Scholar] [CrossRef]
- Sousa, A.; Rocha, S.; Vieira, J.; Reboiro-Jato, M.; López-Fernández, H.; Vieira, C.P. On the identification of potential novel therapeutic targets for spinocerebellar ataxia type 1 (SCA1) neurodegenerative disease using EvoPPI3. J. Integr. Bioinform. 2023, 20, 20220056. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc. 2022, 17, 2326–2353. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, X.; Liu, Y.; Peng, H.; Zheng, B.; Yin, Y.; Zeng, X. Machine learning on protein–protein interaction prediction: Models, challenges and trends. Brief. Bioinform. 2023, 24, bbad076. [Google Scholar] [CrossRef] [PubMed]
- Savojardo, C.; Martelli, P.L.; Casadio, R. Protein-Protein Interaction Methods and Protein Phase Separation. Annu. Rev. Biomed. Data Sci. 2020, 3, 89–112. [Google Scholar] [CrossRef]
- Zhang, J.; Kurgan, L. SCRIBER: Accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Bioinformatics 2019, 35, i343–i353. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Mizuguchi, K. Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein–protein interaction sites. Bioinformatics 2010, 26, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Seidel, K.; Siswanto, S.; Brunt, E.R.P.; Dunnen, W.D.; Korf, H.-W.; Rüb, U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012, 124, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, J.; Peng, W.; Wu, F.X.; Pan, Y. Protein–protein interactions: Detection, reliability assessment and applications. Brief. Bioinform. 2017, 18, 798–819. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.K.; Ranjan, A. The metastable states of proteins. Protein Sci. 2020, 29, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Yada, M.; Hatakeyama, S.; Ishimoto, H.; Tanimura, T.; Tsuji, S.; Kakizuka, A.; Kitagawa, M.; Nakayama, K.I. Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 2004, 23, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Bertolin, G.; Ferrando-Miguel, R.; Jacoupy, M.; Traver, S.; Grenier, K.; Greene, A.W.; Dauphin, A.; Waharte, F.; Bayot, A.; Salamero, J. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy 2013, 9, 1801–1817. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-M.; Jung, Y.-K. A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol. Cells 2018, 41, 18–26. [Google Scholar]
- Wang, S.; Iyer, R.; Han, X.; Wei, J.; Li, N.; Cheng, Y.; Zhou, Y.; Gao, Q.; Zhang, L.; Yan, M.; et al. CRISPR screening identifies the deubiquitylase ATXN3 as a PD-L1–positive regulator for tumor immune evasion. J. Clin. Investig. 2023, 133, e167728. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández, H.; Ferreira, P.; Reboiro-Jato, M.; Vieira, C.P.; Vieira, J. The pegi3s bioinformatics docker images project. In Practical Applications of Computational Biology & Bioinformatics, 15th International Conference (PACBB 2021); Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
EvoPPI Database | Gene Symbol (UniProtID; GeneID) |
---|---|
H. sapiens main databases; H. sapiens polyQ; D. rerio predicted polyQ; M. musculus predicted modifiers; C. elegans main database | VCP (P55072; 7415) |
H. sapiens main databases; H. sapiens polyQ; D. rerio predicted polyQ; M. musculus predicted modifiers | PHB2 (Q99623; 11331) |
H. sapiens polyQ; D. rerio predicted polyQ; M. musculus predicted modifiers; D. melanogaster predicted modifiers | UBC (RPS27A) (P62979; 6233) |
H. sapiens main databases; H. sapiens polyQ; D. melanogaster predicted modifiers | TRAF2 (Q12933; 7186); Beclin1 (Q14457; 8678) |
H. sapiens main databases; H. sapiens polyQ; D. rerio predicted polyQ | HUWE1 (Q7Z6Z7; 10075) |
H. sapiens main databases; H. sapiens polyQ | Parkin (O60260; 5071); NFKB (Q04206; 5970); P53 (P04637; 7157); LC3 (GABARAP (O95166; 11337)); MARCHF5 (Q9NX47; 54708); PGAM5 (Q96HS1; 192111) |
H. sapiens main databases; D. melanogaster predicted modifiers | MFN2 (O95140; 9927); TOMM20L (Q6UXN7; 387990) |
H. sapiens main databases | GP78 (Q9UKV5; 267); BCL-xL (Q07817; 598); p62 (Q13501; 8878); SMURF1 (Q9HCE7; 57154) |
D. rerio predicted polyQ; M. musculus predicted modifiers; D. melanogaster predicted modifiers | CK2 (CSNK2A1) (P68400; 1457) |
D. rerio predict polyQ | EIF-2A (P05198; 1965); OPA1 (O60313; 4976); RAB5A (P20339; 5868), TOMM70 (O94826; 9868); RAS (RRAS2) (P62070; 22800) |
M. musculus predicted modifiers | SAMM50 (Q9Y512; 25813); FIS1 (Q9Y3D6; 51024) |
D. melanogaster predicted modifiers | c-Jun (P05412; 3725); SP1 (P08047; 6667); USP8 (P40818; 9101); FKBP8 (Q14318; 23770); FUNDC1 (Q8IVP5; 139341) |
C. elegans predicted modifiers | FOXO3 (O43524; 2309) |
Gene Symbol (UniProtID; GeneID) | % of Interfacing Sites at the Five IR (N = 61) | Total Number of Interfacing Sites (N = 361) |
---|---|---|
MARCHF5 (Q9NX47; 54708) | 72.131 (44) | 59 |
MFN2 (O95140; 9927) | 70.492 (43) | 61 |
VCP (P55072; 7415) | 67.213 (41) | 67 |
FUNDC1 (Q8IVP5; 139341) | 67.213 (41) | 54 |
Parkin (O60260; 5071) | 65.574 (40) | 49 |
RAS (P62070; 22800) | 60.656 (37) | 42 |
TOMM70 (O94826; 9868) | 55.738 (34) | 50 |
SP1 (P08047; 6667) | 55.738 (34) | 62 |
CK2 (P68400; 1457) | 54.098 (33) | 59 |
PGAM5 (Q96HS1; 192111) | 54.098 (33) | 58 |
P53 (P04637; 7157) | 52.459 (32) | 60 |
Beclin1 (Q14457; 8678) | 52.459 (32) | 56 |
GP78 (Q9UKV5; 267) | 52.459 (32) | 51 |
SAMM50 (Q9Y512; 25813) | 52.459 (32) | 50 |
UBC (P62979; 6233) | 49.180 (30) | 35 |
TOMM20L (Q6UXN7; 387990) | 47.541 (29) | 35 |
LC3 (O95166; 11337) | 45.902 (28) | 38 |
BCL-xL (Q07817; 598) | 45.902 (28) | 75 |
USP8 (P40818; 9101) | 42.623 (26) | 59 |
SMURF1 (Q9HCE7; 57154) | 37.705 (23) | 54 |
p62 (Q13501; 8878) | 36.066 (22) | 70 |
OPA1 (O60313; 4976) | 34.426 (21) | 47 |
FOXO3 (O43524; 2309) | 26.230 (16) | 57 |
EIF-2A (P05198; 1965) | 26.223 (16) | 44 |
PHB2 (Q99623; 11331) | 14.754 (9) | 49 |
FIS1 (Q9Y3D6; 51024) | 13.115 (8) | 45 |
RAB5A (P20339; 5868) | 11.475 (7) | 50 |
Gene Symbol (UniProtID; GeneID) | % of Interfacing Sites at the Five IRs (N = 61) | Total Number of Interfacing Sites (N = 361) |
---|---|---|
FIS1 (Q9Y3D6; 51024) | 63.934 (39) | 43 |
PHB2 (Q99623; 11331) | 60.656 (37) | 57 |
UBC (P62979; 6233) | 57.377 (35) | 48 |
FOXO3 (O43524; 2309) | 55.738 (34) | 41 |
TOMM20L (Q6UXN7; 387990) | 52.459 (32) | 48 |
C-JUN (P05412 #; 3725) | 52.459 (32) | 64 |
BCL-xL (Q07817; 598) | 50.820 (31) | 53 |
EIF-2A (P05198; 1965) | 49.180 (30) | 54 |
p62 (Q13501; 8878) | 49.180 (30) | 42 |
LC3 (O95166; 11337) | 45.902 (28) | 39 |
FKBP8 (Q14318 #; 23770) | 45.902 (28) | 56 |
OPA1 (O60313; 4976) | 44.262 (27) | 57 |
NFKB (Q04206 #; 5970) | 42.623 (26) | 61 |
TRAF2 (Q12933 #; 7186) | 36.066 (22) | 46 |
USP8 (P40818; 9101) | 26.230 (16) | 38 |
SMURF1 (Q9HCE7; 8878) | 18.033 (11) | 31 |
RAB5A (P20339; 5868) | 16.393 (10) | 43 |
Gene Symbol (UniProtID; GeneID) | % of Interfacing Sites at the Five IRs (N = 61) | Total Number of Interfacing Sites (N = 361) |
---|---|---|
CCZ1 (P86790; 221960) | 72.131 (44) | 53 |
PINK1 (Q9BXM7; 65018) | 70.492 (43) | 64 |
TBK1 (Q9UHD2; 29110) | 70.492 (43) | 52 |
RAB7B (Q96AH8; 338382) | 62.295 (38) | 50 |
TOMM40 (O96008; 10452) | 57.377 (35) | 50 |
TFE3 (P19532; 7030) | 57.377 (35) | 78 |
MON1B (Q7L1V2; 22879) | 57.377 (35) | 56 |
CITED2 (Q99967; 10370) | 57.377 (35) | 66 |
NLRX1 (Q86UT6; 79671) | 54.098 (33) | 36 |
NDP52 (Q13137; 10241) | 50.820 (31) | 57 |
NBR1 (Q14596; 4077) | 50.820 (31) | 54 |
RABGEF1 (Q9UJ41; 27342) | 49.180 (30) | 45 |
ATF4F (P18848; 468) | 47.541 (29) | 72 |
HIF1 (Q16665; 3091) | 44.262 (27) | 66 |
USP15 (Q9Y4E8; 9958) | 44.262 (27) | 52 |
SIAH1 (Q8IUQ4; 6477) | 42.623 (26) | 62 |
ULK1 (O75385; 8408) | 40.984 (25) | 58 |
BNIP3 (Q12983; 664) | 40.984 (25) | 66 |
TAX1BP1 (Q86VP1; 8887) | 40.984 (25) | 69 |
ARIH1 (Q9Y4X5; 25820) | 40.984 (25) | 59 |
TOMM7 (Q9P0U1; 54543) | 39.344 (24) | 44 |
AMBRA1 (Q9C0C7; 55626) | 37.705 (23) | 49 |
MITF (O75030; 4286) | 36.066 (22) | 49 |
SRC (P12931; 6714) | 36.066 (22) | 50 |
TBC1D15 (Q8TC07; 64786) | 36.066 (22) | 48 |
JNK (P45983; 5599) | 22.951 (14) | 57 |
E2F1 (Q01094; 1869) | 21.311 (13) | 74 |
MUL1 (Q969V5; 79594) | 21.311 (13) | 43 |
PERK (Q9NZJ5; 9451) | 19.672 (12) | 55 |
MTX2 (O75431; 10651) | 16.393 (10) | 45 |
USP30 (Q70CQ3; 84749) | 14.754 (9) | 69 |
Gene Symbol (UniProtID; GeneID) | % of Interfacing Sites at the Five IRs (N = 61) | Total Number of Interfacing Sites (N = 361) |
---|---|---|
BNIP3 (Q12983; 664) | 77.049 (47) | 60 |
ATG9B (Q674R7 #; 285973) | 72.131 (44) | 68 |
SIAH1 (Q8IUQ4; 6477) | 68.852 (42) | 55 |
NIX (O60238 #; 665) | 68.852 (42) | 57 |
MTX2 (O75431; 10651) | 67.213 (41) | 54 |
MITF (O75030; 4286) | 65.574 (40) | 59 |
RABGEF1 (Q9UJ41; 27342) | 65.574 (40) | 50 |
JNK (P45983; 5599) | 62.295 (38) | 50 |
ARIH1 (Q9Y4X5; 25820) | 62.295 (38) | 60 |
USP30 (Q70CQ3; 84749) | 55.738 (34) | 57 |
BCL2L13 (Q9BXK5 #; 23786) | 55.738 (34) | 78 |
TAX1BP1 (Q86VP1; 8887) | 50.820 (31) | 42 |
TOMM7 (Q9P0U1; 54543) | 50.820 (31) | 36 |
E2F1 (Q01094; 1869) | 49.180 (30) | 55 |
MUL1 (Q969V5; 79594) | 49.180 (30) | 62 |
AMBRA1 (Q9C0C7; 55626) | 24.590 (15) | 55 |
SRC (P12931; 6714) | 18.033 (11) | 37 |
TFEB (P19484 #; 7942) | 9.836 (6) | 58 |
HIF1 (Q16665; 3091) | 8.197 (5) | 51 |
PERK (Q9NZJ5; 9451) | 6.557 (4) | 63 |
OPTN (Q96CV9 #; 10133) | 1.639 (1) | 42 |
Gene Symbol (UniProtID; GeneID) | Percentage of Increase $ |
---|---|
SAMM50 (Q9Y512; 25813) | 34.211 (76; 50) |
RAS (P62070; 22800) | 31.148 (61; 42) |
TOMM7 (Q9P0U1; 54543) | 26.531 (49; 36) |
BCL-xL (Q07817; 598) | 26.389 (72; 53) |
GP78 (Q9UKV5; 267) | 25.000 (68; 51) |
Parkin (O60260; 5071) | 22.222 (63; 49) |
FOXO3 (O43524; 2309) | 21.154 (52; 41) |
USP30 (Q70CQ3; 84749) | 18.57 (70; 57) |
MITF (O75030; 4286) | 18.056 (72; 59) |
C-JUN (P05412; 3725) | 15.789 (76; 64) |
MARCHF5 (Q9NX47; 54708) | 15.714 (70; 59) |
FIS1 (Q9Y3D6; 51024) | 15.686 (51; 43) |
TOMM40 (O96008; 10452) | 15.254 (59; 50) |
Beclin1 (Q14457; 8678) | 15.152 (66; 56) |
ARIH1 (Q9Y4X5; 25820) | 11.765 (68; 60) |
FUNDC1 (Q8IVP5; 139341) | 8.475 (59; 54) |
SIAH1 (Q8IUQ4; 6477) | 8.333 (60; 55) |
NDP52 (Q13137; 10241) | 8.065 (62; 57) |
P53 (P04637; 7157) | 7.692 (65; 60) |
TOMM70 (O94826; 9868) | 5.660 (53; 50) |
VCP (P55072; 7415) | 5.634 (71; 67) |
TAX1BP1 (Q86VP1; 8887) | 5.556 (54; 51) |
ATG9B (Q674R7; 285973) | 5.556 (72; 68) |
NBR1 (Q14596; 4077) | 5.263 (57; 54) |
PGAM5 (Q96HS1; 192111) | 3.333 (60; 58) |
MON1B (Q7L1V2; 22879) | 1.754 (57; 56) |
CK2 (P68400; 1457) | 1.667 (60; 59) |
SP1 (P08047; 6667) | 0.000 (62; 62) |
JNK (P45983; 5599) | 0.000 (50; 50) |
CITED2 (Q99967; 10370) | −1.538 (65; 66) |
PHB2 (Q99623; 11331) | −1.786 (56; 57) |
TOMM20L (Q6UXN7; 387990) | −2.128 (47; 48) |
RABGEF1 (Q9UJ41; 27342) | −4.167 (48; 50) |
NLRX1 (Q86UT6; 79671) | −9.091 (33; 36) |
UBC (P62979; 6233) | −11.628 (43; 48) |
BNIP3 (Q12983; 664) | −13.208 (53; 60) |
RAB7B (Q96AH8; 338382) | −13.636 (44; 50) |
MTX2 (O75431; 10651) | −14.894 (47; 54) |
CCZ1 (P86790; 221960) | −17.778 (45; 53) |
PINK1 (Q9BXM7; 65018) | −25.490 (51; 64) |
BCL2L13 (Q9BXK5; 23786) | −25.806 (62; 78) |
MFN2 (O95140; 9927) | −27.083 (48; 61) |
NIX (O60238; 665) | −32.558 (43; 57) |
TFE3 (P19532; 7030) | −36.842 (57; 78) |
TBK1 (Q9UHD2; 29110) | −40.541 (37; 52) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, J.; Barros, M.; López-Fernández, H.; Glez-Peña, D.; Nogueira-Rodríguez, A.; Vieira, C.P. Predicting Which Mitophagy Proteins Are Dysregulated in Spinocerebellar Ataxia Type 3 (SCA3) Using the Auto-p2docking Pipeline. Int. J. Mol. Sci. 2025, 26, 1325. https://doi.org/10.3390/ijms26031325
Vieira J, Barros M, López-Fernández H, Glez-Peña D, Nogueira-Rodríguez A, Vieira CP. Predicting Which Mitophagy Proteins Are Dysregulated in Spinocerebellar Ataxia Type 3 (SCA3) Using the Auto-p2docking Pipeline. International Journal of Molecular Sciences. 2025; 26(3):1325. https://doi.org/10.3390/ijms26031325
Chicago/Turabian StyleVieira, Jorge, Mariana Barros, Hugo López-Fernández, Daniel Glez-Peña, Alba Nogueira-Rodríguez, and Cristina P. Vieira. 2025. "Predicting Which Mitophagy Proteins Are Dysregulated in Spinocerebellar Ataxia Type 3 (SCA3) Using the Auto-p2docking Pipeline" International Journal of Molecular Sciences 26, no. 3: 1325. https://doi.org/10.3390/ijms26031325
APA StyleVieira, J., Barros, M., López-Fernández, H., Glez-Peña, D., Nogueira-Rodríguez, A., & Vieira, C. P. (2025). Predicting Which Mitophagy Proteins Are Dysregulated in Spinocerebellar Ataxia Type 3 (SCA3) Using the Auto-p2docking Pipeline. International Journal of Molecular Sciences, 26(3), 1325. https://doi.org/10.3390/ijms26031325