Mitochondrial COX3 and tRNA Gene Variants Associated with Risk and Prognosis of Idiopathic Pulmonary Fibrosis
Abstract
:1. Introduction
2. Results
2.1. Mitochondrial DNA Variants
2.2. Survival Analysis and Risk Factors for Mortality
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Patient and Control Subject Recruitment
5.2. Blood Sampling and Follow-Up
5.3. Sequencing of the Entire Mitochondrial Genome Using Next-Generation Sequencing
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Travis, W.D.; King, T.E.; Bateman, E.D.; Lynch, D.A.; Capron, F.; Center, D.; Colby, T.V.; Cordier, J.F.; DuBois, R.M.; Galvin, J.; et al. American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 2002, 165, 277–304. [Google Scholar]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef] [PubMed]
- Selman, M.; Pardo, A. Idiopathic pulmonary fibrosis: An epithelial/fibroblastic cross-talk disorder. Respir. Res. 2002, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Sgalla, G.; Biffi, A.; Richeldi, L. Idiopathic pulmonary fibrosis: Diagnosis, epidemiology and natural history. Respirology 2016, 21, 427–437. [Google Scholar] [CrossRef]
- Homer, R.J.; Elias, J.A.; Lee, C.G.; Herzog, E.L. Modern concepts on the role of inflammation in pulmonary fibrosis. Arch. Pathol. Lab. Med. 2011, 135, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, F.; Hinz, B.; White, E.S. The myofibroblast matrix: Implications for tissue repair and fibrosis. J. Pathol. 2013, 229, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, T.; Goto, T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: A review. Int. J. Mol. Sci. 2019, 20, 1461. [Google Scholar] [CrossRef] [PubMed]
- Betensley, A.; Sharif, R.; Karamichos, D. A Systematic review of the role of dysfunctional wound healing in the pathogenesis and treatment of idiopathic pulmonary fibrosis. J. Clin. Med. 2016, 6, 2. [Google Scholar] [CrossRef]
- Panduri, V.; Weitzman, S.A.; Chandel, N.; Kamp, D.W. The mitochondria-regulated death pathway mediates asbestos-induced alveolar epithelial cell apoptosis. Am. J. Respir. Cell Mol. Biol. 2003, 28, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Panduri, V.; Liu, G.; Surapureddi, S.; Kondapalli, J.; Soberanes, S.; de Souza-Pinto, N.C.; Bohr, V.; Budinger, G.; Schumacker, P.; Weitzman, S.; et al. Role of mitochondrial hOGG1 and aconitase in oxidant-induced lung epithelial cell apoptosis. Free. Radic. Biol. Med. 2009, 47, 750–759. [Google Scholar] [CrossRef]
- Kamp, D.W.; Panduri, V.; Weitzman, S.A.; Chandel, N. Asbestos-induced alveolar epithelial cell apoptosis: Role of mitochondrial dysfunction caused by iron-derived free radicals. Mol. Cell. Biochem. 2002, 234/235, 153–160. [Google Scholar] [CrossRef]
- Yu, G.; Tzouvelekis, A.; Wang, R.; Herazo-Maya, J.D.; Ibarra, G.H.; Srivastava, A.; de Castro, J.P.W.; DeIuliis, G.; Ahangari, F.; Woolard, T.; et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat. Med. 2018, 24, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.; Lai, Y.C.; Romero, Y.; Brands, J.; St Croix, C.M.; Kamga, C.; Corey, C.; Herazo-Maya, J.D.; Sembrat, J.; Lee, J.S.; et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Investig. 2015, 125, 521–538. [Google Scholar] [CrossRef]
- Zank, D.C.; Bueno, M.; Mora, A.L.; Rojas, M. Idiopathic pulmonary fibrosis: Aging, mitochondrial dysfunction, and cellular bioenergetics. Front. Med. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.; Sun, H.; Gulati, M.; Herazo, M.; Chen, Y.; Osafo-Addo, A.; Brandsdorfer, C.; Winkler, J.; Blaul, C.; Faunce, J.; et al. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2017, 196, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]
- Jedynak-Slyvka, M.; Jabczynska, A.; Szczesny, R. Human mitochondrial RNA processing and modification: Overview. Int. J. Mol. Sci. 2021, 22, 7999. [Google Scholar] [CrossRef]
- Shimada, A.; Kawamura, N.; Okajima, M.; Kaewamatawong, T.; Inoue, H.; Morita, T. Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol. Pathol. 2006, 34, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Gauss, D.H.; Gruter, F.; Sprinzl, M. Compilation of tRNA sequences. Nucleic Acids Res. 1979, 6, r1–r19. [Google Scholar] [CrossRef] [PubMed]
- Adegunsoye, A.; Vij, R.; Noth, I. Integrating genomics into management of fibrotic interstitial lung disease. Chest 2019, 155, 1026–1040. [Google Scholar] [CrossRef]
- Raghu, G.; Weycker, D.; Edelsburg, J.; Bradford, W.Z.; Oster, G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Herbener, G.H. A morphometric study of age-dependent changes in mitochondrial population of mouse liver and heart. J. Gerontol. 1976, 31, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Bratic, A.; Larsson, N.G. The role of mitochondria in aging. J. Clin. Investig. 2013, 123, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.L.; Bueno, M.; Rojas, M. Mitochondria in the spot of aging of idiopathic pulmonary fibrosis. J. Clin. Investig. 2017, 127, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Border, W.A.; Noble, N.A. Transforming growth factor beta in tissue fibrosis. N. Engl. J. Med. 1994, 331, 1286–1292. [Google Scholar]
- Pakyari, M.; Farrokhi, A.; Maharlooei, M.K.; Ghahari, A. Critical role of transforming growth factor beta in different phases of wound healing. Adv. Wound Care 2013, 2, 215–224. [Google Scholar] [CrossRef]
- Sun, Q.; Fang, L.; Tang, X.; Lu, S.; Tamm, M.; Stolz, D.; Roth, M. TGF-beta upregulated mitochondria mass through the SMAD2/3→C/EBPbeta→PRMT1 signal pathway in primary human lung fibroblasts. J. Immunol. 2019, 202, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Elston, T.; Wang, H.; Oster, G. Energy transduction in ATP synthase. Nature 1998, 391, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Nissanka, N.; Moraes, C.T. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep. 2020, 21, e49612. [Google Scholar] [CrossRef]
- Brischigliaro, M.; Zeviani, M. Cytochrome c oxidase deficiency. Biochim. Biophys. Acta Bioenerg. 2021, 1862, 148335. [Google Scholar] [CrossRef]
- Diaz, F. Cytochrome c oxidase deficiency: Patients and animal models. Biochim. Biophys. Acta 2010, 1802, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Reichart, G.; Mayer, J.; Zehm, C.; Kirschstein, T.; Tokay, T.; Lange, F.; Baltrusch, S.; Tiedge, M.; Fuellen, G.; Ibrahim, S.; et al. Mitochondrial Complex IV mutation increases ROS production and reduces lifespan in aged mice. Acta Physiol. 2019, 225, e13214. [Google Scholar] [CrossRef] [PubMed]
- Yarham, J.W.; Elson, J.L.; Blakely, E.L.; McFarland, R.; Taylor, R.W. Mitochondrial tRNA mutations and disease. Wiley Interdiscip. Rev. RNA 2010, 1, 301–324. [Google Scholar] [CrossRef]
- Richter, U.; McFarland, R.; Taylor, R.W.; Pickett, S.J. The molecular pathology of mitochondrial tRNA variants. FEBS Lett. 2021, 595, 1003–1024. [Google Scholar] [CrossRef]
- Wittenhagen, L.M.; Kelley, S.O. Impact of disease-related mitochondrial mutations on tRNA structure and function. Trends Biochem. Sci. 2003, 28, 605–611. [Google Scholar] [CrossRef]
- Dirheimer, G.; Keith, G.; Dumas, P.; Westhof, E. Primary, secondary, and tertiary structures of tRNAs. In tRNA: Structure, Biosynthesis, and Function; Soll, D., RajBhandary, U., Eds.; American Society for Microbiology Press: Washington, DC, USA, 1995; pp. 93–126. [Google Scholar]
- Kelley, S.O.; Steinberg, S.V.; Schimmel, P. Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility. Nat. Struct. Biol. 2000, 7, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Wittenhagen, L.M.; Roy, M.D.; Kelley, S.O. The pathogenic U3271C human mitochondrial tRNALeu(UUR) mutation disrupts fragile anticodon stem. Nucleic Acids Res. 2003, 31, 596–601. [Google Scholar] [CrossRef]
- Kelley, S.O.; Steinberg, S.V.; Schimmel, S.P. Fragile T-stem in disease-associated human mitochondrial tRNA sensitizes structure to local and distant mutations. J. Biol. Chem. 2001, 276, 10607–10611. [Google Scholar] [CrossRef] [PubMed]
- Ley, B.; Ryerson, C.J.; Vittinghoff, E.; Ryu, J.H.; Tomassetti, S.; Lee, J.S.; Poletti, V.; Buccioli, M.; Elicker, B.M.; Jones, K.D.; et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann. Intern. Med. 2012, 156, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Sterclova, M.; Morgulkoc, N.; Lewandowska, K.; Muller, V.; Hajkova, M.; Kramer, M.R.; Jovanović, D.; Tekavec-Trkanjec, J.; Studnicka, M.; et al. The European MuliPartner IPF registry (EMPIRE): Validating long-term prognostic factors in idiopathic pulmonary fibrosis. Respir. Res. 2021, 21, 11. [Google Scholar] [CrossRef]
- King, T.E.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A phase 3 trial of Pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Fukihara, J.; Sakamoto, K.; Ikeyama, Y.; Furukawa, T.; Teramachi, R.; Kataoka, K.; Kondoh, Y.; Hashimoto, N.; Ishii, M. Mitochondrial DNA in bronchoalveolar lavage fluid is associated with the prognosis of idiopathic pulmonary fibrosis: A single cohort study. Respir. Res. 2024, 205, 202. [Google Scholar] [CrossRef]
- Riou, M.; Alfatni, A.; Charles, A.; Andres, E.; Pistea, C.; Charloux, A.; Geny, B. New insights into the implication of mitochondrial dysfunction in tissue, peripheral blood mononuclear cells, and platelets during lung diseases. J. Clin. Med. 2020, 9, 1253. [Google Scholar] [CrossRef]
- Goldin, J.; Elashoff, R.; Kim, H.J.; Yan, X.; Lynch, D.; Strollo, D.; Roth, M.D.; Clements, P.; Furst, D.E.; Khanna, D.; et al. Treatment of scleroderma-interstitial lung disease is associated with less progressive fibrosis on serial thoracic high-resolution CT scan than placebo: Findings from the scleroderma lung study. Chest 2009, 136, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Cilli, A.; Uzer, F. Disease progression in idiopathic pulmonary fibrosis under anti-fibrotic treatment. Sarcoidosis Vasc. Diffus. Lung Dis. 2023, 40, e2023034. [Google Scholar]
- du Bois, R.M.; Nathan, S.D.; Richeldi, L.; Schwarz, M.I.; Noble, P.W. Idiopathic pulmonary fibrosis: Lung function is a clinically meaningful endpoint for phase III trials. Am. J. Respir. Crit. Care Med. 2012, 186, 712–715. [Google Scholar] [CrossRef]
- Vossen, R.H.; Buermans, H.P. Full-Length Mitochondrial-DNA Sequencing on the PacBio RSII. Methods Mol. Biol. 2017, 1492, 179–184. [Google Scholar] [PubMed]
- Lee, L.-N.; Huang, C.-T.; Hsu, C.-L.; Chang, H.-C.; Jan, I.-S.; Liu, J.-L.; Sheu, J.-C.; Wang, J.-T.; Liu, W.-L.; Wu, H.-S.; et al. Mitochondrial DNA variants in patients with liver injury due to anti-tuberculosis drugs. J. Clin. Med. 2019, 8, 1207. [Google Scholar] [CrossRef]
Variable | IPF (n = 36) | Control (n = 80) | p |
---|---|---|---|
Age (years) | 75.5 ± 8.4 | 72.3 ± 9.0 | 0.073 |
Female | 7 (19) | 22 (28) | 0.453 |
Race (Taiwanese * or Chinese **), No. (%) of Taiwanese | 30 (83) | 70 (88) | 0.752 |
Never smoker | 15 (42) | 45 (56) | 0.232 |
Heavy alcohol use *** | 5 (14) | 6 (8) | 0.505 |
Co-existing diseases | |||
Hypertension | 16 (44) | 48 (60) | 0.175 |
Diabetes mellitus | 15 (42) | 31 (39) | 0.920 |
Coronary artery disease | 9 (33) | 16 (20) | 0.188 |
Stroke | 2 (6) | 11 (14) | 0.313 |
Heart failure | 6 (17) | 4 (5) | 0.078 |
Malignancy | 5 (14) | 7 (9) | 0.641 |
Connective tissue disease | 0 | 4 (5) † | 0.415 |
Chronic kidney disease | 2 (6) | 5 (6) | 0.783 |
Liver cirrhosis | 2 (6) | 0 | 0.175 |
Initial fibrosis score on HRCT | 8.6 ± 2.3 [6–14] | ||
Initial FVC (as % predicted) | 75.4 ± 26.2 [32–192] | ||
Initial DLCO (as % predicted) | 69.4 ± 24.0 [22–121] | ||
Anti-fibrotic treatment | |||
Nintedanib only | 15 (42) | ||
Perfenidone only | 8 (22) | ||
Two drugs sequentially | 11 (31) | ||
No anti-fibrotic treatment | 2 (5) | ||
Clinical course | |||
Progression | 21 (58) | ||
Stable | 15 (42) | ||
Mortality | 12 (33) | 6 (8) | 0.001 |
Cause of death | |||
IPF progression | 11 | 0 | |
Septic shock # | 1 | 1 | |
Pneumonia | 0 | 3 | |
Stroke | 0 | 2 |
Position in mtDNA | rs Number | Variant Classification | Allele Change | Amino Acid Change | Zygosity | No. in the IPF Group | No. in the Control Group |
---|---|---|---|---|---|---|---|
9468 | rs879015841 | SNS | Acc/Gcc | T/A | Homo * | 0 | 1 |
9477 | (-) | Insertion | gtt/gTtt | V/VX | Hetero ǂ | 5 | 2 |
9490 | (-) | SNS | gCa/gTa | A/V | Homo | 1 | 0 |
9682 | rs199750417 | SNS | aTa/aCa | M/T | Homo | 1 | 0 |
9794 | (-) | Deletion | Ttt/tt | F/X | Hetero | 2 | 1 |
9894 | (-) | SNS | Aaa/Gaa | K/E | Homo | 0 | 1 |
9910 | (-) | SNS | tTc/tCc | F/S | Hetero | 0 | 1 |
9957 | rs1556423753 | SNS | Ttt/Ctt | F/L | Homo | 0 | 1 |
9966 | rs200809063 | SNS | Gtc/Atc | V/I | Homo | 0 | 1 |
Total Number | 9 | 8 | |||||
Mutation/deletion/insertion | 2/2/5 | 5/1/2 | |||||
p value | 0.240 |
Variant Position in mtDNA | tRNA | rs Number | Variant (Allele Change) | No. in the IPF Group/Location/ Zygosity | No. in the Control Group/Location/ Zygosity |
---|---|---|---|---|---|
593 | F | rs879123694 | SNS (T/C) | 0 | 2/D loop/homo |
629 | F | rs201031012 | SNS (T/C) | 0 | 1/T loop/homo |
1664 | V | rs200807305 | SNS (G/A) | 1/A stem/hetero | 1/A stem/homo |
3290 | L1 | rs199474665 | SNS (T/C) | 1/T loop/homo | 0 |
4270 | I | (-) | SNS (T/C) | 0 | 1/A stem/hetero |
4353 (ls) | Q | (-) | SNS (T/C) | 0 | 1/T-arm/homo |
5601 (ls) | A | rs376884056 | SNS (C/T) | 1/T loop/homo | 0 |
5673 (ls) | N | rs386828975 | SNS (T/C) | 1/T loop/homo | 0 |
5692 (ls) | N | rs199476131 | SNS (T/C) | 1/AC loop/hetero | 0 |
5773 (ls) | C | rs9659239 | SNS (G/A) | 0 | 2/T-arm/homo |
5814 (ls) | C | rs200077222 | SNS (T/C) | 1/D arm/homo | 0 |
5821 (ls) | C | rs200587831 | SNS (G/A) | 1/A stem/homo | 2/A stem/homo |
7492 (ls) | S1 | rs879080411 | SNS (C/T) | 0 | 1/AC arm/homo |
7521 | D | rs200336937 | SNS (G/A) | 0 | 3/A stem/homo |
7527 | D | (-) | Insertion (G/GA) | 0 | 1/D arm/hetero |
10047 | G | (-) | Deletion (CA/C) | 2/T-arm/hetero | 0 |
10410 | R | rs200478835 | SNS (T/C) | 0 | 1/A stem/homo |
10427 | R | rs1556423809 | SNS (G/A) | 0 | 1/AC arm/homo |
10448 | R | (-) | SNS (T/C) | 1/Variable loop/homo | 0 |
10454 | R | rs878874133 | SNS (T/C) | 1/T loop/homo | 0 |
10463 | R | rs28358279 | SNS (T/C) | 0 | 1/A stem/homo |
12152 | H | (-) | Insertion (A/AT) | 0 | 1/D loop/hetero |
12153 | H | rs376606918 | SNS (C/T) | 1/D loop/homo | 0 |
12192 | H | rs3134560 | SNS (G/A) | 1/T loop/homo | 0 |
12216 | S2 | (-) | SNS (C/T) | 0 | 1/D arm/homo |
12234 | S2 | (-) | SNS (A/G) | 1/AC arm/homo | 0 |
12239 | S2 | rs376062400 | SNS (C/T) | 1/Variable loop/homo | 0 |
12279 | L2 | (-) | SNS (A/G) | 0 | 1/D loop/hetero |
12280 | L2 | (-) | SNS (A/G) | 0 | 1/D loop/hetero |
12280 | L2 | (-) | SNS (A/G) | 0 | 1/D loop/homo |
14710 (ls) | E | (-) | Insertion (G/GA) | 1/AC loop/hetero | 0 |
14727 (ls) | E | (-) | SNS (T/C) | 1/D loop/homo | 0 |
15889 | T | rs199833246 | SNS (G/A) | 1/A stem/hetero | 0 |
15891 | T | rs1556424681 | SNS (C/T) | 0 | 2/A stem/homo |
15901 | T | (-) | SNS (A/G) | 0 | 1/D loop/homo |
15914 | T | (-) | SNS (A/G) | 0 | 1/AC arm/homo |
15927 | T | rs193303002 | SNS (G/A) | 1/AC arm/homo | 1/AC arm/homo |
15928 | T | rs527236198 | SNS (G/A) | 1/AC arm/homo | 0 |
15940 | T | rs879197567 | SNS (T/C) | 0 | 1/T loop/hetero |
15940 | T | rs879197567 | SNS (T/C) | 1/T loop/homo | 0 |
16000 (ls) | P | rs1556424722 | SNS (G/A) | 1/AC arm/homo | 0 |
Total number | 22 | 29 | |||
A stem | 3 | 11 | |||
D arm | 1 | 2 | |||
D loop | 2 | 7 | |||
AC arm | 4 | 4 | |||
AC loop | 2 | 0 | |||
Variable loop | 2 | 0 | |||
T-arm | 2 | 3 | |||
T loop | 6 | 2 | |||
AC arm + AC loop + Variable loop + T-arm + T loop | 16 (73%) | 9 (31%), p = 0.008 | |||
Light strand | 8 | 6 | |||
Mutation/deletion/insertion | 19/2/1 | 27/0/2 |
Characteristics | Succumbed Group (N = 12) | Alive Group (N = 24) | p |
---|---|---|---|
Age (years) | 80.7 ± 6.7 [74–95] | 72.9 ± 8.1 [51–86] | 0.007 |
Female | 3 (25) | 4 (17) | 0.881 |
Never smoker | 5 (42) | 10 (42) | 0.720 |
Drinker | 3 (25) | 2 (8) | 0.394 |
Co-existing diseases | |||
Diabetes mellitus | 5 (42) | 10 (42) | 0.720 |
Hypertension | 7 (58) | 9 (38) | 0.406 |
Coronary artery disease | 4 (33) | 8 (33) | 0.708 |
Heart failure | 4 (33) | 2 (8) | 0.155 |
Stroke | 0 | 2 (8) | 0.797 |
Malignancy | 2 (17) | 3 (13) | 0.864 |
Chronic kidney disease | 2 (17) | 0 | 0.199 |
Liver cirrhosis | 1 (8) | 0 | 0.720 |
FVC (% predicted) | |||
At diagnosis | 68.2 ± 19.7 [39–115] | 79.1 ± 28.5 [40–192] | 0.244 |
6 months after diagnosis | 63.2 ± 24.7 [21–84] | 72.6 ± 16.8 [41–106] | 0.321 |
DLCO (% predicted) | |||
At diagnosis | 51.3 ± 23.0 [22–90] | 76.5 ± 20.8 [30–121] | 0.007 |
6 months after diagnosis | 67.8 ± 34.4 [22–118] | 64.9 ± 17.4 [25–96] | 0.787 |
Initial fibrosis score on HRCT | 9.7 ± 2.6 [6–14] | 8 ± 2.0 [6–13] | 0.042 |
No. (%) of patients with COX3 NS variants * | 5 (42) | 3 (13) | 0.119 |
No. of NS variants per patient | 0.5 ± 0.7 [0–2] | 0.1 ± 0.3 [0–1] | 0.032 |
No. (%) of patients with tRNA gene variants | 8 (67) | 7 (29) | 0.069 |
No. of tRNA variants per patient | 1.3 ± 1.2 [0–4] | 0.3 ± 0.5 [0–1] | 0.002 |
Anti-fibrotic treatment | |||
Nintedanib, only | 4 (33) | 11 (46) | 0.925 |
Pirfenidone, only | 2 (17) | 6 (25) | |
Nintedanib→pirfenidone, or vice versa | 5 (42) | 6 (25) | |
Never | 1 (8) | 1 (4) |
Risk Factor | p Value | Hazard Ratio | 95% Confidence Interval |
---|---|---|---|
Age | 0.016 | 1.232 | 1.04–1.4 |
Sex | 0.804 | 1.371 | 0.113–16.5 |
Smoking | 0.045 | ||
Current smoker | 0.013 | 32.738 | 2.09–512 |
Ever smoker | 0.067 | 6.875 | 0.87–54.3 |
Initial FVC < 60% predicted | 0.010 | 11.795 | 1.81–77.1 |
Initial HRCT fibrosis score | 0.017 | 118 | 2.34–5980 |
COX3 NS mutation/tRNA mutation | 0.005 | ||
Either one mutated | 0.018 | 16.426 | 1.61–167 |
Both mutated | 0.001 | 245.002 | 9.15–6560 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, L.-N.; Jan, I.-S.; Chou, W.-R.; Liu, W.-L.; Kuo, Y.-L.; Chang, C.-Y.; Chang, H.-C.; Liu, J.-L.; Hsu, C.-L.; Lin, C.-N.; et al. Mitochondrial COX3 and tRNA Gene Variants Associated with Risk and Prognosis of Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2025, 26, 1378. https://doi.org/10.3390/ijms26031378
Lee L-N, Jan I-S, Chou W-R, Liu W-L, Kuo Y-L, Chang C-Y, Chang H-C, Liu J-L, Hsu C-L, Lin C-N, et al. Mitochondrial COX3 and tRNA Gene Variants Associated with Risk and Prognosis of Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences. 2025; 26(3):1378. https://doi.org/10.3390/ijms26031378
Chicago/Turabian StyleLee, Li-Na, I-Shiow Jan, Wen-Ru Chou, Wei-Lun Liu, Yen-Liang Kuo, Chih-Yueh Chang, Hsiu-Ching Chang, Jia-Luen Liu, Chia-Lin Hsu, Chia-Nan Lin, and et al. 2025. "Mitochondrial COX3 and tRNA Gene Variants Associated with Risk and Prognosis of Idiopathic Pulmonary Fibrosis" International Journal of Molecular Sciences 26, no. 3: 1378. https://doi.org/10.3390/ijms26031378
APA StyleLee, L.-N., Jan, I.-S., Chou, W.-R., Liu, W.-L., Kuo, Y.-L., Chang, C.-Y., Chang, H.-C., Liu, J.-L., Hsu, C.-L., Lin, C.-N., Chao, K.-Y., Tseng, C.-W., Lee, I.-H., Wang, J.-T., & Wang, J.-Y. (2025). Mitochondrial COX3 and tRNA Gene Variants Associated with Risk and Prognosis of Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 26(3), 1378. https://doi.org/10.3390/ijms26031378