Genetic Diversity and Environmental Adaptation Signatures of the Great Seahorse (Hippocampus kelloggi) in the Coastal Regions of the Indo-Pacific as Revealed by Whole-Genome Re-Sequencing
Abstract
:1. Introduction
2. Results
2.1. Variant Discovery and SNPs Annotation
2.2. Population Genetic Diversity Analysis
2.3. Genetic Divergence and Population Structure Analysis of Three Populations
2.4. Correlation Analysis of Protein and mRNA
2.5. Trends in Historical Effective Population Size
2.6. Candidate Genes Under Selection
3. Discussion
3.1. Genetic Diversity of H. kelloggi
3.2. Population Structure of H. kelloggi
3.3. Historical Demography and Environmental Adaptation
4. Materials and Methods
4.1. Ethics Statement
4.2. Samples Collection
4.3. DNA Extraction and Whole-Genome Re-Sequencing
4.4. Genetic Diversity Statistics
4.5. Population Structure Analysis
4.6. Historical Effective Population Size
4.7. Linkage Disequilibrium (LD) Decay Assay
4.8. Screening for Selective Sweeps
4.9. Identification of the Candidate Genes Associated with Selection Signatures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, R.; Liao, G.; Ge, Y.; Yang, B.; Zhang, G. Complete mitochondrial genome of the great seahorse Hippocampus Kelloggi Jordan & Snyder, 1901 (Gasterosteiformes: Syngnathidae). Mitochondrial DNA Part A 2017, 28, 227–228. [Google Scholar] [CrossRef]
- Li, C.; Olave, M.; Hou, Y.; Qin, G.; Schneider, R.F.; Gao, Z.; Tu, X.; Wang, X.; Qi, F.; Nater, A.; et al. Genome sequences reveal global dispersal routes and suggest convergent genetic adaptations in seahorse evolution. Nat. Commun. 2021, 12, 1094. [Google Scholar] [CrossRef]
- Lourie, S.A.; Green, D.M.; Vincent, A.C.J. Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae: Hippocampus). Mol. Ecol. 2005, 14, 1073–1094. [Google Scholar] [CrossRef] [PubMed]
- Muhala, V.; Guimarães-Costa, A.; Macate, I.E.; Watanabe, L.; de Sousa, R.P.C.; Rocha, G.; Carneiro, J.; Vallinoto, M.; Sampaio, I. Molecular evidence for the first records and range extension of the great seahorse (Hippocampus Kelloggi, Jordan & Snyder, 1901) in Quelimane, central coast of Mozambique. J. Mar. Biol. Assoc. UK 2023, 103, e77. [Google Scholar] [CrossRef]
- Pollom, R. Hippocampus kelloggi. The IUCN Red List of Threatened Species. 2017. Available online: https://www.iucnredlist.org/species/41010/54908593 (accessed on 30 January 2025).
- Faleiro, F.; Baptista, M.; Santos, C.; Aurélio, M.L.; Pimentel, M.; Pegado, M.R.; Paula, J.R.; Calado, R.; Repolho, T.; Rosa, R. Seahorses under a changing ocean: The impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish. Conserv. Physiol. 2015, 3, cov009. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, S.; Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. USA 2007, 104, 3883–3888. [Google Scholar] [CrossRef] [PubMed]
- Sgrò, C.M.; Lowe, A.J.; Hoffmann, A.A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 2010, 4, 326. [Google Scholar] [CrossRef]
- Guo, F.; Ye, Y.; Zhu, K.; Lin, S.; Wang, Y.; Dong, Z.; Yao, R.; Li, H.; Wang, W.; Liao, Z.; et al. Genetic diversity, population structure, and environmental adaptation signatures of Chinese coastal hard-shell mussel Mytilus coruscus revealed by whole-genome sequencing. Int. J. Mol. Sci. 2023, 24, 13641. [Google Scholar] [CrossRef]
- Thangaraj, M.; Lipton, A.P. Morphological characterization of four selected seahorse species (Genus: Hippocampus) from India. Ann. Biol. Res. 2011, 2, 159–167. [Google Scholar]
- Balasubramanian, R.; Murugan, A. Length—Weight relationship of the great seahorse, Hippocampus kelloggi (Jordan and Snyder 1902), inhabiting Coromandel coast, Southeast coast of India. Indian J. Mar. Sci. 2017, 46, 1193–1197. [Google Scholar]
- Lipton, A.P.; Thangaraj, M. Distribution pattern of seahorse species (Genus: Hippocampus) in Tamilnadu and Kerala coasts of India. Not. Sci. Biol. 2013, 5, 20–24. [Google Scholar] [CrossRef]
- Pinheiro, H.T.; Bernardi, G.; Simon, T.; Joyeux, J.C.; Macieira, R.M.; Gasparini, J.L.; Rocha, C.; Rocha, L.A. Island biogeography of marine organisms. Nature 2017, 549, 82–85. [Google Scholar] [CrossRef]
- Teske, P.R.; Cherry, M.I.; Matthee, C.A. The evolutionary history of seahorses (Syngnathidae: Hippocampus): Molecular data suggest a West Pacific origin and two invasions of the Atlantic Ocean. Mol. Phylogenet. Evol. 2004, 30, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.J.; Vincent, A.C.J. Life history and ecology of seahorses: Implications for conservation and management. J. Fish Biol. 2004, 65, 1–61. [Google Scholar] [CrossRef]
- Qin, G.; Zhang, Y.; Ho, A.L.F.C.; Zhang, Y.; Lin, Q. Seasonal distribution and reproductive strategy of seahorses. ICES J. Mar. Sci. 2017, 74, 2170–2179. [Google Scholar] [CrossRef]
- Sanna, D.; Addis, A.; Biagi, F.; Motzo, C.; Carcupino, M.; Francalacci, P. mtDNA control region and D-HPLC analysis: A method to evaluate the mating system in Syngnathidae (Teleostei). Mar. Biol. 2008, 153, 269–275. [Google Scholar] [CrossRef]
- van de Vliet, M.S.; Diekmann, O.E.; Serrão, E.T.A. Highly polymorphic microsatellite markers for the short-snouted seahorse (Hippocampus hippocampus), including markers from a closely related species the long-snouted seahorse (Hippocampus guttulatus). Conserv. Genet. Resour. 2009, 1, 93–96. [Google Scholar] [CrossRef]
- Saarman, N.P.; Louie, K.D.; Hamilton, H. Genetic differentiation across eastern Pacific oceanographic barriers in the threatened seahorse Hippocampus ingens. Conserv. Genet. 2010, 11, 1989–2000. [Google Scholar] [CrossRef]
- Yu, Y.; Hilsdorf, A.W.S.; Zhou, L.; Lin, Q.; Gao, Z.X. Editorial: Genetics and molecular breeding in aquaculture animals. Front. Genet. 2022, 13, 1071303. [Google Scholar] [CrossRef]
- Stratton, M. Genome resequencing and genetic variation. Nat. Biotechnol. 2008, 26, 65–66. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, T.; Gao, T.; Song, N. Whole-genome resequencing reveals genetic diversity and selection signals in warm temperate and subtropical Sillago sinica populations. BMC Genom. 2023, 24, 547. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 2009, 10, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Chen, Y.; Zhang, J.; Zhu, A.; Wu, C.; Liu, L.; Lin, Z.; Dong, Y. Population structure of large yellow croaker (Larimichthys crocea) revealed by single nucleotide polymorphisms. Biochem. Syst. Ecol. 2015, 63, 136–142. [Google Scholar] [CrossRef]
- Ji, D.; Su, X.; Yao, J.; Zhang, W.; Wang, R.; Zhang, S. Genetic diversity and genetic differentiation of populations of golden-backed carp (Cyprinus carpio var. Jinbei) in traditional rice fields in Guizhou, China. Animals 2022, 12, 1377. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Fang, D.; He, M.; Mao, C.C.; Kuang, J.; Qi, H.F.; Xu, D.P. Genetic diversity and population structure of Gymnocypris przewalskii based on SNP markers. South China Fish. Sci. 2023, 19, 86–96. [Google Scholar]
- Lazic, T.; Pierri, C.; Cardone, F.; Cariani, A.; Colangelo, P.; Corriero, G.; Ferrari, A.; Marzano, M.; Messinetti, S.; Pesole, G.; et al. Genetic structure of the long-snouted seahorse, Hippocampus guttulatus, in the Central–Western Mediterranean. Sea Biol. J. Linn. Soc. 2020, 130, 771–782. [Google Scholar] [CrossRef]
- Halachev, M.; Meynert, A.; Taylor, M.S.; Vitart, V.; Kerr, S.M.; Klaric, L.; S. G. P. Consortium; Aitman, T.J.; Haley, C.S.; Prendergast, J.G.; et al. Increased ultra-rare variant load in an isolated Scottish population impacts exonic and regulatory regions. PLoS Genet. 2019, 15, e1008480. [Google Scholar] [CrossRef] [PubMed]
- Bierne, N.; Bonhomme, F.; David, P. Habitat preference and the marine-speciation paradox. Proc. R. Soc. Lond. B 2003, 270, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Selmoni, O.; Vajana, E.; Guillaume, A.; Rochat, E.; Joost, S. Sampling strategy optimization to increase statistical power in landscape genomics: A simulation-based approach. Mol. Ecol. Resour. 2020, 20, 154–169. [Google Scholar] [CrossRef]
- Riginos, C.; Crandall, E.D.; Liggins, L.; Bongaerts, P.; Treml, E.A. Navigating the currents of seascape genomics: How spatial analyses can augment population genomic studies. Curr. Zool. 2016, 62, 581–601. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, L.; Zhao, X.; Gao, T.; Song, N. High genetic connectivity inferred from whole-genome resequencing provides insight into the phylogeographic pattern of Larimichthys polyactis. Mar. Biotechnol. 2022, 24, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Casey, S.P.; Hall, H.J.; Stanley, H.F.; Vincent, A.C. The origin and evolution of seahorses (genus Hippocampus): A phylogenetic study using the cytochrome b gene of mitochondrial DNA. Mol. Phylogenet. Evol. 2004, 30, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.D.; Matano, R.P.; Piola, A.R. A numerical study of the southwestern Atlantic shelf circulation: Stratified ocean response to local and offshore forcing. J. Geophys. Res. 2008, 113, 2007JC004720. [Google Scholar] [CrossRef]
- Gaither, M.R.; Toonen, R.J.; Robertson, D.R.; Planes, S.; Bowen, B.W. Genetic evaluation of marine biogeographical barriers: Perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J. Biogeogr. 2010, 37, 133–147. [Google Scholar] [CrossRef]
- Treml, E.A.; Roberts, J.; Halpin, P.N.; Possingham, H.P.; Riginos, C. The emergent geography of biophysical dispersal barriers across the Indo-West Pacific. Divers. Distrib. 2015, 21, 465–476. [Google Scholar] [CrossRef]
- Imbrie, J.; Boyle, E.A.; Clemens, S.C.; Duffy, A.; Howard, W.R.; Kukla, G.; Kutzbach, J.; Martinson, D.G.; McIntyre, A.; Mix, A.C.; et al. On the structure and origin of major glaciation cycles 1. Linear responses to milankovitch forcing. Paleoceanography 1992, 7, 701–738. [Google Scholar] [CrossRef]
- Lv, Y.; Yuan, J.; Li, Q.; Zhang, Y.; Lv, X.; Su, C. Impacts of land-based human activities on coastal and offshore marine ecosystems. Acta Ecol. Sin. 2016, 36, 1183–1191. [Google Scholar]
- Liu, C.; Wang, S.; Dong, X.; Zhao, J.; Ye, X.; Gong, R.; Ren, Z. Exploring the genomic resources and analysing the genetic diversity and population structure of chinese indigenous rabbit breeds by RAD-seq. BMC Genom. 2021, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Cai, Y.; Liu, P.; Huang, X.; Lv, Z.; Zhang, R.; Zhao, L.; Bao, L.; Wang, S.; Hu, J. Genomic differentiation and selection signatures of two elite varieties of Yesso scallop Mizuhopecten yessoensis. Aquaculture 2022, 550, 737842. [Google Scholar] [CrossRef]
- Roulin, A.; Burri, R.; Antoniazza, S. Owl melanin-based plumage redness is more frequent near than away from the equator: Implications on the effect of climate change on biodiversity. Biol. J. Linn. Soc. 2011, 102, 573–582. [Google Scholar] [CrossRef]
- Roulin, A. Melanin-based colour polymorphism responding to climate change. Glob. Change Biol. 2014, 20, 3344–3350. [Google Scholar] [CrossRef] [PubMed]
- Britton, S.; Davidowitz, G. The adaptive role of melanin plasticity in thermally variable environments. J. Evol. Biol. 2023, 36, 1811–1821. [Google Scholar] [CrossRef]
- Mermall, V.; Post, P.L.; Mooseker, M.S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 1998, 279, 527–533. [Google Scholar] [CrossRef]
- Aboul-Naga, A.M.; Alsamman, A.M.; El Allali, A.; Elshafie, M.H.; Abdelal, E.S.; Abdelkhalek, T.M.; Abdelsabour, T.H.; Mohamed, L.G.; Hamwieh, A. Genome-wide analysis identified candidate variants and genes associated with heat stress adaptation in Egyptian sheep breeds. Front. Genet. 2022, 13, 898522. [Google Scholar] [CrossRef]
- Ohishi, Y.; Kinoshita, R.; Marubashi, S.; Ishida, M.; Fukuda, M. The BLOC-3 subunit HPS4 is required for activation of Rab32/38 GTPases in melanogenesis, but its Rab9 activity is dispensable for melanogenesis. J. Biol. Chem. 2019, 294, 6912–6922. [Google Scholar] [CrossRef]
- Minchenko, O.; Opentanova, I.; Caro, J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1–4) expression in vivo. FEBS Lett. 2003, 554, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Minchenko, O.; Opentanova, I.; Minchenko, D.; Ogura, T.; Esumi, H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1α activation. FEBS Lett. 2004, 576, 14–20. [Google Scholar] [CrossRef]
- Strohecker, A.M.; Joshi, S.; Possemato, R.; Abraham, R.T.; Sabatini, D.M.; White, E. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene 2015, 34, 5662–5676. [Google Scholar] [CrossRef]
- Das, S.; Raj, L.; Zhao, B.; Kimura, Y.; Bernstein, A.; Aaronson, S.A.; Lee, S.W. Hzf determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 2007, 130, 624–637. [Google Scholar] [CrossRef]
- O’Reilly, D.; Belgrad, J.; Ferguson, C.; Summers, A.; Sapp, E.; McHugh, C.; Mathews, E.; Boudi, A.; Buchwald, J.; Ly, S.; et al. Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington’s disease. Mol. Ther. 2023, 31, 1661–1674. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Zhu, P.; He, L.; Li, Y.; Huang, W.; Xi, F.; Lin, L.; Zhi, Q.; Zhang, W.; Tang, Y.T.; Geng, C.; et al. Correction: OTG-snpcaller: An optimized pipeline based on TMAP and GATK for SNP calling from ion torrent data. PLoS ONE 2015, 10, e0138824. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, G.L.; Wright, S. Evolution and the genetics of populations. volume 3. experimental results and evolutionary deductions. Syst. Bot. 1977, 2, 347. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Lin, Q.; Fan, S.H.; Zhang, Y.H.; Xu, M.; Zhang, H.X.; Yang, Y.L.; Lee, A.P.; Woltering, J.M.; Ravi, V.; Gunter, H.M.; et al. The seahorse genome and the evolution of its specialized morphology. Nature 2016, 540, 395–399. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Schiffels, S.; Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 2014, 46, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Ravi, V.; Qin, G.; Dai, H.; Zhang, H.X.; Han, F.M.; Wang, X.; Liu, Y.H.; Yin, J.P.; Huang, L.M.; et al. Comparative genomics reveal shared genomic changes in syngnathid fishes and signatures of genetic convergence with placental mammals. Natl. Sci. Rev. 2020, 7, 964–977. [Google Scholar] [CrossRef]
Category | Type (Alphabetical Order) | Count | Percentage (%) |
---|---|---|---|
Region | upstream (1 kb) | 2,293,268 | 3.514 |
exonic | 2,608,787 | 3.918 | |
intronic | 31,282,950 | 46.987 | |
intergenic | 26,657,611 | 40.04 | |
5′UTR | 328,690 | 0.494 | |
3′UTR | 1,209,413 | 1.817 | |
downstream (1 kb) | 2,190,317 | 3.290 | |
upstream; downstream | 357,404 | 0.527 | |
splicing | 11,268 | 0.017 | |
Function class | synonymous SNV | 1,433,592 | 2.153 |
nonsynonymous SNV | 1,155,340 | 1.735 | |
stopgain | 10,658 | 0.016 | |
stoploss | 2293 | 0.003 |
Pop | Ho | He | Pic | Fis | Ao | Ae | π-Ratio |
---|---|---|---|---|---|---|---|
RS | 0.2031 | 0.1987 | 0.1673 | −0.0082 | 1.6178 | 1.3694 | 0.3269 |
AS | 0.1914 | 0.1822 | 0.1534 | −0.0251 | 1.5646 | 1.3358 | 0.3353 |
SCS | 0.2083 | 0.2001 | 0.1654 | −0.0184 | 1.5660 | 1.3824 | 0.3677 |
Group | RS | AS | SCS |
---|---|---|---|
RS | 0 | 0.2371 | 0.3222 |
AS | 0.8045 | 0 | 0.3183 |
SCS | 0.5258 | 0.5355 | 0 |
LG | Start (bp) | End (bp) | Gene ID | Gene Symbol | Fst (CHN and THA) | Fst (CHN and EGY) | π-Ratio (THA/CHN) | π-Ratio (EGY/CHN) |
---|---|---|---|---|---|---|---|---|
4 | 5105001 | 5110000 | Hke018906 | 0.5662 | 0.4900 | 3.854 | 5.265 | |
4 | 5325001 | 5330000 | Hke018922 | uckl1 | 0.7035 | 0.5425 | 4.885 | 20.383 |
6 | 4915001 | 4920000 | Hke019774 | cyc1 | 0.6107 | 0.4928 | 7.782 | 9.077 |
10 | 15875001 | 15880000 | Hke014228 | prkd3 | 0.6371 | 0.6408 | 15.632 | 12.435 |
12 | 10630001 | 10635000 | Hke006341 | adam22 | 0.5889 | 0.4953 | 10.243 | 12.111 |
15 | 740001 | 745000 | Hke004708 | ythdc2 | 0.7045 | 0.6342 | 4.800 | 4.958 |
15 | 13345001 | 13350000 | Hke005245 | msh3 | 0.5599 | 0.6784 | 10.262 | 9.447 |
15 | 19335001 | 19340000 | Hke005537 | hps4 | 0.5676 | 0.5120 | 7.629 | 10.824 |
16 | 1055001 | 1060000 | Hke006809 | pfkfb4 | 0.6299 | 0.5318 | 4.407 | 6.020 |
16 | 16090001 | 16095000 | Hke007537 | 0.6363 | 0.5591 | 27.982 | 34.741 | |
16 | 16655001 | 16660000 | Hke007578 | rbm12 | 0.7005 | 0.5678 | 26.760 | 24.788 |
17 | 11870001 | 11875000 | Hke004222 | myo5a | 0.5841 | 0.5080 | 6.895 | 5.935 |
17 | 22660001 | 22665000 | Hke004577 | hydin | 0.5644 | 0.6902 | 10.742 | 6.254 |
18 | 24365001 | 24370000 | Hke010048 | uncharacterized gene | 0.5893 | 0.5880 | 15.675 | 13.745 |
24370001 | 24375000 | 0.5829 | 0.6038 | 22.150 | 15.978 | |||
24385001 | 24390000 | 0.5745 | 0.5744 | 8.127 | 5.582 | |||
24400001 | 24405000 | 0.5801 | 0.5901 | 9.379 | 8.319 | |||
24405001 | 24410000 | 0.6603 | 0.5688 | 16.987 | 13.649 | |||
18 | 24405001 | 24410000 | Hke010049 | uncharacterized gene | 0.6603 | 0.5688 | 16.987 | 13.649 |
18 | 24540001 | 24545000 | Hke010050 | uncharacterized gene | 0.5994 | 0.4970 | 6.500 | 7.031 |
18 | 24610001 | 24615000 | Hke010051 | mhc | 0.6803 | 0.6164 | 23.842 | 25.619 |
24615001 | 24620000 | 0.6086 | 0.5151 | 16.228 | 15.089 | |||
19 | 2930001 | 2935000 | Hke012808 | actr3 | 0.5733 | 0.5279 | 11.117 | 11.360 |
20 | 9625001 | 9630000 | Hke001750 | efnb3 | 0.5354 | 0.5002 | 12.897 | 12.440 |
21 | 19560001 | 19565000 | Hke000631 | szrd1 | 0.6442 | 0.5060 | 3.969 | 5.247 |
21 | 33685001 | 33690000 | Hke001234 | znf385a | 0.5629 | 0.5928 | 5.264 | 5.851 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, W.-X.; Zhang, Y.-Y.; Wang, X.; Qu, M.; Wan, S.-M.; Lin, Q. Genetic Diversity and Environmental Adaptation Signatures of the Great Seahorse (Hippocampus kelloggi) in the Coastal Regions of the Indo-Pacific as Revealed by Whole-Genome Re-Sequencing. Int. J. Mol. Sci. 2025, 26, 1387. https://doi.org/10.3390/ijms26031387
Hao W-X, Zhang Y-Y, Wang X, Qu M, Wan S-M, Lin Q. Genetic Diversity and Environmental Adaptation Signatures of the Great Seahorse (Hippocampus kelloggi) in the Coastal Regions of the Indo-Pacific as Revealed by Whole-Genome Re-Sequencing. International Journal of Molecular Sciences. 2025; 26(3):1387. https://doi.org/10.3390/ijms26031387
Chicago/Turabian StyleHao, Wen-Xin, Ying-Yi Zhang, Xin Wang, Meng Qu, Shi-Ming Wan, and Qiang Lin. 2025. "Genetic Diversity and Environmental Adaptation Signatures of the Great Seahorse (Hippocampus kelloggi) in the Coastal Regions of the Indo-Pacific as Revealed by Whole-Genome Re-Sequencing" International Journal of Molecular Sciences 26, no. 3: 1387. https://doi.org/10.3390/ijms26031387
APA StyleHao, W.-X., Zhang, Y.-Y., Wang, X., Qu, M., Wan, S.-M., & Lin, Q. (2025). Genetic Diversity and Environmental Adaptation Signatures of the Great Seahorse (Hippocampus kelloggi) in the Coastal Regions of the Indo-Pacific as Revealed by Whole-Genome Re-Sequencing. International Journal of Molecular Sciences, 26(3), 1387. https://doi.org/10.3390/ijms26031387