Analysis of CNGC Family Members in Citrus clementina (Hort. ex Tan.) by a Genome-Wide Approach
Abstract
:1. Introduction
2. Results
2.1. Identification of CcCNGC Gene Family Members
2.2. Phylogenetic Analysis of the CNGC Gene Family
2.3. Gene Structure, Conserved Motifs, and Domain Analysis of the CcCNGC Gene Family Members
2.4. Chromosomal Localization and Synteny Analysis of CNGC Gene Family Members
2.5. Analysis of Cis-Acting Elements in the Promoter Regions of the CcCNGCs
2.6. Expression Analysis of the CcCNGCs in Citrus Tissues
2.7. Expression of CcCNGCs Under Plant Hormone Treatment
2.8. Expression of CcCNGCs Under Low-Temperature and Light Stress
2.9. Expression and Validation of CcCNGCs Under Phytophthora Treatment
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Identification and Physicochemical Property Analysis of Citrus CNGC Genes
4.3. Systematic Phylogenetic Characteristics of CNGC Family Members
4.4. Analysis of Conserved Motifs, Conserved Domains, and Gene Structure of CcCNGC Genes
4.5. Chromosomal Location and Collinearity Analysis of CcCNGC Genes
4.6. Cis-Acting Element Analysis of CcCNGC Gene Family
4.7. Expression Analysis of CcCNGC Genes in Different Tissues
4.8. Analysis of Expression Levels of CcCNGC Genes Under Different Treatments
4.9. Overexpression of CcCNGC Genes in Response to Phytophthora Infection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
C. clementina | Citrus clementina |
C. sinensis | Citrus sinensis |
P. trifoliata | Poncirus trifoliata |
P. infestans | Phytophthora infestans |
A. thaliana | Arabidopsis thaliana |
N. tabacum | Nicotiana tabacum |
IAA | Indole-3-acetic acid |
MeJA | Methyl Jasmonate |
SA | Salicylic acid |
ABA | Abscisic acid |
GA | Gibberellins |
References
- Luan, S.; Wang, C. Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 2021, 37, 311–340. [Google Scholar] [CrossRef]
- Ranf, S.; Eschen-Lippold, L.; Pecher, P.; Lee, J.; Scheel, D. Interplay between calcium signalling and early signalling elements during defence responses to microbe-or damage-associated molecular patterns. Plant J. 2011, 68, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Jin, L.; Peng, R. Crosstalk between Ca2+ and other regulators assists plants in responding to abiotic stress. Plants 2022, 11, 1351. [Google Scholar] [CrossRef] [PubMed]
- Moeder, W.; Phan, V.; Wang, K. Ca2+ to the rescue–Ca2+ channels and signaling in plant immunity. Plant Sci. 2019, 279, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, F.H. Mechanisms of Ca2+ Signalling in Diatoms. Ph.D. Thesis, University of Southampton, Southampton, UK, 2021. [Google Scholar]
- Xu, G.; Moeder, W.; Yoshioka, K.; Shan, L. A tale of many families: Calcium channels in plant immunity. Plant Cell 2022, 34, 1551–1567. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Bai, S.; Wang, N.; Sun, X.; Zhang, Y.; Zhu, J.; Dong, C. CRISPR/Cas9-mediated mutagenesis of MdCNGC2 in apple callus and VIGS-mediated silencing of MdCNGC2 in fruits improve resistance to Botryosphaeria dothidea. Front. Plant Sci. 2020, 11, 575477. [Google Scholar] [CrossRef] [PubMed]
- Schuurink, R.C.; Shartzer, S.F.; Fath, A.; Jones, R.L. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc. Natl. Acad. Sci. USA 1998, 95, 1944–1949. [Google Scholar] [CrossRef] [PubMed]
- Duszyn, M.; Świeżawska, B.; Szmidt-Jaworska, A.; Jaworski, K. Cyclic nucleotide gated channels (CNGCs) in plant signalling—Current knowledge and perspectives. J. Plant Physiol. 2019, 241, 153035. [Google Scholar] [CrossRef] [PubMed]
- Hua, B.G.; Mercier, R.W.; Leng, Q.; Berkowitz, G.A. Plants do itdifferently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol. 2003, 132, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Zelman, A.K.; Dawe, A.; Berkowitz, G.A.; Gehring, C. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front. Plant Sci. 2012, 29, 95. [Google Scholar] [CrossRef]
- Chin, K.; Moeder, W.; Yoshioka, K. Biological roles of cyclic nucleotide-gated ion channels in plants—What we know and don’t know about this 20 member ion channel family. Botany 2009, 87, 668–677. [Google Scholar] [CrossRef]
- Abdel-Hamid, H. Structural-Functional Analysis of Plant Cyclic Nucleotide Gated Ion Channels. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2013. [Google Scholar]
- Ali, R.; Ma, W.; Lemtiri-Chlieh, F.; Tsaltas, D.; Leng, Q.; von Bodman, S.; Berkowitz, G.A. Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 2007, 19, 1081–1095. [Google Scholar] [CrossRef]
- Fischer, C.; Kugler, A.; Hoth, S.; Dietrich, P. An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant Cell Physiol. 2013, 54, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; DeFalco, T.A.; Karia, P.; Snedden, W.A.; Moeder, W.; Yoshioka, K.; Dietrich, P. Calmodulin as a Ca2+-sensing subunit of Arabidopsis cyclic nucleotide-gated channel complexes. Plant Cell Physiol. 2017, 58, 1208–1221. [Google Scholar] [CrossRef]
- Talke, I.N.; Blaudez, D.; Maathuis, F.J.; Sanders, D. CNGCs: Prime targets of plant cyclic nucleotide signalling? Trends Plant Sci. 2003, 8, 286–293. [Google Scholar] [CrossRef]
- Zhang, N.; Lin, H.; Zeng, Q.; Fu, D.; Gao, X.; Wu, J.; Wu, Z. Genome-wide identification and expression analysis of the cyclic nucleotide-gated ion channel (CNGC) gene family in Saccharum spontaneum. BMC Genom. 2023, 24, 281. [Google Scholar] [CrossRef]
- Bock, K.; Hanys, D.; Ward, J.M.; Padmanaban, S.; Nawrocki, E.P.; Hirschi, K.D.; Twell, D.; Sze, H. Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol. 2006, 140, 1151–1168. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yin, H.; Gu, J.; Li, L.; Liu, Z.; Jiang, X.; Zhou, H.; Wei, S.; Zhang, S.; Wu, J. Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide- gated channels gene family in pear (Pyrus bretchneideri Rehd.). Genomics 2015, 105, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Wang, C.; Gao, Q.; Li, L.; Luan, S. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants 2020, 6, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, J.; Wang, Y.; Wang, J.; Yu, Y.; Long, Y.; Wang, Y.; Zhang, H.; Ren, Y.; Chen, J.; et al. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. PLoS Genet. 2017, 13, e1006906. [Google Scholar] [CrossRef] [PubMed]
- Jogawat, A. CNGCs: Emerging key channels in perception of stimuli in plant kingdom. Res. Rep. 2019, 3. [Google Scholar]
- Jin, Y.; Jing, W.; Zhang, Q.; Zhang, W. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis. Plant Res. 2015, 128, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Bheri, M.; Bisht, D.; Pandey, G.K. Calcium signaling and transport machinery: Potential for development of stress tolerance in plants. Curr. Plant Biol. 2022, 29, 100235. [Google Scholar] [CrossRef]
- Kugler, A.; Köhler, B.; Palme, K.; Wolff, P.; Dietrich, P. Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol. 2009, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.M.; Babourina, O.; Christopher, D.A.; Borsics, T.; Rengel, Z. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol. Plant 2008, 134, 499–507. [Google Scholar] [CrossRef]
- Ladwig, F.; Dahlke, R.I.; Stuhrwohldt, N.; Hartmann, J.; Harter, K.; Sauter, M. Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell 2015, 27, 1718–1729. [Google Scholar] [CrossRef]
- Massange-Sánchez, J.A.; Palmeros-Suárez, P.A.; Espitia-Rangel, E.; Rodríguez-Arévalo, I.; Sanchez-Segura, L.; Martinez-Gallardo, N.A.; Delano-Frier, J.P. Overexpression of grain amaranth (Amaranthus hypochondriacus) AhERF or AhDOF transcription factors in Arabidopsis thaliana increases water deficit- and salt-stress tolerance, respectively, via contrasting stress-amelioration mechanisms. PLoS ONE 2016, 11, e0164280. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, Z.; Kakar, K.U.; Ullah, R.; Yu, S.; Zhang, J.; Shu, Q.Y.; Ren, X.L. Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics 2019, 111, 142–158. [Google Scholar] [CrossRef]
- Moon, J.Y.; Belloeil, C.; Ianna, M.L.; Shin, R. Arabidopsis CNGC family members contribute to heavy metal ion uptake in plants. Int. J. Mol. Sci. 2019, 20, 413. [Google Scholar] [CrossRef] [PubMed]
- Tunc-Ozdemir, M.; Tang, C.; Ishka, M.R.; Brown, E.; Groves, N.R.; Myers, C.T.; Harper, J.F. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol. 2013, 161, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, Z.; Kakar, K.U.; Saand, M.A.; Shu, Q.Y. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genom. 2014, 15, 853. [Google Scholar] [CrossRef] [PubMed]
- Kakar, K.U.; Nawaz, Z.; Kakar, K.; Ali, E.; Almoneafy, A.A.; Ullah, R.; Ren, X.L.; Shu, Q.Y. Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: Novel insights into synteny, structures, and transcript profiles. BMC Genom. 2017, 18, 869. [Google Scholar] [CrossRef] [PubMed]
- Sivankalyani, V.; Sela, N.; Feygenberg, O.; Zemach, H.; Maurer, D.; Alkan, N. Transcriptome dynamics in mango fruit peel reveals mechanisms of chilling stress. Front. Plant Sci. 2016, 7, 1579. [Google Scholar] [CrossRef] [PubMed]
- Clough, S.J.; Fengler, K.A.; Yu, I.C.; Lippok, B.; Smith, R.K.; Bent, A.F. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 2000, 97, 9323–9328. [Google Scholar] [CrossRef]
- Balagué, C.; Lin, B.; Alcon, C.; Flottes, G.; Malmström, S.; Köhler, C.; Roby, D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide–gated channel ion channel family. Plant Cell 2003, 15, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Moeder, W.; Kang, H.G.; Kachroo, P.; Masmoudi, K.; Berkowitz, G.; Klessig, D.F. The chimeric Arabidopsis cyclic nucleotide-gated ion channel 11/12 activates multiple pathogen resistance responses. Plant Cell 2006, 18, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Wang, C.; Lv, Q.; Tian, Y.; Wang, D.; Chen, B.; Zuo, C. Cyclic nucleotide gated channel genes (CNGCs) in Rosaceae: Genome-wide annotation, evolution and the roles on Valsa canker resistance. Plant Cell Rep. 2021, 40, 2369–2382. [Google Scholar] [CrossRef]
- Chin, K.; DeFalco, T.A.; Moeder, W.; Yoshioka, K. The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiol. 2013, 163, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Kachroo, P.; Tsui, F.; Sharma, S.B.; Shah, J.; Klessig, D.F. Environmentally-sensitive, SA-dependent defense response in the cpr22 mutant of Arabidopsis. Plant J. 2001, 26, 447–459. [Google Scholar] [CrossRef]
- Jurkowski, G.I.; Smith, R.K., Jr.; Yu, I.C.; Ham, J.H.; Sharma, S.B.; Klessig, D.F.; Bent, A.F. Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol. Plant-Microbe Interact. 2004, 17, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wolters, A.M.; Loonen, A.E.; Huibers, R.P.; van der Vlugt, R.; Goverse, A.; Bai, Y. Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Res. 2016, 25, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Zielinski, R.E.; Berkowitz, G.A. Expression of plant cyclic nucleotide-gated cation channels in yeast. J. Exp. Bot. 2005, 57, 125–138. [Google Scholar] [CrossRef]
- Genger, R.K.; Jurkowski, G.I.; McDowell, J.M.; Lu, H.; Jung, H.W.; Greenberg, J.T.; Bent, A.F. Signaling pathways that regulate the enhanced disease resistance of Arabidopsis “defense, no death” mutants. Mol. Plant-Microbe Interact. 2008, 21, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.I.; Zhang, A.N.; Ren, Y.; Wu, F.; Wang, G.; Xu, Y.; Lei, C.; Zhu, S.; Pan, T.; et al. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res. 2019, 29, 820–831. [Google Scholar] [CrossRef]
- Moeder, W.; Urquhart, W.; Ung, H.; Yoshioka, K. The role of cyclic nucleotide-gated ion channels in plant immunity. Mol. Plant 2011, 4, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Zia, K.; Rao, M.J.; Sadaqat, M.; Azeem, F.; Fatima, K.; Tahir ul Qamar, M.; Alshammari, A.; Alharbi, M. Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in citrus spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Front. Genet. 2022, 13, 1034921. [Google Scholar] [CrossRef]
- Zhao, J.; Peng, S.; Cui, H.; Li, P.; Li, T.; Liu, L.; Xu, R. Dynamic expression, differential regulation and functional diversity of the CNGC family genes in cotton. Int. J. Mol. Sci. 2022, 23, 2041. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.K.; Sharma, M.; Pandey, G.K. Role of cyclic nucleotide gated channels in stress management in plants. Curr. Genom. 2016, 17, 315–329. [Google Scholar] [CrossRef]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon–intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Xu, X.; Carole, B.; Li, X.; Gao, M.; Zheng, Y.; Wang, X. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genom. 2013, 14, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tan, Y.; Wang, X.; Li, J.; Du, B.; Zhu, M.; Wang, P.; Wang, Y. OPEN STOMATA 1 phosphorylates CYCLIC NUCLEOTIDE-GATED CHANNELs to trigger Ca2+ signaling for abscisic acid-induced stomatal closure in Arabidopsis. Plant Cell 2024, 36, 2328–2358. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Yang, Y.; Shen, X.; Zhu, M.; Shen, J.; Zhang, W.; Hu, H.; Wang, Y. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 2023, 35, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ming, Y.; Jiang, B.; Zhang, X.; Fu, D.; Lin, Q.; Yang, S. Differential phosphorylation of Ca2+-permeable channel CYCLIC NUCLEOTIDE–GATED CHANNEL20 modulates calcium-mediated freezing tolerance in Arabidopsis. Plant Cell 2024, 36, 4356–4371. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Lu, S.; Li, Z.; Cheng, J.; Hu, P.; Zhu, T.; Hua, J. CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol. 2020, 183, 1794–1808. [Google Scholar] [CrossRef]
- Tian, W.; Hou, C.; Ren, Z.; Wang, C.; Zhao, F.; Dahlbeck, D.; Luan, S. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 2019, 572, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.N.; Cho, S.-H.; Wang, L.; Pham, A.Q.; Davies, J.M.; Stacey, G. Cyclic nucleotide-gated ion channel 6 is involved in extracellular ATP signaling and plant immunity. Plant J. 2022, 109, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xu, G.; Li, B.; de Souza Vespoli, L.; Liu, H.; Moeder, W.; Shan, L. The receptor kinases BAK1/SERK4 regulate Ca2+ channel-mediated cellular homeostasis for cell death containment. Curr. Biol. 2019, 29, 3778–3790. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, J.; Liu, Y.; Zhao, X.; Deng, X.; Guo, L.; Gu, J. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J. Exp. Bot. 2007, 58, 4161–4171. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Protein Name | MW | pI | Protein Length | Instability Index | Aliphatic Index | GRAVY | Localization Predicted |
---|---|---|---|---|---|---|---|
CcCNGC1 | 95109.31 | 7.33 | 834 | 37.15 | 31.53 | 0.755 | Plasma Membrane |
CcCNGC2 | 93371.57 | 6.43 | 817 | 40.23 | 29.82 | 0.656 | Plasma Membrane |
CcCNGC3 | 84175.39 | 7.04 | 732 | 40.36 | 29.37 | 0.664 | Plasma Membrane |
CcCNGC4 | 81613.47 | 9.14 | 710 | 41.92 | 27 | 0.638 | Plasma Membrane |
CcCNGC5 | 81613.47 | 9.14 | 710 | 41.92 | 27 | 0.638 | Plasma Membrane |
CcCNGC6 | 70096.16 | 8.53 | 608 | 43.35 | 30.54 | 0.729 | Plasma Membrane |
CcCNGC7 | 57963.78 | 8.79 | 502 | 43.65 | 27.16 | 0.666 | Plasma Membrane |
CcCNGC8 | 57963.78 | 8.79 | 502 | 43.65 | 27.16 | 0.666 | Plasma Membrane |
CcCNGC9 | 54232.64 | 8.54 | 472 | 44.46 | 29.03 | 0.7 | Plasma Membrane |
CcCNGC10 | 54232.64 | 8.54 | 472 | 44.46 | 29.03 | 0.7 | Plasma Membrane |
CcCNGC11 | 51910.01 | 8.54 | 445 | 44.99 | 32.06 | 0.756 | Plasma Membrane |
CcCNGC12 | 66225.86 | 8.38 | 573 | 44.7 | 26.88 | 0.689 | Plasma Membrane |
CcCNGC13 | 98268.66 | 9.24 | 857 | 45.57 | 26.84 | 0.685 | Plasma Membrane |
CcCNGC14 | 59415.25 | 9.31 | 507 | 45.04 | 30.83 | 0.712 | Plasma Membrane |
CcCNGC15 | 52188.96 | 9.00 | 453 | 39.51 | 30.02 | 0.695 | NONE |
CcCNGC16 | 99703.54 | 7.92 | 888 | 45.3 | 27.59 | 0.757 | Plasma Membrane |
CcCNGC17 | 99881.44 | 6.79 | 886 | 44.96 | 27.24 | 0.707 | Plasma Membrane |
CcCNGC18 | 84197.86 | 9.00 | 736 | 42.66 | 26.99 | 0.665 | Plasma Membrane |
CcCNGC19 | 83201.18 | 9.38 | 723 | 42.24 | 26.92 | 0.677 | Plasma Membrane |
CcCNGC20 | 80863.76 | 8.80 | 696 | 40.87 | 27.44 | 0.719 | Plasma Membrane |
CcCNGC21 | 81978.69 | 9.51 | 714 | 42.44 | 24.51 | 0.743 | Plasma Membrane |
CcCNGC22 | 81754.89 | 9.33 | 711 | 43.06 | 27.19 | 0.717 | Plasma Membrane |
CcCNGC23 | 76781.88 | 9.47 | 668 | 39.74 | 25.35 | 0.685 | Plasma Membrane |
CcCNGC24 | 89800.61 | 6.53 | 785 | 45.84 | 31.04 | 0.805 | Plasma Membrane |
CcCNGC25 | 73690.31 | 9.41 | 637 | 45.59 | 28.99 | 0.721 | Plasma Membrane |
CcCNGC26 | 83295.60 | 8.24 | 732 | 45.73 | 25 | 0.723 | Plasma Membrane |
CcCNGC27 | 83314.54 | 9.17 | 732 | 37.06 | 27.34 | 0.671 | Plasma Membrane |
CcCNGC28 | 79175.28 | 7.87 | 691 | 48.11 | 27.21 | 0.738 | Plasma Membrane |
CcCNGC29 | 94303.40 | 6.42 | 822 | 40.07 | 29.68 | 0.706 | Plasma Membrane |
CcCNGC30 | 83937.67 | 9.23 | 730 | 35.55 | 27.12 | 0.616 | Plasma Membrane |
CcCNGC31 | 84393.41 | 9.26 | 734 | 39.98 | 26.66 | 0.64 | Plasma Membrane |
CcCNGC32 | 80206.90 | 9.30 | 698 | 40.41 | 27.98 | 0.72 | Plasma Membrane |
CcCNGC33 | 75034.25 | 9.34 | 650 | 45.23 | 28.82 | 0.739 | Plasma Membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Liu, S.; Ma, Y.; Hu, L.; Yan, H. Analysis of CNGC Family Members in Citrus clementina (Hort. ex Tan.) by a Genome-Wide Approach. Int. J. Mol. Sci. 2025, 26, 960. https://doi.org/10.3390/ijms26030960
Lv Y, Liu S, Ma Y, Hu L, Yan H. Analysis of CNGC Family Members in Citrus clementina (Hort. ex Tan.) by a Genome-Wide Approach. International Journal of Molecular Sciences. 2025; 26(3):960. https://doi.org/10.3390/ijms26030960
Chicago/Turabian StyleLv, Yuanda, Shumei Liu, Yanyan Ma, Lina Hu, and Huaxue Yan. 2025. "Analysis of CNGC Family Members in Citrus clementina (Hort. ex Tan.) by a Genome-Wide Approach" International Journal of Molecular Sciences 26, no. 3: 960. https://doi.org/10.3390/ijms26030960
APA StyleLv, Y., Liu, S., Ma, Y., Hu, L., & Yan, H. (2025). Analysis of CNGC Family Members in Citrus clementina (Hort. ex Tan.) by a Genome-Wide Approach. International Journal of Molecular Sciences, 26(3), 960. https://doi.org/10.3390/ijms26030960