Elucidating the Interplay of Hypoxia-Inducible Factor and Circadian Clock Signaling in Obstructive Sleep Apnea Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample
4.2. Polysomnography
4.3. Material Collection and Assessment of Protein and mRNA Levels
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molnár, V.; Molnár, A.; Lakner, Z.; Tárnoki, D.L.; Tárnoki, Á.D.; Jokkel, Z.; Szabó, H.; Dienes, A.; Angyal, E.; Németh, F.; et al. Examination of the Diaphragm in Obstructive Sleep Apnea Using Ultrasound Imaging. Sleep Breath. 2022, 26, 1333–1339. [Google Scholar] [CrossRef]
- Turkiewicz, S.; Ditmer, M.; Sochal, M.; Białasiewicz, P.; Strzelecki, D.; Gabryelska, A. Obstructive Sleep Apnea as an Acceleration Trigger of Cellular Senescence Processes through Telomere Shortening. Int. J. Mol. Sci. 2021, 22, 12536. [Google Scholar] [CrossRef]
- Gabryelska, A.; Turkiewicz, S.; Karuga, F.F.; Sochal, M.; Strzelecki, D.; Białasiewicz, P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients—Possible Mechanisms Involved and Clinical Implication. Int. J. Mol. Sci. 2022, 23, 709. [Google Scholar] [CrossRef]
- Prabhakar, N.R.; Peng, Y.-J.; Nanduri, J. Hypoxia-inducible factors and obstructive sleep apnea. J. Clin. Investig. 2020, 130, 5042–5051. [Google Scholar] [CrossRef]
- Gabryelska, A.; Karuga, F.F.; Szmyd, B.; Białasiewicz, P. HIF-1α as a Mediator of Insulin Resistance, T2DM, and Its Complications: Potential Links With Obstructive Sleep Apnea. Front. Physiol. 2020, 11, 1035. [Google Scholar] [CrossRef]
- Koritala, B.S.C.; Conroy, Z.; Smith, D.F. Circadian Biology in Obstructive Sleep Apnea. Diagnostics 2021, 11, 1082. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, D.; Liu, N.; Xiong, W.; Huang, H.; Li, Y.; Ma, Z.; Zhao, H.; Chen, P.; Qi, X.; et al. Reciprocal Regulation between the Circadian Clock and Hypoxia Signaling at the Genome Level in Mammals. Cell Metab. 2017. [Google Scholar] [CrossRef]
- Gabryelska, A.; Sochal, M.; Turkiewicz, S.; Białasiewicz, P. Relationship between HIF-1 and Circadian Clock Proteins in Obstructive Sleep Apnea Patients—Preliminary Study. J. Clin. Med. 2020, 9, 1599. [Google Scholar] [CrossRef]
- Belaidi, E.; Thomas, A.; Bourdier, G.; Moulin, S.; Lemarié, E.; Levy, P.; Pépin, J.-L.; Korichneva, I.; Godin-Ribuot, D.; Arnaud, C. Endoplasmic reticulum stress as a novel inducer of hypoxia inducible factor-1 activity: Its role in the susceptibility to myocardial ischemia-reperfusion induced by chronic intermittent hypoxia. Int. J. Cardiol. 2016, 210, 45–53. [Google Scholar] [CrossRef]
- Martinez, C.-A.; Kerr, B.; Jin, C.; Cistulli, P.A.; Cook, K.M. Obstructive Sleep Apnea Activates HIF-1 in a Hypoxia Dose-Dependent Manner in HCT116 Colorectal Carcinoma Cells. Int. J. Mol. Sci. 2019, 20, 445. [Google Scholar] [CrossRef]
- Mesarwi, O.A.; Shin, M.-K.; Bevans-Fonti, S.; Schlesinger, C.; Shaw, J.; Polotsky, V.Y. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease. PLoS ONE 2016, 11, e0168572. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, M.; Su, W.; Xu, M.; Zhao, S. miR-199a-5p Relieves Obstructive Sleep Apnea Syndrome-Related Hypertension by Targeting HIF-1α. J. Immunol. Res. 2022, 2022, 7236647. [Google Scholar] [CrossRef]
- Gabryelska, A.; Szmyd, B.; Szemraj, J.; Stawski, R.; Sochal, M.; Białasiewicz, P. Patients with obstructive sleep apnea present with chronic upregulation of serum HIF-1α protein. J. Clin. Sleep Med. 2020, 16, 1761–1768. [Google Scholar] [CrossRef]
- Lu, D.; Li, N.; Yao, X.; Zhou, L. Potential inflammatory markers in obstructive sleep apnea-hypopnea syndrome. Bosn. J. Basic Med. Sci. 2017, 17, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, E.; Bakker, J.P.; Clarke, D.N.; Csizmadia, E.; Kocher, O.; Veves, A.; Tecilazich, F.; O’Donnell, C.P.; Ferran, C.; Malhotra, A. Molecular Biomarkers of Vascular Dysfunction in Obstructive Sleep Apnea. PLoS ONE 2013, 8, e70559. [Google Scholar] [CrossRef]
- O’connell, E.J.; Martinez, C.-A.; Liang, Y.G.; Cistulli, P.A.; Cook, K.M. Out of breath, out of time: Interactions between HIF and circadian rhythms. Am. J. Physiol. Physiol. 2020, 319, C533–C540. [Google Scholar] [CrossRef]
- Morgan, M.N.; Dvuchbabny, S.; Martinez, C.-A.; Kerr, B.; Cistulli, P.A.; Cook, K.M. The Cancer Clock Is (Not) Ticking: Links between Circadian Rhythms and Cancer. Clocks Sleep 2019, 1, 34. [Google Scholar] [CrossRef]
- Gaspar, L.S.; Hesse, J.; Yalçin, M.; Santos, B.; Carvalhas-Almeida, C.; Ferreira, M.; Moita, J.; Relógio, A.; Cavadas, C.; Álvaro, A.R. Long-term continuous positive airway pressure treatment ameliorates biological clock disruptions in obstructive sleep apnea. EBioMedicine 2021, 65, 103248. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Lin, P.W.; Lin, H.-C.; Lin, P.M.; Chen, I.-Y.; Friedman, M.; Hung, C.-F.; Salapatas, A.M.; Lin, M.C.; Lin, S.F. Alternations of Circadian Clock Genes Expression and Oscillation in Obstructive Sleep Apnea. J. Clin. Med. 2019, 8, 1634. [Google Scholar] [CrossRef]
- Burioka, N.; Koyanagi, S.; Endo, M.; Takata, M.; Fukuoka, Y.; Miyata, M.; Takeda, K.; Chikumi, H.; Ohdo, S.; Shimizu, E. Clock gene dysfunction in patients with obstructive sleep apnoea syndrome. Eur. Respir. J. 2008, 32, 105–112. [Google Scholar] [CrossRef]
- Moreira, S.; Rodrigues, R.; Barros, A.B.; Pejanovic, N.; Neves-Costa, A.N.; Pedroso, D.; Pereira, C.; Fernandes, D.; Rodrigues, J.V.; Bárbara, C.; et al. Changes in Expression of the CLOCK Gene in Obstructive Sleep Apnea Syndrome Patients Are Not Reverted by Continuous Positive Airway Pressure Treatment. Front. Med. 2017, 4, 187. [Google Scholar] [CrossRef] [PubMed]
- Canales, M.T.; Holzworth, M.; Bozorgmehri, S.; Ishani, A.; Weiner, I.D.; Berry, R.B.; Beyth, R.J.; Gumz, M. Clock gene expression is altered in veterans with sleep apnea. Physiol. Genom. 2019, 51, 77–82. [Google Scholar] [CrossRef]
- Wu, G.; Lee, Y.Y.; Gulla, E.M.; Potter, A.; Kitzmiller, J.; Ruben, M.D.; Salomonis, N.; Whitsett, J.A.; Francey, L.J.; Hogenesch, J.B.; et al. Short-term exposure to intermittent hypoxia leads to changes in gene expression seen in chronic pulmonary disease. eLife 2021, 10, e63003. [Google Scholar] [CrossRef]
- Manella, G.; Aviram, R.; Bolshette, N.; Muvkadi, S.; Golik, M.; Smith, D.F.; Asher, G. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc. Natl. Acad. Sci. USA 2019, 117, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G., Jr. HIFalpha Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing. Science 2001, 292, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, P.; Mole, D.R.; Tian, Y.-M.; Wilson, M.I.; Gielbert, J.; Gaskell, S.J.; von Kriegsheim, A.; Hebestreit, H.F.; Mukherji, M.; Schofield, C.J.; et al. Targeting of HIF-alpha to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation. Science 2001, 292, 468–472. [Google Scholar] [CrossRef]
- Busino, L.; Bassermann, F.; Maiolica, A.; Lee, C.; Nolan, P.M.; Godinho, S.I.H.; Draetta, G.F.; Pagano, M. SCF Fbxl3 Controls the Oscillation of the Circadian Clock by Directing the Degradation of Cryptochrome Proteins. Science 2007, 316, 900–904. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, X.; Cao, J.; Zhu, H.; Yang, B.; He, Q.; Ying, M. Phosphorylation regulates cullin-based ubiquitination in tumorigenesis. Acta Pharm. Sin. B 2020, 11, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Amir, S.; Golan, M.; Ben-Neriah, Y.; Mabjeesh, N.J. β-TrCP upregulates HIF-1 in prostate cancer cells. Prostate 2018, 79, 403–413. [Google Scholar] [CrossRef]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef] [PubMed]
- Sleep-Related Breathing Disorders in Adults: Recommendations for Syndrome Definition and Measurement Techniques in Clinical Research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 1999, 22, 667–689. [CrossRef]
Parameter | Control Group (n = 16) | OSA Group (n = 54) | p-Value |
---|---|---|---|
Age, years old | 49.9 SD 9.2 | 51.9 SD 11.6 | 0.53 |
BMI, kg/m2 | 30.4 SD 6.1 | 32.7 SD 5.4 | 0.14 |
Sex, male [n] | 81.3% (n = 13) | 92.6% (n = 50) | 0.34 |
Sleep Efficiency, % | 80.8 (71.9–88.2) | 86.4 (74.3–90.7) | 0.24 |
Sleep Onset Latency, min | 17.8 (10.6–25.9) | 13.3 (8.0–24.0) | 0.19 |
Sleep Maintenance Efficiency, % | 86.9 (82.4–92.3) | 92.1 (80.0–95.3) | 0.18 |
REM Sleep Latency, min | 78.5 (56.6–99.8) | 81.0 (60.8–137.3) | 0.28 |
TST, h | 6.0 SD 1.30 | 6.2 SD 0.9 | 0.33 |
REM Duration, h | 1.3 SD 0.60 | 1.2 SD 0.5 | 0.33 |
nREM Duration, h | 4.6 SD 0.8 | 5.0 SD 0.8 | 0.06 |
Arousal Index, events/h | 14.0 (6.5–23.2) | 18.2 (11.4–27.9) | 0.06 |
AHI, events/h | 1.0 (0.5–1.8) | 26.1 (13.9–56.3) | <0.001 |
AHI in REM, events/h | 1.2 (0.0–3.9) | 29.5 (11.7–46.9) | <0.001 |
AHI in nREM, events/h | 1.0 (0.4–1.4) | 21.7 (10.8–50.6) | <0.001 |
Total number of desaturations | 10.0 (6.0–15.0) | 136.0 (73.3–313.8) | <0.001 |
Desaturation Index, events/h | 2.0 (1.0–2.8) | 33.5 (17.0–61.4) | <0.001 |
Basal SpO2, % | 93.3 (92.4–94.2) | 91.5 (89.7–93.1) | <0.001 |
Mean SpO2 during desaturations, % | 90.6 (88.5–92.5) | 86.8 (83.3–89.2) | <0.001 |
Minimum SpO2, % | 88.9 (84.5–91.4) | 75.0 (65.5–81.3) | <0.001 |
Parameter | Control Group | OSA Group | p-Value Control Group vs. OSA Group | p-Value Evening vs. Morning Control Group | p-Value Evening vs. Morning OSA Group | ||
---|---|---|---|---|---|---|---|
Gene expression | evening | BMAL1 | 6.10 (3.78–15.48) | 6.38 (2.13–29.87) | 0.80 | 0.39 | 0.39 |
morning | 14.53 (6.58–26.55) | 6.31 (1.28–14.03) | 0.02 | ||||
evening | CLOCK | 3.70 (1.29–5.71) | 2.29 (1.33–4.667) | 0.35 | 0.20 | 0.29 | |
morning | 4.78 (1.76–16.13) | 3.33 (1.35–6.29) | 0.20 | ||||
evening | CRY1 | 4.05 (2.12–7.03) | 1.84 (0.82–4.80) | 0.09 | 0.26 | 0.06 | |
morning | 6.60 (1.97–12.40) | 3.58 (1.60–5.92) | 0.12 | ||||
evening | PER1 | 2.05 (0.96–6.96) | 2.63 (0.71–9.59) | 0.91 | 0.02 | 0.004 | |
morning | 6.90 (5.26–27.86) | 7.45 (2.96–16.29) | 0.49 | ||||
evening | HIF-1α | 25.12 (7.49–28.80) | 19.74 (3.98–42.97) | 0.66 | 0.69 | 0.94 | |
morning | 1620 (7.99–43.22) | 17.92 (5.56–36.16) | 0.95 | ||||
evening | HIF-1β | 14.21 (7.96–35.50) | 16.28 (7.65–45.60) | 0.99 | 0.40 | 0.49 | |
morning | 35.12 (13.53–57.20) | 22.41 (7.37–42.74) | 0.23 | ||||
Protein level | evening | BMAL1, ng/mL | 17.41 (17.07–18.60) | 17.54 (17.06–18.02) | 0.86 | 0.21 | 0.92 |
morning | 17.62 (16.97–17.97) | 17.62 (17.25–17.96) | 0.59 | ||||
evening | CLOCK, ng/mL | 3.51 (3.22–3.62) | 3.66 (3.53–4.02) | 0.03 | 0.92 | 0.89 | |
morning | 3.49 (3.21–3.59) | 3.66 (3.56–4.00) | 0.008 | ||||
evening | CRY1, ng/mL | 35.30 (21.81–43.11) | 38.15 (30.93–48.65) | 0.048 | 0.15 | 0.78 | |
morning | 27.95 (18.44–39.83) | 37.71 (32.10–43.78) | 0.003 | ||||
evening | PER1, ng/mL | 243.05 (185.06–294.42) | 304.20 (254.93–381.10) | 0.003 | 0.35 | 0.86 | |
morning | 246.52 (212.66–305.47) | 304.09 (261.43–384.30) | 0.02 | ||||
evening | HIF-1α, ng/mL | 2.41 (2.20–2.93) | 2.73 (2.29–3.41) | 0.25 | 0.22 | 0.58 | |
morning | 2.36 (2.15–2.60) | 2.78 (2.30–3.53) | 0.04 | ||||
evening | HIF-1β, ng/mL | 70.80 (69.62–72.36) | 71.90 (68.87–72.60) | 0.53 | 0.06 | 0.22 | |
morning | 70.27 (67.09–72.19) | 71.94 (69.853–72.42) | 0.19 |
Gene Expression | Protein Level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
HIF-1α | HIF-β | HIF-1α | HIF-β | |||||||
Evening | Morning | Evening | Morning | Evening | Morning | Evening | Morning | |||
OSA group | BMAL1 | evening | R = 0.457 p = 0.003 | R = 0.363 p = 0.02 | R = −0.228 p = 0.10 | R = −0.076 p = 0.59 | ||||
morning | R = 0.504 p < 0.001 | R = 0.474 p < 0.001 | R = 0.035 p = 0.80 | R = 0.170 p = 0.22 | ||||||
CLOCK | evening | R = 0.312 p = 0.046 | R = 0.355 p = 0.03 | R = −0.195 p = 0.16 | R = 0.155 p = 0.26 | |||||
morning | R = 0.441 p = 0.002 | R = 0.608 p < 0.001 | R = −0.136 p = 0.33 | R = 0.029 p = 0.84 | ||||||
CRY1 | evening | R = 0.581 p < 0.001 | R = 0.616 p < 0.001 | R = −0.168 p = 0.23 | R = 0.155 p = 0.26 | |||||
morning | R = 0.521 p < 0.001 | R = 0.465 p = 0.001 | R = −0.252 p = 0.07 | R = 0.029 p = 0.84 | ||||||
PER1 | evening | R = 0.356 p = 0.02 | R = 0.653 p < 0.001 | R = 0.053 p = 0.71 | R = −0.233 p = 0.09 | |||||
morning | R = 0.050 p = 0.73 | R = 0.424 p = 0.003 | R = −0.053 p = 0.71 | R = −0.322 p = 0.02 | ||||||
Control group | BMAL1 | evening | R = 0.473 p = 0.09 | R = 0.692 p = 0.01 | R = 0.090 p = 0.74 | R = −0.099 p = 0.74 | ||||
morning | R = 0.107 p = 0.70 | R = 0.314 p = 0.25 | R = 0.149 p = 0.58 | R = −0.288 p = 0.32 | ||||||
CLOCK | evening | R = 0.571 p = 0.03 | R = 0.874 p < 0.001 | R = 0.338 p = 0.20 | R = −0.112 p = 0.70 | |||||
morning | R = −0.020 p = 0.95 | R = 0.550 p = 0.03 | R = −0.100 p = 0.71 | R = −0.165 p = 0.57 | ||||||
CRY1 | evening | R = 0.552 p = 0.04 | R = 0.522 p = 0.07 | R = −0.053 p = 0.85 | R = −0.086 p = 0.77 | |||||
morning | R = 0.279 p = 0.32 | R = 0.564 p = 0.03 | R = −0.588 p = 0.02 | R = 0.218 p = 0.46 | ||||||
PER1 | evening | R = 0.246 p = 0.38 | R = 0.187 p = 0.54 | R = 0.265 p = 0.32 | R = −0.275 p = 0.34 | |||||
morning | R = −0.175 p = 0.53 | R = 0.471 p = 0.07 | R = 0.094 p = 0.73 | R = −0.209 p = 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabryelska, A.; Turkiewicz, S.; Gajewski, A.; Białasiewicz, P.; Strzelecki, D.; Ditmer, M.; Chałubiński, M.; Sochal, M. Elucidating the Interplay of Hypoxia-Inducible Factor and Circadian Clock Signaling in Obstructive Sleep Apnea Patients. Int. J. Mol. Sci. 2025, 26, 971. https://doi.org/10.3390/ijms26030971
Gabryelska A, Turkiewicz S, Gajewski A, Białasiewicz P, Strzelecki D, Ditmer M, Chałubiński M, Sochal M. Elucidating the Interplay of Hypoxia-Inducible Factor and Circadian Clock Signaling in Obstructive Sleep Apnea Patients. International Journal of Molecular Sciences. 2025; 26(3):971. https://doi.org/10.3390/ijms26030971
Chicago/Turabian StyleGabryelska, Agata, Szymon Turkiewicz, Adrian Gajewski, Piotr Białasiewicz, Dominik Strzelecki, Marta Ditmer, Maciej Chałubiński, and Marcin Sochal. 2025. "Elucidating the Interplay of Hypoxia-Inducible Factor and Circadian Clock Signaling in Obstructive Sleep Apnea Patients" International Journal of Molecular Sciences 26, no. 3: 971. https://doi.org/10.3390/ijms26030971
APA StyleGabryelska, A., Turkiewicz, S., Gajewski, A., Białasiewicz, P., Strzelecki, D., Ditmer, M., Chałubiński, M., & Sochal, M. (2025). Elucidating the Interplay of Hypoxia-Inducible Factor and Circadian Clock Signaling in Obstructive Sleep Apnea Patients. International Journal of Molecular Sciences, 26(3), 971. https://doi.org/10.3390/ijms26030971