Oral Transfer of Anti-Aging Substances: Key Chemical Found in Reproductive Caste of Termites
Abstract
:1. Introduction
2. Result
2.1. Metabolomic Analysis Results
2.2. Functional Substances Identified from Differential Metabolites
2.3. Trophallaxis Fishing Assays
2.4. Toxicity Test Results
2.5. H2O2 Aging Model Establishment
2.6. Expression of Aging-Related Genes
2.7. Survival Numbers of Prematurely Aged Zebrafish Induced by Different Concentrations of IDA
2.8. mRNA Expression of p21, p16, and p53
2.8.1. mRNA Expression of at1 and at2
2.8.2. mRNA Expression of insulin, foxoa, igf1 and mTOR
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Termite Rearing and Induction of Reproductive Caste
4.3. Location of Trophallaxis Fluid
4.4. Trophallaxis Fluid Collection
4.5. Non-Targeted Metabolomics
4.6. Synthesis of SiO2@Ag
4.7. Expression of AT2 Protein in Escherichia coli
4.8. Fixed AT2 Protein
4.9. Screening of Trophallaxis Fluid for Compounds That Interact with Immobilized AT2 Proteins
4.10. High-Performance Liquid Chromatography (HPLC)
Mass Spectrometry (MS)
4.11. Zebrafish Breeding
4.12. Toxicity Testing
4.13. Significant Aging Agent Treatment
4.14. SA-β-Gal Test
4.15. Total RNA Extraction and Real-Time PCR
4.16. Lifespan Test
4.17. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Avondt, K.; Strecker, J.K.; Tulotta, C.; Minnerup, J.; Schulz, C.; Soehnlein, O. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 2023, 314, 357–375. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Trogdon, J.G.; Khavjou, O.A.; Butler, J.; Dracup, K.; Ezekowitz, M.D.; Finkelstein, E.A.; Hong, Y.; Johnston, S.C.; Khera, A.; et al. Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation 2011, 123, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Guarente, L.; Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 2000, 408, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Taormina, G.; Ferrante, F.; Vieni, S.; Grassi, N.; Russo, A.; Mirisola, M.G. Longevity: Lesson from Model Organisms. Genes 2019, 10, 518. [Google Scholar] [CrossRef]
- Melzer, D.; Pilling, L.C.; Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 2020, 21, 88–101. [Google Scholar] [CrossRef]
- Uno, M.; Nishida, E. Lifespan-regulating genes in C. elegans. NPJ Aging Mech. Dis. 2016, 2, 16010. [Google Scholar] [CrossRef] [PubMed]
- Flurkey, K.; Papaconstantinou, J.; Miller, R.A.; Harrison, D.E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl. Acad. Sci. USA 2001, 98, 6736–6741. [Google Scholar] [CrossRef]
- Putker, M.; Madl, T.; Vos, H.R.; de Ruiter, H.; Visscher, M.; van den Berg, M.C.; Kaplan, M.; Korswagen, H.C.; Boelens, R.; Vermeulen, M.; et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 2013, 49, 730–742. [Google Scholar] [CrossRef]
- Weichhart, T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology 2018, 64, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Mair, W.; Morantte, I.; Rodrigues, A.P.; Manning, G.; Montminy, M.; Shaw, R.J.; Dillin, A. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 2011, 470, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Onken, B.; Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 2010, 5, e8758. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; Corrêa, C.L.; Lopez-Lopez, A.; Costa-Besada, M.A.; Diaz-Ruiz, C.; Labandeira-Garcia, J.L. Physical Exercise Improves Aging-Related Changes in Angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the Substantia Nigra. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 1594–1601. [Google Scholar] [CrossRef]
- McCarthy, C.A.; Widdop, R.E.; Denton, K.M.; Jones, E.S. Update on the angiotensin AT(2) receptor. Curr. Hypertens. Rep. 2013, 15, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Gelosa, P.; Pignieri, A.; Fändriks, L.; de Gasparo, M.; Hallberg, A.; Banfi, C.; Castiglioni, L.; Turolo, L.; Guerrini, U.; Tremoli, E.; et al. Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: Focus on renal damage. J. Hypertens. 2009, 27, 2444–2451. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, F.; Xu, K.; Cao, H.; Zheng, G.Y.; Zhang, Y.; Li, J.; Cui, H.; Chen, X.; Zhu, Z.; et al. Common genetic variants of the β2-adrenergic receptor affect its translational efficiency and are associated with human longevity. Aging Cell 2012, 11, 1094–1101. [Google Scholar] [CrossRef]
- Ito, N.; Takatsu, A.; Ito, H.; Koike, Y.; Yoshioka, K.; Kamei, Y.; Imai, S.I. Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging. Cell Rep. 2022, 40, 111131. [Google Scholar] [CrossRef]
- Fang, X.Y.; Chen, Z.; Miao, G.B.; Zhang, L. Expression of β1- and β2-adrenergic receptors in the lungs and changes in the levels of corresponding autoantibodies in an aged rat model of heart failure. Int. J. Mol. Med. 2016, 38, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C. The plasticity of aging: Insights from long-lived mutants. Cell 2005, 120, 449–460. [Google Scholar] [CrossRef]
- Kenyon, C.J. The genetics of ageing. Nature 2010, 464, 504–512. [Google Scholar] [CrossRef]
- Xie, R.; Ning, Z.; Xiao, M.; Li, L.; Liu, M.; Zhang, Y. Dietary inflammatory potential and biological aging among US adults: A population-based study. Aging Clin. Exp. Res. 2023, 35, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Duque, G.; Al Saedi, A.; Rivas, D.; Miard, S.; Ferland, G.; Picard, F.; Gaudreau, P. Differential Effects of Long-Term Caloric Restriction and Dietary Protein Source on Bone and Marrow Fat of the Aging Rat. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- Basso, N.; Cini, R.; Pietrelli, A.; Ferder, L.; Terragno, N.A.; Inserra, F. Protective effect of long-term angiotensin II inhibition. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H1351–H1358. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Sobha, D.; Patel, D.; Suresh, P.S. Intermittent fasting in health and disease. Arch. Physiol. Biochem. 2024, 130, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.D.; Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef]
- Wilson, K.A.; Bar, S.; Dammer, E.B.; Carrera, E.M.; Hodge, B.A.; Hilsabeck, T.A.U.; Bons, J.; Brownridge, G.W., 3rd; Beck, J.N.; Rose, J.; et al. OXR1 maintains the retromer to delay brain aging under dietary restriction. Nat. Commun. 2024, 15, 467. [Google Scholar] [CrossRef]
- Di Francesco, A.; Deighan, A.G.; Litichevskiy, L.; Chen, Z.; Luciano, A.; Robinson, L.; Garland, G.; Donato, H.; Vincent, M.; Schott, W.; et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 2024, 634, 684–692. [Google Scholar] [CrossRef]
- Mensah, E.O.; Danyo, E.K.; Asase, R.V. Exploring the effect of different diet types on ageing and age-related diseases. Nutrition 2025, 129, 112596. [Google Scholar] [CrossRef] [PubMed]
- Elsner, D.; Meusemann, K.; Korb, J. Longevity and transposon defense, the case of termite reproductives. Proc. Natl. Acad. Sci. USA 2018, 115, 5504–5509. [Google Scholar] [CrossRef]
- Jones, O.R.; Scheuerlein, A.; Salguero-Gómez, R.; Camarda, C.G.; Schaible, R.; Casper, B.B.; Dahlgren, J.P.; Ehrlén, J.; García, M.B.; Menges, E.S.; et al. Diversity of ageing across the tree of life. Nature 2014, 505, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, E.; Mitaka, Y.; Takahashi, Y.; Waliullah, A.S.M.; Tamannaa, Z.; Sakamoto, T.; Islam, A.; Kamiya, M.; Sato, T.; Aramaki, S.; et al. The royal food of termites shows king and queen specificity. PNAS Nexus 2023, 2, pgad222. [Google Scholar] [CrossRef] [PubMed]
- Quque, M.; Villette, C.; Criscuolo, F.; Sueur, C.; Bertile, F.; Heintz, D. Eusociality is linked to caste-specific differences in metabolism, immune system, and somatic maintenance-related processes in an ant species. Cell. Mol. Life Sci. 2021, 79, 29. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, T.; Waliullah, A.S.M.; Aramaki, S.; Kamiya, M.; Kahyo, T.; Nakamura, K.; Tasaki, E.; Takata, M.; Setou, M.; Matsuura, K. Plastic brain structure changes associated with the division of labor and aging in termites. Dev. Growth Differ. 2023, 65, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Wyss, M.; Durán Agüero, S.; Angarita Dávila, L. D-Tagatose Is a Promising Sweetener to Control Glycaemia: A New Functional Food. BioMed Res. Int. 2018, 2018, 8718053. [Google Scholar] [CrossRef]
- He, S.; Johnston, P.R.; Kuropka, B.; Lokatis, S.; Weise, C.; Plarre, R.; Kunte, H.J.; McMahon, D.P. Termite soldiers contribute to social immunity by synthesizing potent oral secretions. Insect Mol. Biol. 2018, 27, 564–576. [Google Scholar] [CrossRef]
- Li, E.; Wang, Y.; Li, Q.; Li, L.; Wei, L. Protective Effects of Sal B on Oxidative Stress-Induced Aging by Regulating the Keap1/Nrf2 Signaling Pathway in Zebrafish. Molecules 2021, 26, 5239. [Google Scholar] [CrossRef] [PubMed]
- Labandeira-Garcia, J.L.; Labandeira, C.M.; Guerra, M.J.; Rodriguez-Perez, A.I. The role of the brain renin-angiotensin system in Parkinson’s disease. Transl. Neurodegener. 2024, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.O.; Eisner, T. Quantitative studies of liquid food transmission in ants. Insectes Soc. 1957, 4, 157–166. [Google Scholar] [CrossRef]
- Farina, W.M.; Grüter, C.; Acosta, L.; Mc Cabe, S. Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften 2007, 94, 55–60. [Google Scholar] [CrossRef]
- LeBoeuf, A.C.; Waridel, P.; Brent, C.S.; Gonçalves, A.N.; Menin, L.; Ortiz, D.; Riba-Grognuz, O.; Koto, A.; Soares, Z.G.; Privman, E.; et al. Oral transfer of chemical cues, growth proteins and hormones in social insects. eLife 2016, 5, e20375. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, E.; Yamamoto, Y.; Iuchi, Y. Higher levels of the lipophilic antioxidants coenzyme Q(10) and vitamin E in long-lived termite queens than in short-lived workers. Insect Sci. 2024, 31, 201–210. [Google Scholar] [CrossRef]
- Xu, C.X.; Song, P.; Yu, Z.; Wang, Y.H. Surface-enhanced Raman spectroscopy as a powerful method for the analysis of Chinese herbal medicines. Analyst 2024, 149, 46–58. [Google Scholar] [CrossRef]
- Bansal, T.; Alaniz, R.C.; Wood, T.K.; Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 228–233. [Google Scholar] [CrossRef]
- Shimada, Y.; Kinoshita, M.; Harada, K.; Mizutani, M.; Masahata, K.; Kayama, H.; Takeda, K. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 2013, 8, e80604. [Google Scholar] [CrossRef]
- Chimerel, C.; Emery, E.; Summers, D.K.; Keyser, U.; Gribble, F.M.; Reimann, F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014, 9, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Owumi, S.; Arunsi, U.; Otunla, M.; Adebisi, G.; Altayyar, A.; Irozuru, C. 3-Indolepropionic acid mitigates sub-acute toxicity in the cardiomyocytes of epirubicin-treated female rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Bai, Y.; Lai, C.; Mo, L.; Li, Y.; Jiang, X.; Xu, W.; He, Y.; Zhou, X.; Chen, C. Plasma indole-3-aldehyde as a novel biomarker of acute kidney injury after cardiac surgery: A reanalysis using prospective metabolomic data. BMC Anesthesiol. 2023, 23, 364. [Google Scholar] [CrossRef]
- Qu, Z.; Tian, P.; Wang, L.; Jin, X.; Guo, M.; Lu, J.; Zhao, J.; Chen, W.; Wang, G. Dietary Nucleotides Promote Neonatal Rat Microbiota-Gut-Brain Axis Development by Affecting Gut Microbiota Composition and Metabolic Function. J. Agric. Food Chem. 2023, 71, 19622–19637. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Guo, M.; Liu, D.; Xiao, P.; Yang, C.; Huang, H.; Liang, C.; Yang, Y.; Fu, X.; Zhang, Y.; et al. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nat. Cell Biol. 2024, 26, 124–137. [Google Scholar] [CrossRef]
- Zhang, R.; Kang, R.; Tang, D. Gut Microbiome Mediates Ferroptosis Resistance for Colorectal Cancer Development. Cancer Res. 2024, 84, 796–797. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ma, J.; Zheng, X.; Zhang, Z.; Lian, X.; Zhao, X.; Zhao, X. Fabrication of a bioconjugated dual-functional SERS probe for facile compound screening and detection. Biosens. Bioelectron. 2023, 234, 115369. [Google Scholar] [CrossRef]
Death (F) Group Day | 0.05 mg/L | 0.5 mg/L | 5 mg/L | 50 mg/L | 500 mg/L |
---|---|---|---|---|---|
1 | 0 | 0 | 1 | 15 | 15 |
1 | 0 | 0 | 1 | 15 | 15 |
1 | 0 | 0 | 1 | 15 | 15 |
2 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 0 | 0 | 0 |
Time | 0 mg/L (%) | 0.05 mg/L (%) | 0.5 mg/L (%) | 5 mg/L (%) |
---|---|---|---|---|
1 | 100 | 97.7 | 97.7 | 100 |
2 | 97.7 | 97.7 | 97.7 | 100 |
3 | 97.7 | 95.5 | 97.7 | 97.7 |
4 | 97.7 | 95.5 | 97.7 | 97.7 |
5 | 77.7 | 80.0 | 91.1 | 91.1 |
6 | 64.4 | 66.6 | 68.8 | 68.8 |
7 | 40.0 | 35.5 | 48.8 | 51.1 |
8 | 31.1 | 22.2 | 33.3 | 31.1 |
9 | 28.8 | 15.5 | 24.4 | 28.8 |
10 | 22.2 | 15.5 | 24.4 | 28.8 |
11 | 13.3 | 15.5 | 22.2 | 28.8 |
12 | 0 | 15.5 | 22.2 | 28.8 |
13 | 0 | 15.5 | 22.2 | 28.8 |
14 | 0 | 15.5% | 22.2 | 28.8 |
Gene | Forward Primer | Reverse Primer |
---|---|---|
actin | 5’-CCACCATGTACCCTGGCATT-3’ | 5’-CATCTGCTGGAAGGTGGACA-3’ |
p21 | 5’-CTGCACTCCCGCATGAAG-3’ | 5’-GACGCTTCTTGGCTTGGTAGAA-3’ |
p16 | 5’-AACGTCGAGGATGAACTGACC-3’ | 5’-CAAGAGCCAAAGGTGCGTTA-3’ |
p53 | 5’-TAAGAGTGGAGGGCAATCAGC-3’ | 5’-GCACAGTTGTCCATTCAGCA-3’ |
mTOR | 5’-TTACGACAGGACGAGAGGGT-3’ | 5’-GAGTTGGTGGAAAGCGGGAT-3’ |
igf1 | 5’- GTACCCACACCCTCTCACTG-3’ | 5’-GTCCATATCCTGTCGGTTTGC-3’ |
insulin | 5’-GGCCCAACAGGCTTCTTCTA-3’ | 5’-ATGCAAAGTCAGCCACCTCA-3’ |
atg2 | 5′-CGACCTGCTACAGCCGAATC-3′ | 5′-TGCAACACATGAACCAACCG-3′ |
atg1 | 5′-TGCGTTCTAGTTTGGGTGGT-3′ | 5′-GACTGAGAGCTGCAAGGACA-3′ |
foxoa | 5’-GTTTGCCAAGAGCAGAGGAC-3’ | 5’-CATTGCTGTGGGAGTTCGGA-3’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Khan, Z.; Dong, Y.; Xing, L.-X. Oral Transfer of Anti-Aging Substances: Key Chemical Found in Reproductive Caste of Termites. Int. J. Mol. Sci. 2025, 26, 1543. https://doi.org/10.3390/ijms26041543
Peng X, Khan Z, Dong Y, Xing L-X. Oral Transfer of Anti-Aging Substances: Key Chemical Found in Reproductive Caste of Termites. International Journal of Molecular Sciences. 2025; 26(4):1543. https://doi.org/10.3390/ijms26041543
Chicago/Turabian StylePeng, Xin, Zahid Khan, Yanan Dong, and Lian-Xi Xing. 2025. "Oral Transfer of Anti-Aging Substances: Key Chemical Found in Reproductive Caste of Termites" International Journal of Molecular Sciences 26, no. 4: 1543. https://doi.org/10.3390/ijms26041543
APA StylePeng, X., Khan, Z., Dong, Y., & Xing, L.-X. (2025). Oral Transfer of Anti-Aging Substances: Key Chemical Found in Reproductive Caste of Termites. International Journal of Molecular Sciences, 26(4), 1543. https://doi.org/10.3390/ijms26041543