Adiponectin C1Q and Collagen Domain Containing rs266729, Cyclin-Dependent Kinase Inhibitor 2A and 2B rs10811661, and Signal Sequence Receptor Subunit 1 rs9505118 Polymorphisms and Their Association with Gestational Diabetes Mellitus: A Case-Control Study in a Romanian Population
Abstract
:1. Introduction
2. Results
2.1. Maternal Demographic, Anthropometric, and Biochemical Parameters at Birth
2.2. Maternal-Fetal Outcomes
2.3. Association Between Maternal Studied Gene Polymorphisms and the Risk of GDM
2.4. Correlations Between rs266729, rs10811661, and rs9505118 Polymorphisms and Maternal-Fetal Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Description of Study Area and Duration of Study
4.3. Inclusion and Exclusion Criteria
4.4. Diagnosis of GDM
4.5. Anthropometric Measurements
4.6. Biochemical Analyses
4.7. Genotyping Analysis
4.8. Maternal and Neonatal Complications
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boutari, C.; Mantzoros, C.S. A 2022 Update on the Epidemiology of Obesity and a Call to Action: As Its Twin COVID-19 Pandemic Appears to Be Receding, the Obesity and Dysmetabolism Pandemic Continues to Rage On. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.S.; Armstrong, S.C.; Michalsky, M.P.; Fox, C.K. Obesity in Adolescents: A Review. JAMA 2024, 332, 738–748. [Google Scholar] [CrossRef]
- Cunningham, S.A.; Hardy, S.T.; Jones, R.; Ng, C.; Kramer, M.R.; Narayan, K.V. Changes in the Incidence of Childhood Obesity. Pediatrics 2022, 150, e2021053708. [Google Scholar] [CrossRef] [PubMed]
- Bendor, C.D.; Bardugo, A.; Pinhas-Hamiel, O.; Afek, A.; Twig, G. Cardiovascular Morbidity, Diabetes and Cancer Risk among Children and Adolescents with Severe Obesity. Cardiovasc. Diabetol. 2020, 19, 79. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185. [Google Scholar] [CrossRef]
- Fletcher, B.; Gulanick, M.; Lamendola, C. Risk Factors for Type 2 Diabetes Mellitus. J. Cardiovasc. Nurs. 2002, 16, 17–23. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational Diabetes Mellitus. Nat. Rev. Dis. Primer 2019, 5, 47. [Google Scholar] [CrossRef]
- Muntean, M.; Săsăran, V.; Luca, S.-T.; Suciu, L.M.; Nyulas, V.; Mărginean, C. Serum Levels of Adipolin and Adiponectin and Their Correlation with Perinatal Outcomes in Gestational Diabetes Mellitus. J. Clin. Med. 2024, 13, 4082. [Google Scholar] [CrossRef]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Wani, J.I.; Sabah, Z.U.; Jeelani, M.; Marakala, V.; Sohail, S.K.; O’haj, M.; Alharthi, M.H.; et al. Differential Association of Selected Adipocytokines, Adiponectin, Leptin, Resistin, Visfatin and Chemerin, with the Pathogenesis and Progression of Type 2 Diabetes Mellitus (T2DM) in the Asir Region of Saudi Arabia: A Case Control Study. J. Pers. Med. 2022, 12, 735. [Google Scholar] [CrossRef]
- Willemsen, G.; Ward, K.J.; Bell, C.G.; Christensen, K.; Bowden, J.; Dalgård, C.; Harris, J.R.; Kaprio, J.; Lyle, R.; Magnusson, P.K.; et al. The Concordance and Heritability of Type 2 Diabetes in 34,166 Twin Pairs from International Twin Registers: The Discordant Twin (DISCOTWIN) Consortium. Twin Res. Hum. Genet. 2015, 18, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, J.; Grant, A.M. The Genetics of Gestational Diabetes Mellitus: Evidence for Relationship with Type 2 Diabetes Mellitus. Genet. Med. 2008, 10, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Pervjakova, N.; Moen, G.-H.; Borges, M.-C.; Ferreira, T.; Cook, J.P.; Allard, C.; Beaumont, R.N.; Canouil, M.; Hatem, G.; Heiskala, A.; et al. Multi-Ancestry Genome-Wide Association Study of Gestational Diabetes Mellitus Highlights Genetic Links with Type 2 Diabetes. Hum. Mol. Genet. 2022, 31, 3377–3391. [Google Scholar] [CrossRef]
- Linares-Pineda, T.; Peña-Montero, N.; Fragoso-Bargas, N.; Gutiérrez-Repiso, C.; Lima-Rubio, F.; Suarez-Arana, M.; Sánchez-Pozo, A.; Tinahones, F.J.; Molina-Vega, M.; Picón-César, M.J.; et al. Epigenetic Marks Associated with Gestational Diabetes Mellitus across Two Time Points during Pregnancy. Clin. Epigenetics 2023, 15, 110. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, R.; Qin, S.; Wei, Y. High Glucose Increases IGF-2/H19 Expression by Changing DNA Methylation in HTR8/SVneo Trophoblast Cells. Placenta 2022, 118, 32–37. [Google Scholar] [CrossRef]
- Ober, C.; Xiang, K.; Thisted, R.A.; Indovina, K.A.; Wason, C.J.; Dooley, S.; Rao, D. Increased Risk for Gestational Diabetes Mellitus Associated with Insulin Receptor and Insulin-like Growth Factor II Restriction Fragment Length Polymorphisms. Genet. Epidemiol. 1989, 6, 559–569. [Google Scholar] [CrossRef]
- Wu, L.; Cui, L.; Tam, W.H.; Ma, R.C.; Wang, C.C. Genetic Variants Associated with Gestational Diabetes Mellitus: A Meta-Analysis and Subgroup Analysis. Sci. Rep. 2016, 6, 30539. [Google Scholar] [CrossRef]
- Pawlik, A.; Teler, J.; Maciejewska, A.; Sawczuk, M.; Safranow, K.; Dziedziejko, V. Adiponectin and Leptin Gene Polymorphisms in Women with Gestational Diabetes Mellitus. J. Assist. Reprod. Genet. 2017, 34, 511–516. [Google Scholar] [CrossRef]
- Tangjittipokin, W.; Narkdontri, T.; Teerawattanapong, N.; Thanatummatis, B.; Wardati, F.; Sunsaneevithayakul, P.; Boriboonhirunsarn, D. The Variants in ADIPOQ Are Associated with Maternal Circulating Adipokine Profile in Gestational Diabetes Mellitus. J. Multidiscip. Healthc. 2023, 16, 309–319. [Google Scholar] [CrossRef]
- Howlader, M.; Sultana, M.I.; Akter, F.; Hossain, M.M. Adiponectin Gene Polymorphisms Associated with Diabetes Mellitus: A Descriptive Review. Heliyon 2021, 7, e07851. [Google Scholar] [CrossRef]
- Hribal, M.; Presta, I.; Procopio, T.; Marini, M.; Stančáková, A.; Kuusisto, J.; Andreozzi, F.; Hammarstedt, A.; Jansson, P.-A.; Grarup, N.; et al. Glucose Tolerance, Insulin Sensitivity and Insulin Release in European Non-Diabetic Carriers of a Polymorphism Upstream of CDKN2A and CDKN2B. Diabetologia 2011, 54, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Long, W.; Zhou, W.; Zhang, B.; Liu, J.; Yu, B. FTO, GCKR, CDKAL1 and CDKN2A/B Gene Polymorphisms and the Risk of Gestational Diabetes Mellitus: A Meta-Analysis. Arch. Gynecol. Obstet. 2018, 298, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, X.; Liu, Q.; Wang, Y. Association Between Type 2 Diabetes and Rs10811661 Polymorphism Upstream of CDKN2A/B: A Meta-Analysis. Acta Diabetol. 2013, 50, 657–662. [Google Scholar] [CrossRef]
- Tarnowski, M.; Malinowski, D.; Safranow, K.; Dziedziejko, V.; Pawlik, A. CDC123/CAMK1D Gene Rs12779790 Polymorphism and Rs10811661 Polymorphism Upstream of the CDKN2A/2B Gene in Women with Gestational Diabetes. J. Perinatol. 2017, 37, 345–348. [Google Scholar] [CrossRef]
- Kasuga, Y.; Hata, K.; Tajima, A.; Ochiai, D.; Saisho, Y.; Matsumoto, T.; Arata, N.; Miyakoshi, K.; Tanaka, M. Association of Common Polymorphisms with Gestational Diabetes Mellitus in Japanese Women: A Case-Control Study. Endocr. J. 2017, 64, 463–475. [Google Scholar] [CrossRef]
- Mahajan, A.; Go, M.; Zhang, W.; Below, J.; Gaulton, K.; Ferreira, T.; Horikoshi, M.; Johnson, A.; Ng, M.; Prokopenko, I. DIAbetes Genetics Replication And Meta-Analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consortium; Type 2 Diabetes Genetic Exploration by Nex-Generation Sequencing in Muylti-Ethnic Samples (T2D-GENES) Consortium. Genome-Wide Trans-Ancestry Meta-Analysis Provides Insight into the Genetic Architecture of Type 2 Diabetes Susceptibility. Nat. Genet. 2014, 46, 234–244. [Google Scholar]
- Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; Gustafsson, S.; et al. Large-Scale Association Analyses Identify New Loci Influencing Glycemic Traits and Provide Insight into the Underlying Biological Pathways. Nat. Genet. 2012, 44, 991–1005. [Google Scholar] [CrossRef]
- Monod, C.; Kotzaeridi, G.; Linder, T.; Eppel, D.; Rosicky, I.; Filippi, V.; Tura, A.; Hösli, I.; Göbl, C.S. Prevalence of Gestational Diabetes Mellitus in Women with a Family History of Type 2 Diabetes in First-and Second-Degree Relatives. Acta Diabetol. 2023, 60, 345–351. [Google Scholar] [CrossRef]
- Zhu, M.; Lv, Y.; Peng, Y.; Wu, Y.; Feng, Y.; Jia, T.; Xu, S.; Li, S.; Wang, W.; Tian, J.; et al. GCKR and ADIPOQ Gene Polymorphisms in Women with Gestational Diabetes Mellitus. Acta Diabetol. 2023, 60, 1709–1718. [Google Scholar] [CrossRef]
- Dias, S.; Adam, S.; Rheeder, P.; Pheiffer, C. No Association Between ADIPOQ or MTHFR Polymorphisms and Gestational Diabetes Mellitus in South African Women. Diabetes Metab. Syndr. Obes. 2021, 14, 791–800. [Google Scholar] [CrossRef]
- Alejandro, E.U.; Mamerto, T.P.; Chung, G.; Villavieja, A.; Gaus, N.L.; Morgan, E.; Pineda-Cortel, M.R.B. Gestational Diabetes Mellitus: A Harbinger of the Vicious Cycle of Diabetes. Int. J. Mol. Sci. 2020, 21, 5003. [Google Scholar] [CrossRef]
- Pantham, P.; Aye, I.L.H.; Powell, T.L. Inflammation in Maternal Obesity and Gestational Diabetes Mellitus. Placenta 2015, 36, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Šimják, P.; Cinkajzlová, A.; Anderlová, K.; Pařízek, A.; Mráz, M.; Kršek, M.; Haluzík, M. The Role of Obesity and Adipose Tissue Dysfunction in Gestational Diabetes Mellitus. J. Endocrinol. 2018, 238, R63–R77. [Google Scholar] [CrossRef] [PubMed]
- Ellerbrock, J.; Spaanderman, B.; van Drongelen, J.; Mulder, E.; Lopes van Balen, V.; Schiffer, V.; Jorissen, L.; Alers, R.-J.; Leenen, J.; Ghossein-Doha, C.; et al. Role of Beta Cell Function and Insulin Resistance in the Development of Gestational Diabetes Mellitus. Nutrients 2022, 14, 2444. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Yang, Y.; Cao, H.; Xu, Z.; Tian, Z.; Zhan, Y.; Li, Z.; Lu, M.; Gu, F.; Lu, Q.; et al. Contribution of Insulin Resistance and β Cell Dysfunction to Gestational Diabetes Stratified for Pre-Pregnant Body Mass Index. Reprod. Sci. 2024, 31, 1151–1158. [Google Scholar] [CrossRef]
- da Silva Rosa, S.C.; Liu, M.; Sweeney, G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology 2021, 36, 134–149. [Google Scholar] [CrossRef]
- Moyce Gruber, B.L.; Dolinsky, V.W. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life 2023, 13, 301. [Google Scholar] [CrossRef]
- Kim, A.Y.; Park, Y.J.; Pan, X.; Shin, K.C.; Kwak, S.-H.; Bassas, A.F.; Sallam, R.M.; Park, K.S.; Alfadda, A.A.; Xu, A.; et al. Obesity-Induced DNA Hypermethylation of the Adiponectin Gene Mediates Insulin Resistance. Nat. Commun. 2015, 6, 7585. [Google Scholar] [CrossRef]
- Moyce Gruber, B.L.; Cole, L.K.; Xiang, B.; Fonseca, M.A.; Klein, J.; Hatch, G.M.; Doucette, C.A.; Dolinsky, V.W. Adiponectin Deficiency Induces Hepatic Steatosis during Pregnancy and Gestational Diabetes in Mice. Diabetologia 2022, 65, 733–747. [Google Scholar] [CrossRef]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef]
- Carpenter, M.W. Gestational Diabetes, Pregnancy Hypertension, and Late Vascular Disease. Diabetes Care 2007, 30, S246–S250. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Leng, J.; Li, W.; Zhang, C.; Feng, L.; Wang, P.; Chan, J.C.; Hu, G.; Yu, Z.; Yang, X. Roles of Insulin Resistance and Beta Cell Dysfunction in Macrosomia among Chinese Women with Gestational Diabetes Mellitus. Prim. Care Diabetes 2018, 12, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Fabricius, E.E.; Bergholt, T.; Kelstrup, L.; Jangö, H. Gestational Diabetes Mellitus Affects the Risk of Obstetric Anal Sphincter Injury: A Systematic Review and Meta-Analysis of Cohort Studies. Int. Urogynecol. J. 2024, 36, 25–34. [Google Scholar] [CrossRef]
- Von Theobald, P.; Bohrer, M.; Lorrain, S.; Iacobelli, S. Risk Factors Associated with Severe Perineal Tears: A Five-Year Study. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101820. [Google Scholar] [CrossRef]
- Strand-Holm, K.M.; Fuglsang, J.; Ovesen, P.G.; Maimburg, R.D. Diabetes Mellitus and Lower Genital Tract Tears after Vaginal Birth: A Cohort Study. Midwifery 2019, 69, 121–127. [Google Scholar] [CrossRef]
- Beltcheva, O.; Boyadzhieva, M.; Angelova, O.; Mitev, V.; Kaneva, R.; Atanasova, I. The Rs266729 Single-Nucleotide Polymorphism in the Adiponectin Gene Shows Association with Gestational Diabetes. Arch. Gynecol. Obstet. 2014, 289, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Mizgier, M.; Jarzabek-Bielecka, G.; Mruczyk, K. Maternal Diet and Gestational Diabetes Mellitus Development. J. Matern. Fetal Neonatal Med. 2021, 34, 77–86. [Google Scholar] [CrossRef]
- Noury, A.E.; Azmy, O.; Alsharnoubi, J.; Salama, S.; Okasha, A.; Gouda, W. Variants of CDKAL1 Rs7754840 (G/C) and CDKN2A/2B Rs10811661 (C/T) with Gestational Diabetes: Insignificant Association. BMC Res. Notes 2018, 11, 181. [Google Scholar] [CrossRef]
- Matsuba, R.; Imamura, M.; Tanaka, Y.; Iwata, M.; Hirose, H.; Kaku, K.; Maegawa, H.; Watada, H.; Tobe, K.; Kashiwagi, A.; et al. Replication Study in a Japanese Population of Six Susceptibility Loci for Type 2 Diabetes Originally Identified by a Transethnic Meta-Analysis of Genome-Wide Association Studies. PLoS ONE 2016, 11, e0154093. [Google Scholar] [CrossRef]
- Ruhstaller, K. Induction of Labor in the Obese Patient. In Seminars in Perinatology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 39, pp. 437–440. [Google Scholar]
- Garretto, D.; Lin, B.B.; Syn, H.L.; Judge, N.; Beckerman, K.; Atallah, F.; Friedman, A.; Brodman, M.; Bernstein, P.S. Obesity May Be Protective against Severe Perineal Lacerations. J. Obes. 2016, 2016, 9376592. [Google Scholar] [CrossRef]
- Habek, D.; Tikvica Luetić, A.; Marton, I.; Prka, M.; Pavlović, G.; Kuljak, Ž.; Švanjug, D.; Mužina, Z. Modified Ritgen Maneuver in Perineal Protection–Sixty-Year Experience. Acta Clin. Croat. 2018, 57, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Le Ray, C.; Pizzagalli, F. Which Interventions during Labour to Decrease the Risk of Perineal Tears? CNGOF Perineal Prevention and Protection in Obstetrics Guidelines. Gynecol. Obstet. Fertil. Senol. 2018, 46, 928–936. [Google Scholar] [PubMed]
- Hastings-Tolsma, M.; Vincent, D.; Emeis, C.; Francisco, T. Getting through Birth in One Piece: Protecting the Perineum. MCN Am. J. Matern. Nurs. 2007, 32, 158–164. [Google Scholar] [CrossRef]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Lowe, L.P.; Dyer, A.R.; Oats, J.J.; Buchanan, T.A. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy: Response to Weinert. Diabetes Care 2010, 33, e98. [Google Scholar] [CrossRef]
- Mazaki-Tovi, S.; Romero, R.; Vaisbuch, E.; Erez, O.; Mittal, P.; Chaiworapongsa, T.; Kim, S.K.; Pacora, P.; Yeo, L.; Gotsch, F.; et al. Dysregulation of Maternal Serum Adiponectin in Preterm Labor. J. Matern. Fetal Neonatal Med. 2009, 22, 887–904. [Google Scholar] [CrossRef]
- Kannieappan, L.M.; Deussen, A.R.; Grivell, R.M.; Yelland, L.; Dodd, J.M. Developing a Tool for Obtaining Maternal Skinfold Thickness Measurements and Assessing Inter-Observer Variability Among Pregnant Women Who Are Overweight and Obese. BMC Pregnancy Childbirth 2013, 13, 42. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Espinoza, J.; Vidaeff, A.; Pettker, C.M.; Simhan, H. Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2019, 133, E1–E25. [Google Scholar]
- Baños, N.; Migliorelli, F.; Posadas, E.; Ferreri, J.; Palacio, M. Definition of Failed Induction of Labor and Its Predictive Factors: Two Unsolved Issues of an Everyday Clinical Situation. Fetal Diagn. Ther. 2015, 38, 161–169. [Google Scholar] [CrossRef]
- Cichowski, S.; Rogers, R. Prevention and Management of Obstetric Lacerations at Vaginal Delivery. Obstet. Gynecol. 2018, 132, E87–E102. [Google Scholar]
- American College of Obstetricians and Gynecologists. Practice Bulletin No. 173: Fetal Macrosomia. Obstet. Gynecol. 2016, 128, e195–e209. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
Parameters | GDM Group (n = 71) | Control Group (n = 142) | p-Value |
---|---|---|---|
Maternal age at delivery, Median (IQR) | 33.0 (31.0–34.0) | 31.0 (30.0–32.0) | 0.051 |
Heredo-colateral history of T2DM, % | 25 (35.2%) | 15 (10.6%) | <0.0001 |
Gestation, Median (IQR) | 2.0 (1.0–3.0) | 2.0 (1.0–3.0) | 0.2 |
Parity, Median (IQR) | 2.0 (1.0–4.0) | 1.0 (1.0–4.0) | 0.2 |
Gestational age at delivery, weeks, Median (IQR) | 38.6 (38.2–39.3) | 39.2 (38.5–39.5) | 0.001 |
Pre-pregnancy BMI, Kg/m2, Median (IQR) | 27.58 (25.7–29.0) | 22.1 (21.7–22.76) | <0.0001 |
GWG, Mean (SD) | 12.7 ± 7.13 | 15.3 ± 5.49 | 0.004 |
BMI at birth, Kg/m2, Mean (SD) | 33.1 ± 5.52 | 28.5 ± 3.8 | <0.0001 |
MUAC, cm, Median (IQR) | 31.5 (28.4–33.9) | 28.0 (26.2–41.2) | <0.0001 |
TST, mm, Median (IQR) | 22.2 (18.8–25.8) | 19.6 (14.8–24.2) | 0.001 |
CRP, mg/dL, Median (IQR) | 0.76 (0.4–1.18) | 0.62 (0.3–1.0) | 0.68 |
HgbA1c, %, Median (IQR) | 5.6 (5.4–6.1) | 5.4 (5.2–5.5) | <0.0001 |
IR-HOMA, Median (IQR) | 3.23 (2.0–4.2) | 2.3 (1.6–3.4) | 0.0002 |
Insulin, mUI/L, Median (IQR) | 14.8 (10.1–20.8) | 11.7 (8.4–16.3) | 0.003 |
C-peptide, Median (IQR) | 3.2 (2.4–3.9) | 2.7 (2.0–3.4) | 0.008 |
Adiponectin, ng/mL, Median (IQR) | 6020 (4346–7306) | 7131 (5272–8724) | 0.004 |
Newborn Characteristics | GDM Group (n = 71) | Control Group (n = 142) | p-Value |
---|---|---|---|
Weight, g, Median | 3470 (3170–3850) | 3350 (3108–3603) | 0.01 |
APGAR 5 min | |||
≥7 | 71 (100%) | 142 (100%) | N/A |
<7 | 0 | 0 | N/A |
Newborn gender, n, % Female, Male | 38 (53.5%) 33 (46.5%) | 68 (47.9%) 74 (52.1%) | 0.47 |
MUAC, mm, Mean, (SD) | 11.26 ± 1.08 | 10.9 ± 0.89 | 0.03 |
TST, mm, Mean (SD) | 6.12 ± 1.45 | 5.67 ± 1.29 | 0.051 |
Parameters | OR (95% CI) | p-Value |
---|---|---|
Maternal age | 1.043 (0.973–1.118) | 0.2 |
Pre-pregnancy BMI | 1.247 (1.151–1.352) | 0.0001 |
Parity (≥2) | 1.057 (0.646–1.730) | 0.8 |
Parameters | GDM Group (n = 71) | Control Group (n = 142) | p-Value |
---|---|---|---|
Gestational hypertension, n, % | 12 (16.9%) | 3 (2.1%) | <0.0001 |
Preterm birth (<37 weeks), n, % | 5 (7.0%) | 8 (5.6%) | 0.4 |
Failure of labor induction, n, % | 3 (4.2%) | 2 (1.4%) | 0.2 |
Cesarean section, n, % | 45 (63.38%) | 93 (67.39%) | 0.76 |
Perineal lacerations, n, % | 8 (11.3%) | 5 (3.5%) | 0.03 |
Macrosomia (≥4000 g), n, % | 15 (21.1%) | 5 (3.5%) | <0.0001 |
Parameters | GDM Group (n = 71) % | Control Group (n = 142) % | p-Value | ||
---|---|---|---|---|---|
rs 266729 | |||||
Alele | |||||
C | 109 | 76.7% | 215 | 75.7% | 0.9 |
G | 33 | 23.2% | 69 | 24.2% | |
Genotype | |||||
CC | 41 | 57.7% | 85 | 59.9% | 0.4 |
CG | 27 | 38.0% | 45 | 31.7% | |
GG | 3 | 4.2% | 12 | 8.5% | |
rs 9505118 | |||||
Alele | |||||
A | 89 | 62.6% | 164 | 57.7% | 0.3 |
G | 53 | 37.3% | 120 | 42.2% | |
Genotype | |||||
AA | 23 | 32.4% | 44 | 31.0% | 0.3 |
AG | 42 | 59.2% | 76 | 53.5% | |
GG | 6 | 8.5% | 22 | 15.5% | |
rs10811661 | |||||
Alele | |||||
C | 29 | 20.4% | 53 | 18.6% | 0.6 |
T | 113 | 79.5% | 231 | 81.3% | |
Genotype | |||||
CC | 4 | 5.6% | 8 | 5.6% | 0.6 |
CT | 23 | 32.4% | 38 | 26.8% | |
TT | 44 | 62.0% | 96 | 67.6% |
Variables/Genotypes | rs266729-CG+GG vs. CC | rs266729-CG+CC vs. GG | rs9505118-AA+AG vs. GG | rs9505118-GG+AG vs. AA | rs10811661-CT+TT vs. CC | rs10811661-TT vs. CC+CT | |
---|---|---|---|---|---|---|---|
Preterm birth | r | −0.124 | 0.058 | 0.084 | 0.073 | −0.171 | 0.011 |
p-value | 0.303 | 0.632 | 0.488 | 0.546 | 0.153 | 0.926 | |
Labor induction failure | r | 0.246 * | 0.044 | −0.188 | −0.154 | 0.051 | −0.165 |
p-value | 0.039 | 0.715 | 0.117 | 0.200 | 0.671 | 0.170 | |
Perineal lacerations | r | −0.034 | −0.147 | −0.052 | 0.151 | 0.087 | −0.279 * |
p-value | 0.776 | 0.223 | 0.667 | 0.207 | 0.470 | 0.018 | |
Macrosomia (≥4000 g) | r | −0.093 | −0.063 | −0.215 | 0.063 | 0.126 | 0.092 |
p-value | 0.438 | 0.603 | 0.072 | 0.600 | 0.293 | 0.445 | |
Gestational hypertension | r | 0.071 | 0.095 | −0.133 | 0.152 | −0.053 | 0.189 |
p-value | 0.558 | 0.432 | 0.268 | 0.207 | 0.662 | 0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntean, M.; Mărginean, C.; Bernad, E.S.; Bănescu, C.; Nyulas, V.; Muntean, I.E.; Săsăran, V. Adiponectin C1Q and Collagen Domain Containing rs266729, Cyclin-Dependent Kinase Inhibitor 2A and 2B rs10811661, and Signal Sequence Receptor Subunit 1 rs9505118 Polymorphisms and Their Association with Gestational Diabetes Mellitus: A Case-Control Study in a Romanian Population. Int. J. Mol. Sci. 2025, 26, 1654. https://doi.org/10.3390/ijms26041654
Muntean M, Mărginean C, Bernad ES, Bănescu C, Nyulas V, Muntean IE, Săsăran V. Adiponectin C1Q and Collagen Domain Containing rs266729, Cyclin-Dependent Kinase Inhibitor 2A and 2B rs10811661, and Signal Sequence Receptor Subunit 1 rs9505118 Polymorphisms and Their Association with Gestational Diabetes Mellitus: A Case-Control Study in a Romanian Population. International Journal of Molecular Sciences. 2025; 26(4):1654. https://doi.org/10.3390/ijms26041654
Chicago/Turabian StyleMuntean, Mihai, Claudiu Mărginean, Elena Silvia Bernad, Claudia Bănescu, Victoria Nyulas, Irina Elena Muntean, and Vladut Săsăran. 2025. "Adiponectin C1Q and Collagen Domain Containing rs266729, Cyclin-Dependent Kinase Inhibitor 2A and 2B rs10811661, and Signal Sequence Receptor Subunit 1 rs9505118 Polymorphisms and Their Association with Gestational Diabetes Mellitus: A Case-Control Study in a Romanian Population" International Journal of Molecular Sciences 26, no. 4: 1654. https://doi.org/10.3390/ijms26041654
APA StyleMuntean, M., Mărginean, C., Bernad, E. S., Bănescu, C., Nyulas, V., Muntean, I. E., & Săsăran, V. (2025). Adiponectin C1Q and Collagen Domain Containing rs266729, Cyclin-Dependent Kinase Inhibitor 2A and 2B rs10811661, and Signal Sequence Receptor Subunit 1 rs9505118 Polymorphisms and Their Association with Gestational Diabetes Mellitus: A Case-Control Study in a Romanian Population. International Journal of Molecular Sciences, 26(4), 1654. https://doi.org/10.3390/ijms26041654