Biased Opioid Receptor Agonists: Balancing Analgesic Efficacy and Side-Effect Profiles
Abstract
:1. Introduction
2. Mechanism of Opioid-Induced Analgesia and Adverse Reactions
3. Conflicts in the β-Arrestin Signaling Pathway
4. What Is the Biased Ligand Agonist?
5. A New Approach to Biased Agonists
6. Comparison Between Biased Agonists and Morphine
6.1. TRV130
6.2. PZM21
7. Other Biased Agonists
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdel-Zaher, A.O.; Mostafa, M.G.; Farghaly, H.S.; Hamdy, M.M.; Abdel-Hady, R.H. Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav. Brain Res. 2013, 247, 17–26. [Google Scholar] [CrossRef]
- Chan, H.C.S.; McCarthy, D.; Li, J.; Palczewski, K.; Yuan, S. Designing Safer Analgesics via μ-Opioid Receptor Pathways. Trends Pharmacol. Sci. 2017, 38, 1016–1037. [Google Scholar] [CrossRef] [PubMed]
- Corbett, A.D.; Henderson, G.; McKnight, A.T.; Paterson, S.J. 75 years of opioid research: The exciting but vain quest for the Holy Grail. Br. J. Pharmacol. 2006, 147 (Suppl. S1), S153–S162. [Google Scholar] [CrossRef]
- Echeverria-Villalobos, M.; Stoicea, N.; Todeschini, A.B.; Fiorda-Diaz, J.; Uribe, A.A.; Weaver, T.; Bergese, S.D. Enhanced Recovery After Surgery (ERAS): A Perspective Review of Postoperative Pain Management Under ERAS Pathways and Its Role on Opioid Crisis in the United States. Clin. J. Pain 2020, 36, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Kharasch, E.D.; Clark, J.D. Opioid-free Anesthesia: Time to Regain Our Balance. Anesthesiology 2021, 134, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Kolodny, A.; Courtwright, D.T.; Hwang, C.S.; Kreiner, P.; Eadie, J.L.; Clark, T.W.; Alexander, G.C. The prescription opioid and heroin crisis: A public health approach to an epidemic of addiction. Annu. Rev. Public Health 2015, 36, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Rudd, R.A.; Seth, P.; David, F.; Scholl, L. Increases in Drug and Opioid-Involved Overdose Deaths—United States, 2010–2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 1445–1452. [Google Scholar] [CrossRef]
- Vashishtha, D.; Mittal, M.L.; Werb, D. The North American opioid epidemic: Current challenges and a call for treatment as prevention. Harm Reduct. J. 2017, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Seth, P.; Rudd, R.A.; Noonan, R.K.; Haegerich, T.M. Quantifying the Epidemic of Prescription Opioid Overdose Deaths. Am. J. Public Health 2018, 108, 500–502. [Google Scholar] [CrossRef]
- Azzam, A.A.H.; McDonald, J.; Lambert, D.G. Hot topics in opioid pharmacology: Mixed and biased opioids. Br. J. Anaesth. 2019, 122, e136–e145. [Google Scholar] [CrossRef]
- Kang, J.H.; Lee, G.W.; Shin, S.H.; Bruera, E. Opioid withdrawal syndrome after treatment with low-dose extended-release oxycodone and naloxone in a gastric cancer patient with portal vein thrombosis. J. Pain Symptom Manag. 2013, 46, e15–e17. [Google Scholar] [CrossRef]
- Gilbert, P.E.; Martin, W.R. The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 1976, 198, 66–82. [Google Scholar] [CrossRef]
- Burford, N.T.; Traynor, J.R.; Alt, A. Positive allosteric modulators of the μ-opioid receptor: A novel approach for future pain medications. Br. J. Pharmacol. 2015, 172, 277–286. [Google Scholar] [CrossRef]
- DeWire, S.M.; Yamashita, D.S.; Rominger, D.H.; Liu, G.; Cowan, C.L.; Graczyk, T.M.; Chen, X.T.; Pitis, P.M.; Gotchev, D.; Yuan, C.; et al. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 2013, 344, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Viscusi, E.R.; Webster, L.; Kuss, M.; Daniels, S.; Bolognese, J.A.; Zuckerman, S.; Soergel, D.G.; Subach, R.A.; Cook, E.; Skobieranda, F. A randomized, phase 2 study investigating TRV130, a biased ligand of the μ-opioid receptor, for the intravenous treatment of acute pain. Pain 2016, 157, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Huang, T.; Li, J. Molecular Dynamics Simulations to Investigate How PZM21 Affects the Conformational State of the μ-Opioid Receptor Upon Activation. Int. J. Mol. Sci. 2020, 21, 4699. [Google Scholar] [CrossRef] [PubMed]
- James, I.E.; Skobieranda, F.; Soergel, D.G.; Ramos, K.A.; Ruff, D.; Fossler, M.J. A First-in-Human Clinical Study With TRV734, an Orally Bioavailable G-Protein-Biased Ligand at the μ-Opioid Receptor. Clin. Pharmacol. Drug Dev. 2020, 9, 256–266. [Google Scholar] [CrossRef]
- Li, X.; He, W.; Chen, Y.; Yang, G.; Wan, H.; Zhang, L.; Hu, Q.; Feng, J.; Zhang, Z.; He, F.; et al. Discovery of SHR9352: A Highly Potent G Protein-Biased μ-Opioid Receptor Agonist. ACS Omega 2017, 2, 9261–9267. [Google Scholar] [CrossRef] [PubMed]
- Gach-Janczak, K.; Piekielna-Ciesielska, J.; Adamska-Bartłomiejczyk, A.; Wtorek, K.; Ferrari, F.; Calo, G.; Szymaszkiewicz, A.; Piasecka-Zelga, J.; Janecka, A. In vitro and in vivo activity of cyclopeptide Dmt-c[d-Lys-Phe-Asp]NH(2), a mu opioid receptor agonist biased toward β-arrestin. Peptides 2018, 105, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Váradi, A.; Marrone, G.F.; Palmer, T.C.; Narayan, A.; Szabó, M.R.; Le Rouzic, V.; Grinnell, S.G.; Subrath, J.J.; Warner, E.; Kalra, S.; et al. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. J. Med. Chem. 2016, 59, 8381–8397. [Google Scholar] [CrossRef]
- Schmid, C.L.; Kennedy, N.M.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Morgenweck, J.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. Cell 2017, 171, 1165–1175.e1113. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Yan, W.; McCorvy, J.D.; Cheng, J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J. Med. Chem. 2018, 61, 9841–9878. [Google Scholar] [CrossRef]
- Grim, T.W.; Schmid, C.L.; Stahl, E.L.; Pantouli, F.; Ho, J.H.; Acevedo-Canabal, A.; Kennedy, N.M.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. A G protein signaling-biased agonist at the μ-opioid receptor reverses morphine tolerance while preventing morphine withdrawal. Neuropsychopharmacology 2020, 45, 416–425. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; Wang, Y.; Zhou, J.; Wang, D.; Zhang, Y.; Zhang, X.; Wang, Z.; Yang, D.; Mou, L.; et al. MEL-N16: A Series of Novel Endomorphin Analogs with Good Analgesic Activity and a Favorable Side Effect Profile. ACS Chem. Neurosci. 2017, 8, 2180–2193. [Google Scholar] [CrossRef]
- Spahn, V.; Del Vecchio, G.; Labuz, D.; Rodriguez-Gaztelumendi, A.; Massaly, N.; Temp, J.; Durmaz, V.; Sabri, P.; Reidelbach, M.; Machelska, H.; et al. A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 2017, 355, 966–969. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gaztelumendi, A.; Spahn, V.; Labuz, D.; Machelska, H.; Stein, C. Analgesic effects of a novel pH-dependent μ-opioid receptor agonist in models of neuropathic and abdominal pain. Pain 2018, 159, 2277–2284. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Zuo, A.; Li, C.; Wang, W.; Jiang, W.; Zhang, X.; Che, X.; Zhang, Y.; Wu, W.; et al. Synthesis, biological, and structural explorations of a series of μ-opioid receptor (MOR) agonists with high G protein signaling bias. Eur. J. Med. Chem. 2022, 228, 113986. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, R.; Bruchas, M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115, 1363–1381. [Google Scholar] [CrossRef]
- Kieffer, B.L. Opioids: First lessons from knockout mice. Trends Pharmacol. Sci. 1999, 20, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Matthes, H.W.; Maldonado, R.; Simonin, F.; Valverde, O.; Slowe, S.; Kitchen, I.; Befort, K.; Dierich, A.; Le Meur, M.; Dollé, P.; et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996, 383, 819–823. [Google Scholar] [CrossRef]
- Mello, N.K.; Negus, S.S. Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 1996, 14, 375–424. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Sarton, E.; Teppema, L.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.; Kieffer, B.L. Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology 2001, 94, 824–832. [Google Scholar] [CrossRef]
- Bologna, Z.; Teoh, J.P.; Bayoumi, A.S.; Tang, Y.; Kim, I.M. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomol. Ther. 2017, 25, 12–25. [Google Scholar] [CrossRef]
- Bohn, L.M.; Gainetdinov, R.R.; Caron, M.G. G protein-coupled receptor kinase/beta-arrestin systems and drugs of abuse: Psychostimulant and opiate studies in knockout mice. Neuromolecular Med. 2004, 5, 41–50. [Google Scholar] [CrossRef]
- Hepler, J.R.; Gilman, A.G. G proteins. Trends Biochem. Sci. 1992, 17, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Peterson, Y.K.; Luttrell, L.M. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol. Rev. 2017, 69, 256–297. [Google Scholar] [CrossRef]
- Che, T.; Roth, B.L. Molecular basis of opioid receptor signaling. Cell 2023, 186, 5203–5219. [Google Scholar] [CrossRef] [PubMed]
- DeWire, S.M.; Violin, J.D. Biased ligands for better cardiovascular drugs: Dissecting G-protein-coupled receptor pharmacology. Circ. Res. 2011, 109, 205–216. [Google Scholar] [CrossRef]
- Shenoy, S.K.; Lefkowitz, R.J. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 2011, 32, 521–533. [Google Scholar] [CrossRef]
- Alvarez, V.A.; Arttamangkul, S.; Dang, V.; Salem, A.; Whistler, J.L.; Von Zastrow, M.; Grandy, D.K.; Williams, J.T. mu-Opioid receptors: Ligand-dependent activation of potassium conductance, desensitization, and internalization. J. Neurosci. 2002, 22, 5769–5776. [Google Scholar] [CrossRef] [PubMed]
- Bohn, L.M.; Dykstra, L.A.; Lefkowitz, R.J.; Caron, M.G.; Barak, L.S. Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol. Pharmacol. 2004, 66, 106–112. [Google Scholar] [CrossRef]
- Connor, M.; Osborne, P.B.; Christie, M.J. Mu-opioid receptor desensitization: Is morphine different? Br. J. Pharmacol. 2004, 143, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R.; Premont, R.T.; Bohn, L.M.; Lefkowitz, R.J.; Caron, M.G. Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 2004, 27, 107–144. [Google Scholar] [CrossRef]
- Morgan, M.M.; Christie, M.J. Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. Br. J. Pharmacol. 2011, 164, 1322–1334. [Google Scholar] [CrossRef]
- Bao, F.; Li, C.L.; Chen, X.Q.; Lu, Y.J.; Bao, L.; Zhang, X. Clinical opioids differentially induce co-internalization of μ- and δ-opioid receptors. Mol. Pain 2018, 14, 1744806918769492. [Google Scholar] [CrossRef]
- Raehal, K.M.; Schmid, C.L.; Groer, C.E.; Bohn, L.M. Functional selectivity at the μ-opioid receptor: Implications for understanding opioid analgesia and tolerance. Pharmacol. Rev. 2011, 63, 1001–1019. [Google Scholar] [CrossRef] [PubMed]
- Bohn, L.M.; Lefkowitz, R.J.; Gainetdinov, R.R.; Peppel, K.; Caron, M.G.; Lin, F.T. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 1999, 286, 2495–2498. [Google Scholar] [CrossRef] [PubMed]
- Bohn, L.M.; Gainetdinov, R.R.; Lin, F.T.; Lefkowitz, R.J.; Caron, M.G. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 2000, 408, 720–723. [Google Scholar] [CrossRef]
- Sora, I.; Takahashi, N.; Funada, M.; Ujike, H.; Revay, R.S.; Donovan, D.M.; Miner, L.L.; Uhl, G.R. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc. Natl. Acad. Sci. USA 1997, 94, 1544–1549. [Google Scholar] [CrossRef]
- Xia, J.; Li, X.; Zhu, H.; Zhou, X.; Chen, J.; Li, Q.; Li, S.; Chu, H.; Dong, M. The μ-opioid receptor-mediated G(i/o) protein and β-arrestin2 signaling pathways both contribute to morphine-induced side effects. Eur. J. Pharmacol. 2024, 966, 176333. [Google Scholar] [CrossRef]
- Luttrell, L.M.; Ferguson, S.S.; Daaka, Y.; Miller, W.E.; Maudsley, S.; Della Rocca, G.J.; Lin, F.; Kawakatsu, H.; Owada, K.; Luttrell, D.K.; et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 1999, 283, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Manglik, A.; Lin, H.; Aryal, D.K.; McCorvy, J.D.; Dengler, D.; Corder, G.; Levit, A.; Kling, R.C.; Bernat, V.; Hübner, H.; et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 2016, 537, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, W.; Zhong, T.; Song, Z.; Zou, Y.; Ding, Z.; Guo, Q.; Dong, X.; Zou, W. miR-365 targets β-arrestin 2 to reverse morphine tolerance in rats. Sci. Rep. 2016, 6, 38285. [Google Scholar] [CrossRef]
- Yang, C.H.; Huang, H.W.; Chen, K.H.; Chen, Y.S.; Sheen-Chen, S.M.; Lin, C.R. Antinociceptive potentiation and attenuation of tolerance by intrathecal β-arrestin 2 small interfering RNA in rats. Br. J. Anaesth. 2011, 107, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Raehal, K.M.; Walker, J.K.; Bohn, L.M. Morphine side effects in beta-arrestin 2 knockout mice. J. Pharmacol. Exp. Ther. 2005, 314, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Enquist, J.; Ferwerda, M.; Milan-Lobo, L.; Whistler, J.L. Chronic methadone treatment shows a better cost/benefit ratio than chronic morphine in mice. J. Pharmacol. Exp. Ther. 2012, 340, 386–392. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Gooding, S.W.; Lewis, E.; Felth, L.C.; Gaur, A.; Whistler, J.L. Pharmacological and genetic manipulations at the µ-opioid receptor reveal arrestin-3 engagement limits analgesic tolerance and does not exacerbate respiratory depression in mice. Neuropsychopharmacology 2021, 46, 2241–2249. [Google Scholar] [CrossRef] [PubMed]
- Corder, G.; Tawfik, V.L.; Wang, D.; Sypek, E.I.; Low, S.A.; Dickinson, J.R.; Sotoudeh, C.; Clark, J.D.; Barres, B.A.; Bohlen, C.J.; et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat. Med. 2017, 23, 164–173. [Google Scholar] [CrossRef]
- Chen, S.R.; Prunean, A.; Pan, H.M.; Welker, K.L.; Pan, H.L. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience 2007, 145, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Muchhala, K.H.; Jacob, J.C.; Dewey, W.L.; Akbarali, H.I. Role of β-arrestin-2 in short- and long-term opioid tolerance in the dorsal root ganglia. Eur. J. Pharmacol. 2021, 899, 174007. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A. Respiratory depression with opioids. J. Pain Palliat. Care Pharmacother. 2007, 21, 63–66. [Google Scholar] [CrossRef]
- Bohn, L.M.; Lefkowitz, R.J.; Caron, M.G. Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2 knock-out mice. J. Neurosci. 2002, 22, 10494–10500. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, A.; Schmiedel, F.; Sianati, S.; Bailey, A.; Bateman, J.T.; Levitt, E.S.; Williams, J.T.; Christie, M.J.; Schulz, S. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat. Commun. 2019, 10, 367. [Google Scholar] [CrossRef]
- Levitt, E.S.; Abdala, A.P.; Paton, J.F.; Bissonnette, J.M.; Williams, J.T. μ opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive. J. Physiol. 2015, 593, 4453–4469. [Google Scholar] [CrossRef] [PubMed]
- Montandon, G.; Ren, J.; Victoria, N.C.; Liu, H.; Wickman, K.; Greer, J.J.; Horner, R.L. G-protein-gated Inwardly Rectifying Potassium Channels Modulate Respiratory Depression by Opioids. Anesthesiology 2016, 124, 641–650. [Google Scholar] [CrossRef]
- Kliewer, A.; Gillis, A.; Hill, R.; Schmiedel, F.; Bailey, C.; Kelly, E.; Henderson, G.; Christie, M.J.; Schulz, S. Morphine-induced respiratory depression is independent of β-arrestin2 signalling. Br. J. Pharmacol. 2020, 177, 2923–2931. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Collins, F.S. The Role of Science in Addressing the Opioid Crisis. N. Engl. J. Med. 2017, 377, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Bohn, L.M.; Gainetdinov, R.R.; Sotnikova, T.D.; Medvedev, I.O.; Lefkowitz, R.J.; Dykstra, L.A.; Caron, M.G. Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice. J. Neurosci. 2003, 23, 10265–10273. [Google Scholar] [CrossRef] [PubMed]
- Pierce, K.L.; Lefkowitz, R.J. Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat. Rev. Neurosci. 2001, 2, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Kenakin, T. Agonist-receptor efficacy II: Agonist trafficking of receptor signals. Trends Pharmacol. Sci. 1995, 16, 232–238. [Google Scholar] [CrossRef]
- Staus, D.P.; Strachan, R.T.; Manglik, A.; Pani, B.; Kahsai, A.W.; Kim, T.H.; Wingler, L.M.; Ahn, S.; Chatterjee, A.; Masoudi, A.; et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 2016, 535, 448–452. [Google Scholar] [CrossRef]
- Kenakin, T.; Christopoulos, A. Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 2013, 12, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Kenakin, T. The Effective Application of Biased Signaling to New Drug Discovery. Mol. Pharmacol. 2015, 88, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Kenakin, T. Gaddum Memorial Lecture 2014: Receptors as an evolving concept: From switches to biased microprocessors. Br. J. Pharmacol. 2015, 172, 4238–4253. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C.; Seifert, R.; Bond, R.A. Dynamic bias and its implications for GPCR drug discovery. Nat. Rev. Drug Discov. 2014, 13, 869. [Google Scholar] [CrossRef] [PubMed]
- Stahl, E.L.; Zhou, L.; Ehlert, F.J.; Bohn, L.M. A novel method for analyzing extremely biased agonism at G protein-coupled receptors. Mol. Pharmacol. 2015, 87, 866–877. [Google Scholar] [CrossRef]
- Zamarripa, C.A.; Edwards, S.R.; Qureshi, H.N.; Yi, J.N.; Blough, B.E.; Freeman, K.B. The G-protein biased mu-opioid agonist, TRV130, produces reinforcing and antinociceptive effects that are comparable to oxycodone in rats. Drug Alcohol Depend. 2018, 192, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C.; Charlton, S.J. Biased Agonism in Drug Discovery-Is It Too Soon to Choose a Path? Mol. Pharmacol. 2018, 93, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Mafi, A.; Kim, S.K.; Goddard, W.A., 3rd. Mechanism of β-arrestin recruitment by the μ-opioid G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 2020, 117, 16346–16355. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wang, Y.; He, B.; He, X.; Zhou, X.E.; Guo, S.; Rao, Q.; Yang, J.; Liu, J.; Zhou, Q.; et al. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell 2022, 185, 4361–4375.e4319. [Google Scholar] [CrossRef]
- Pedersen, M.F.; Wróbel, T.M.; Märcher-Rørsted, E.; Pedersen, D.S.; Møller, T.C.; Gabriele, F.; Pedersen, H.; Matosiuk, D.; Foster, S.R.; Bouvier, M.; et al. Biased agonism of clinically approved μ-opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics. Neuropharmacology 2020, 166, 107718. [Google Scholar] [CrossRef]
- Nafziger, A.N.; Arscott, K.A.; Cochrane, K.; Skobieranda, F.; Burt, D.A.; Fossler, M.J. The Influence of Renal or Hepatic Impairment on the Pharmacokinetics, Safety, and Tolerability of Oliceridine. Clin. Pharmacol. Drug Dev. 2020, 9, 639–650. [Google Scholar] [CrossRef]
- Altarifi, A.A.; David, B.; Muchhala, K.H.; Blough, B.E.; Akbarali, H.; Negus, S.S. Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J. Psychopharmacol. 2017, 31, 730–739. [Google Scholar] [CrossRef]
- Liang, D.Y.; Li, W.W.; Nwaneshiudu, C.; Irvine, K.A.; Clark, J.D. Pharmacological Characters of Oliceridine, a μ-Opioid Receptor G-Protein-Biased Ligand in Mice. Anesth. Analg. 2019, 129, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Bossert, J.M.; Kiyatkin, E.A.; Korah, H.; Hoots, J.K.; Afzal, A.; Perekopskiy, D.; Thomas, S.; Fredriksson, I.; Blough, B.E.; Negus, S.S.; et al. In a Rat Model of Opioid Maintenance, the G Protein-Biased Mu Opioid Receptor Agonist TRV130 Decreases Relapse to Oxycodone Seeking and Taking and Prevents Oxycodone-Induced Brain Hypoxia. Biol. Psychiatry 2020, 88, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Gillis, A.; Gondin, A.B.; Kliewer, A.; Sanchez, J.; Lim, H.D.; Alamein, C.; Manandhar, P.; Santiago, M.; Fritzwanker, S.; Schmiedel, F.; et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signal. 2020, 13, eaaz3140. [Google Scholar] [CrossRef] [PubMed]
- Soergel, D.G.; Subach, R.A.; Sadler, B.; Connell, J.; Marion, A.S.; Cowan, C.L.; Violin, J.D.; Lark, M.W. First clinical experience with TRV130: Pharmacokinetics and pharmacodynamics in healthy volunteers. J. Clin. Pharmacol. 2014, 54, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Singla, N.; Minkowitz, H.S.; Soergel, D.G.; Burt, D.A.; Subach, R.A.; Salamea, M.Y.; Fossler, M.J.; Skobieranda, F. A randomized, Phase IIb study investigating oliceridine (TRV130), a novel µ-receptor G-protein pathway selective (μ-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty. J. Pain Res. 2017, 10, 2413–2424. [Google Scholar] [CrossRef] [PubMed]
- Viscusi, E.R.; Skobieranda, F.; Soergel, D.G.; Cook, E.; Burt, D.A.; Singla, N. APOLLO-1: A randomized placebo and active-controlled phase III study investigating oliceridine (TRV130), a G protein-biased ligand at the µ-opioid receptor, for management of moderate-to-severe acute pain following bunionectomy. J. Pain Res. 2019, 12, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Singla, N.K.; Skobieranda, F.; Soergel, D.G.; Salamea, M.; Burt, D.A.; Demitrack, M.A.; Viscusi, E.R. APOLLO-2: A Randomized, Placebo and Active-Controlled Phase III Study Investigating Oliceridine (TRV130), a G Protein-Biased Ligand at the μ-Opioid Receptor, for Management of Moderate to Severe Acute Pain Following Abdominoplasty. Pain Pract. 2019, 19, 715–731. [Google Scholar] [CrossRef] [PubMed]
- Soergel, D.G.; Subach, R.A.; Burnham, N.; Lark, M.W.; James, I.E.; Sadler, B.M.; Skobieranda, F.; Violin, J.D.; Webster, L.R. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: A randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain 2014, 155, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Kuzumaki, N.; Arima, T.; Narita, M.; Tateishi, R.; Kondo, T.; Hamada, Y.; Kuwata, H.; Kawata, M.; Yamazaki, M.; et al. Usefulness for the combination of G-protein- and β-arrestin-biased ligands of μ-opioid receptors: Prevention of antinociceptive tolerance. Mol. Pain 2017, 13, 1744806917740030. [Google Scholar] [CrossRef]
- Violin, J.D.; Crombie, A.L.; Soergel, D.G.; Lark, M.W. Biased ligands at G-protein-coupled receptors: Promise and progress. Trends Pharmacol. Sci. 2014, 35, 308–316. [Google Scholar] [CrossRef]
- Koblish, M.; Carr, R., 3rd; Siuda, E.R.; Rominger, D.H.; Gowen-MacDonald, W.; Cowan, C.L.; Crombie, A.L.; Violin, J.D.; Lark, M.W. TRV0109101, a G Protein-Biased Agonist of the µ-Opioid Receptor, Does Not Promote Opioid-Induced Mechanical Allodynia following Chronic Administration. J. Pharmacol. Exp. Ther. 2017, 362, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Schwienteck, K.L.; Faunce, K.E.; Rice, K.C.; Obeng, S.; Zhang, Y.; Blough, B.E.; Grim, T.W.; Negus, S.S.; Banks, M.L. Effectiveness comparisons of G-protein biased and unbiased mu opioid receptor ligands in warm water tail-withdrawal and drug discrimination in male and female rats. Neuropharmacology 2019, 150, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.J.; Koszdin, K.; Bernards, C.M. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 2000, 92, 1392–1399. [Google Scholar] [CrossRef]
- Letrent, S.P.; Pollack, G.M.; Brouwer, K.R.; Brouwer, K.L. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab. Dispos. Biol. Fate Chem. 1999, 27, 827–834. [Google Scholar] [CrossRef]
- Zong, J.; Pollack, G.M. Morphine antinociception is enhanced in mdr1a gene-deficient mice. Pharm. Res. 2000, 17, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, N.; Kishioka, S.; Maeda, T.; Fukazawa, Y.; Yamamoto, C.; Ozaki, M.; Yamamoto, H. Role of pharmacokinetic effects in the potentiation of morphine analgesia by L-type calcium channel blockers in mice. J. Pharmacol. Sci. 2004, 94, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Hamabe, W.; Maeda, T.; Fukazawa, Y.; Kumamoto, K.; Shang, L.Q.; Yamamoto, A.; Yamamoto, C.; Tokuyama, S.; Kishioka, S. P-glycoprotein ATPase activating effect of opioid analgesics and their P-glycoprotein-dependent antinociception in mice. Pharmacol. Biochem. Behav. 2006, 85, 629–636. [Google Scholar] [CrossRef]
- King, M.; Su, W.; Chang, A.; Zuckerman, A.; Pasternak, G.W. Transport of opioids from the brain to the periphery by P-glycoprotein: Peripheral actions of central drugs. Nat. Neurosci. 2001, 4, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Townsend, E.A.; Blough, B.E.; Epstein, D.H.; Negus, S.S.; Shaham, Y.; Banks, M.L. Effect of TRV130 and methadone on fentanyl-vs.-food choice and somatic withdrawal signs in opioid-dependent and post-opioid-dependent rats. Neuropsychopharmacology 2022, 47, 2132–2139. [Google Scholar] [CrossRef] [PubMed]
- Kiyatkin, E.A. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology 2019, 151, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.L.; Hedner, T.; Hedner, J.; Björkman, R.; Nordberg, G. Antinociceptive and ventilatory effects of the morphine metabolites: Morphine-6-glucuronide and morphine-3-glucuronide. Eur. J. Pharmacol. 1991, 193, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Romberg, R.; Sarton, E.; Teppema, L.; Matthes, H.W.; Kieffer, B.L.; Dahan, A. Comparison of morphine-6-glucuronide and morphine on respiratory depressant and antinociceptive responses in wild type and mu-opioid receptor deficient mice. Br. J. Anaesth. 2003, 91, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Ventriglia, E.; Rizzo, A.; Gomez, J.L.; Friedman, J.; Lam, S.; Solís, O.; Rais, R.; Bonaventura, J.; Michaelides, M. Essential role of P-glycoprotein in the mechanism of action of oliceridine. Neuropsychopharmacology 2023, 48, 831–842. [Google Scholar] [CrossRef]
- Ramos, K.A.; James, I.E.; Skobieranda, F.; Soergel, D.G.; Ruff, D.; Fossler, M.J. Two-Part Phase 1 Multiple-Ascending-Dose Study to Evaluate the Safety, Tolerability, Pharmacodynamics, and Pharmacokinetics of TRV734 in Healthy Adults. Clin. Pharmacol. Drug Dev. 2022, 11, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.N.; Fossler, M.J.; Wase, L.; Demitrack, M.A.; Wandstrat, T.L. Budget impact and pharmacy costs with targeted use of oliceridine for postsurgical pain in patients at high risk of opioid-related adverse events. Expert Rev. Pharmacoeconomics Outcomes Res. 2022, 22, 671–681. [Google Scholar] [CrossRef]
- Kieffer, B.L. Drug discovery: Designing the ideal opioid. Nature 2016, 537, 170–171. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.; Disney, A.; Conibear, A.; Sutcliffe, K.; Dewey, W.; Husbands, S.; Bailey, C.; Kelly, E.; Henderson, G. The novel μ-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception. Br. J. Pharmacol. 2018, 175, 2653–2661. [Google Scholar] [CrossRef]
- Pantouli, F.; Grim, T.W.; Schmid, C.L.; Acevedo-Canabal, A.; Kennedy, N.M.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Comparison of morphine, oxycodone and the biased MOR agonist SR-17018 for tolerance and efficacy in mouse models of pain. Neuropharmacology 2021, 185, 108439. [Google Scholar] [CrossRef]
- Stahl, E.L.; Schmid, C.L.; Acevedo-Canabal, A.; Read, C.; Grim, T.W.; Kennedy, N.M.; Bannister, T.D.; Bohn, L.M. G protein signaling-biased mu opioid receptor agonists that produce sustained G protein activation are noncompetitive agonists. Proc. Natl. Acad. Sci. USA 2021, 118, e2102178118. [Google Scholar] [CrossRef]
Ligand | Receptor | Signaling Bias | Effect | Reference |
---|---|---|---|---|
TRV130 | μ-Opioid | G-protein | Antinociceptive, less tolerance, and respiratory depression. | [14] |
PZM21 | high selectivity for μ-Opioid with weak κ-Opioid | G-protein with weak β-arrestin | Antinociceptive, no respiratory depression, and gastrointestinal disorders. | [16] |
TRV734 | μ-Opioid | G-protein | Potently analgesic, less gastrointestinal dysfunction, well tolerated. | [17] |
SHR9352 | high selectivity for μ-Opioid over κ-opioid and δ-opioid | G-protein | Antinociceptive, almost no constipation, good central nervous system penetration, well tolerated. | [18] |
Dmt-c[D-Lys-Phe-Asp]NH2 | μ-Opioid and δ-Opioid | β-arrestin | Antinociceptive, decreased GI transit. | [19] |
Mitragynine pseudoindoxyl | Mixed μ-Opioid and δ-Opioid | G-protein | Antinociceptive, no reward or aversion, diminished antinociceptive tolerance, ventilatory depression, and GI transit inhibition. | [20] |
SR17018 | μ-Opioid | G-protein | A high ED50 for ventilatory suppression, no antinociceptive tolerance, withdrawal dissipates quickly. | [21,22,23] |
SR-11501 | μ-Opioid | β-arrestin-2 | Respiratory suppression at lower doses. | [21] |
SR-14968 | μ-Opioid | G-protein | Antinociceptive, fentanyl-like discriminative stimulus effects, an improved potency ratio (drug discrimination potency/tail-flick potency). | [21] |
SR-15098 | μ-Opioid | G-protein | Antinociceptive, less respiratory depression. | [21] |
SR-15099 | μ-Opioid | G-protein | Antinociceptive, less respiratory depression. | [21] |
MEL-N1606 | μ-Opioid | G-protein | Potently analgesic, less tolerance and constipation, good central nervous system penetration, low addiction. | [24] |
N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP) | μ-Opioid | _ | Only binds to MOR under acidic conditions and selectively activates MOR at damaged sites; no respiratory depression, no constipation, no addiction. | [25,26] |
LY03014 | μ-Opioid | G-protein | Separation of analgesic effect and respiratory inhibition; less respiratory depression, less constipation, less tolerance; no hepatotoxicity. | [27] |
Animal Models | Experimental Animal | Dosage (mg/kg) | Frequency | Administration | Side Effects (Compared to Morphine) | Reference |
---|---|---|---|---|---|---|
right tibial fracture followed by intramedullary pinning (postsurgical/posttraumatic pain model) | Male C57BL/6J mice (10–12 weeks of age) | Morphine: 20 mg/kg and 40 mg/kg; TRV130: 5 mg/kg and 10 mg/kg. | twice per day for four days | Subcutaneous injection | Physical dependence caused by morphine and TRV130 is similar; TRV130 has almost no tolerance; the OIH level of TRV130 is lower than morphine. | [84] |
Morphine: 5 mg/kg TRV130: 1.25 or 10 mg/kg. | once daily for 3 days | Subcutaneous injection | Equal analgesic dose of TRV130 does not cause CPP. | |||
Morphine: 10 mg/kg and 20 mg/kg; TRV130: 2.5 mg/kg. | twice daily for 7 days. | Subcutaneous injection | TRV130 does not significantly exacerbate allodynia or worsen gait disturbances after tibial fracture or worsen gait disorders; TRV130 produces lower upregulation of TLR4. | |||
—— | Male C57BL/6J mice | Morphine: 6 mg/kg; TRV130: 1 mg/kg. | once | Subcutaneous injection | TRV130 reaches peak at 5 min, while morphine at 30 min; the duration of action of TRV130 and morphine is similar, about 90 min; TRV130 causes less constipation. | [14] |
Male Sprague Dawley rats | Morphine: 3.0 mg/kg; TRV130: 0.3 mg/kg. | once | Subcutaneous injection/intravenous injection | TRV130 has less sedative effect than morphine and less respiratory depression. | ||
—— | Male Swiss Webster mice | Morphine: 50 mg/kg; TRV130: 10 mg/kg. | three times per day for 3 consecutive days | Subcutaneous injection | TRV130 did not show analgesic tolerance or gastrointestinal function inhibition; tolerance development in the ileum; similar to the abuse effect of morphine. | [83] |
—— | Male and female Sprague Dawley rats | Morphine: 3.2–32 mg/kg; TRV130: 0.1–10 mg/kg. | once | Subcutaneous injection | TRV130: significantly more potent to produce discriminative stimulus vs. antinociceptive effects; more favorable potency ratios and efficacy ratios. | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, J.; Li, Z.; Liu, J.; Peng, X.; Gao, F. Biased Opioid Receptor Agonists: Balancing Analgesic Efficacy and Side-Effect Profiles. Int. J. Mol. Sci. 2025, 26, 1862. https://doi.org/10.3390/ijms26051862
Ju J, Li Z, Liu J, Peng X, Gao F. Biased Opioid Receptor Agonists: Balancing Analgesic Efficacy and Side-Effect Profiles. International Journal of Molecular Sciences. 2025; 26(5):1862. https://doi.org/10.3390/ijms26051862
Chicago/Turabian StyleJu, Jie, Zheng Li, Jie Liu, Xiaoling Peng, and Feng Gao. 2025. "Biased Opioid Receptor Agonists: Balancing Analgesic Efficacy and Side-Effect Profiles" International Journal of Molecular Sciences 26, no. 5: 1862. https://doi.org/10.3390/ijms26051862
APA StyleJu, J., Li, Z., Liu, J., Peng, X., & Gao, F. (2025). Biased Opioid Receptor Agonists: Balancing Analgesic Efficacy and Side-Effect Profiles. International Journal of Molecular Sciences, 26(5), 1862. https://doi.org/10.3390/ijms26051862