Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression
Abstract
:1. Introduction
2. Vitamin B1: Thiamine
3. Vitamin B2: Riboflavin
4. Vitamin B3: Niacin
5. Vitamin B5: Pantothenic Acid
6. Vitamin B6: Pyridoxine
7. Vitamin B7: Biotin
8. Vitamin B9: Folate
9. Vitamin B12: Cobalamin
10. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 89–97. [Google Scholar] [CrossRef]
- Peterson, C.T.; Rodionov, D.A.; Osterman, A.L.; Peterson, S.N. B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020, 12, 3380. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.M.; Esmael, A.; Nassar, A.K.; El-Sherif, M. The Relationship between Exacerbated Diabetic Peripheral Neuropathy and Metformin Treatment in Type 2 Diabetes Mellitus. Sci. Rep. 2021, 11, 1940. [Google Scholar] [CrossRef] [PubMed]
- Infante, M.; Leoni, M.; Caprio, M.; Fabbri, A. Long-Term Metformin Therapy and Vitamin B12 Deficiency: An Association to Bear in Mind. World J. Diabetes 2021, 12, 916–931. [Google Scholar] [CrossRef]
- Fituri, S.; Akbar, Z.; Ganji, V. Impact of Metformin Treatment on Cobalamin Status in Persons with Type 2 Diabetes. Nutr. Rev. 2024, 82, 553–560. [Google Scholar] [CrossRef]
- Al Zoubi, M.S.; Al Kreasha, R.; Aqel, S.; Saeed, A.; Al-Qudimat, A.R.; Al-Zoubi, R.M. Vitamin B12 Deficiency in Diabetic Patients Treated with Metformin: A Narrative Review. Ir. J. Med. Sci. 2024, 193, 1827–1835. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chien, H.C.; Yee, S.W.; Giacomini, M.M.; Chen, E.C.; Piao, M.; Hao, J.; Twelves, J.; Lepist, E.I.; Ray, A.S.; et al. Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3). Mol. Pharm. 2015, 12, 4301–4310. [Google Scholar] [CrossRef]
- Jung, J.W.; Park, S.Y.; Kim, H. Drug-Induced Vitamin Deficiency. Ann. Clin. Nutr. Metab. 2022, 14, 20–31. [Google Scholar] [CrossRef]
- Björkegren, K.; Svärdsudd, K. Serum cobalamin, folate, methylmalonic acid and total homocysteine as vitamin B12 and folate tissue deficiency markers amongst elderly Swedes-A population-based study. J. Intern. Med. 2001, 249, 423–432. [Google Scholar] [CrossRef]
- Gale, D.P.; Cobbold, J.F.; Chataway, J. Steroid-Responsive Functional B12 Deficiency in Association with Transcobalamin II Polymorphism 776C→G. Eur. J. Haematol. 2006, 76, 75–78. [Google Scholar] [CrossRef]
- Choudhury, A.; Jena, A.; Jearth, V.; Dutta, A.K.; Makharia, G.; Dutta, U.; Goenka, M.; Kochhar, R.; Sharma, V. Vitamin B12 Deficiency and Use of Proton Pump Inhibitors: A Systematic Review and Meta-Analysis. Expert. Rev. Gastroenterol. Hepatol. 2023, 17, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Lerman, T.T.; Cohen, E.; Sochat, T.; Goldberg, E.; Goldberg, I.; Krause, I. Proton Pump Inhibitor Use and Its Effect on Vitamin B12 and Homocysteine Levels Among Men and Women: A Large Cross-Sectional Study. Am. J. Med. Sci. 2022, 364, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Ray, K. Antiepileptic Drugs Reduce Vitamin B12 and Folate Levels. Nat. Rev. Neurol. 2011, 7, 125. [Google Scholar] [CrossRef]
- Cahill, V.; McCorry, D.; Soryal, I.; Rajabally, Y.A. Newer Anti-Epileptic Drugs, Vitamin Status, and Neuropathy: A Cross-Sectional Analysis. Rev. Neurol. 2017, 173, 62–66. [Google Scholar] [CrossRef]
- Prajjwal, P.; Inban, P.; Sai, V.P.; Shiny, K.S.; Lam, J.R.; John, J.; Sulaimanov, M.; Tekuru, Y.; Wasi Ul Haq, M.; Marsool, M.D.M.; et al. The Effects of the Interplay Between Vitamins, Antibiotics, and Gut Microbiota on the Pathogenesis and Progression of Dementia: A Systematic Review and Meta-Analysis. Health Sci. Rep. 2024, 7, e1808. [Google Scholar] [CrossRef] [PubMed]
- Iimura, Y.; Kurokawa, T.; Nojima, M.; Kanemoto, Y.; Yazawa, K.; Tsurita, G.; Kuroda, S. Potential Thiamine Deficiency and Neurological Symptoms in Patients Receiving Chemotherapy for Gastrointestinal Cancer. Int. J. Clin. Pharmacol. Ther. 2020, 58, 139–145. [Google Scholar] [CrossRef]
- Iimura, Y.; Andoh, S.; Kawamata, T.; Sato, A.; Yokoyama, K.; Imai, Y.; Tojo, A.; Nojima, M.; Sugiura, M.; Kuroda, S. Thiamine Deficiency and Neurological Symptoms in Patients with Hematological Cancer Receiving Chemotherapy: A Retrospective Analysis. J. Neurosci. Rural. Pract. 2021, 12, 726–732. [Google Scholar] [CrossRef]
- Renting, L.; Zwart, N.R.K.; Ueland, P.M.; McCann, A.; Ulvik, A.; van Halteren, H.K.; Lubberman, F.J.E.; Winkels, R.M.; Kampman, E.; Kok, D.E. Vitamin B6 Status and Chronic Chemotherapy-Induced Peripheral Neuropathy: A Prospective Cohort Study Among Patients with Non-Metastatic Colorectal Cancer Receiving Oxaliplatin-Based Chemotherapy. BMJ Oncol. 2024, 3, e000462. [Google Scholar] [CrossRef]
- Venturelli, S.; Leischner, C.; Helling, T.; Burkard, M.; Marongiu, L. Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients 2021, 13, 3914. [Google Scholar] [CrossRef]
- Kune, G.; Watson, L. Colorectal Cancer Protective Effects and the Dietary Micronutrients Folate, Methionine, Vitamins B6, B12, C, E, Selenium, and Lycopene. Nutr. Cancer 2006, 56, 11–21. [Google Scholar] [CrossRef]
- Harnack, L.; Jacobs, D.R., Jr.; Nicodemus, K.; Lazovich, D.; Anderson, K.; Folsom, A.R. Relationship of Folate, Vitamin B6, Vitamin B12, and Methionine Intake to Incidence of Colorectal Cancers. Nutr. Cancer 2002, 43, 152–158. [Google Scholar] [CrossRef]
- Tworoger, S.S.; Hecht, J.L.; Giovannucci, E.; Hankinson, S.E. Intake of Folate and Related Nutrients in Relation to Risk of Epithelial Ovarian Cancer. Am. J. Epidemiol. 2006, 163, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Mrowicka, M.; Mrowicki, J.; Dragan, G.; Majsterek, I. The Importance of Thiamine (Vitamin B1) in Humans. Biosci. Rep. 2023, 43, BSR20230374. [Google Scholar] [CrossRef] [PubMed]
- Kerns, J.C.; Gutierrez, J.L. Thiamin. Adv. Nutr. 2017, 8, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Queiroz Júnior, J.R.A.; Costa Pereira, J.P.D.; Pires, L.L.; Maia, C.S. The Dichotomous Effect of Thiamine Supplementation on Tumorigenesis: A Systematic Review. Nutr. Cancer 2022, 74, 1942–1957. [Google Scholar] [CrossRef]
- Mateos-Díaz, A.M.; Marcos, M.; Chamorro, A.J. Wernicke-Korsakoff Syndrome and Other Diseases Associated with Thiamine Deficiency. Med. Clin. 2022, 158, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Johnson, C.R.; Koshy, R.; Hess, S.Y.; Qureshi, U.A.; Mynak, M.L.; Fischer, P.R. Thiamine Deficiency Disorders: A Clinical Perspective. Ann. N. Y. Acad. Sci. 2021, 1498, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Liu, Z.; Gao, M.; Tu, K.; Xu, Q.; Zhang, Y. Targeting Nutrient Dependency in Cancer Treatment. Front. Oncol. 2022, 12, 820173. [Google Scholar] [CrossRef]
- Onishi, H.; Sato, I.; Uchida, N.; Takahashi, T.; Furuya, D.; Ebihara, Y.; Yoshioka, A.; Ito, H.; Ishida, M. High Proportion of Thiamine Deficiency in Referred Cancer Patients with Delirium: A Retrospective Descriptive Study. Eur. J. Clin. Nutr. 2021, 75, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Onishi, H.; Ishida, M.; Toyama, H.; Tanahashi, I.; Ikebuchi, K.; Taji, Y.; Fujiwara, K.; Akechi, T. Early Detection and Successful Treatment of Wernicke Encephalopathy in a Patient with Advanced Carcinoma of the External Genitalia During Chemotherapy. Palliat. Support. Care 2016, 14, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.H.; Debnam, J.M.; Fuller, G.N.; de Groot, J. Wernicke’s Encephalopathy: An Underrecognized and Reversible Cause of Confusional State in Cancer Patients. Oncology 2009, 76, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, L.; Vaze, A.; Lin, S.; Juhaeri, J. Risk of Wernicke’s Encephalopathy and Cardiac Disorders in Patients with Myeloproliferative Neoplasm. Cancer Epidemiol. 2015, 39, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef]
- Chen, J.; He, G.; Cai, D.; Giovannetti, E.; Inamura, K.; Liu, S.; Ma, W. Lactic Acid: A Narrative Review of a Promoter of the Liver Cancer Microenvironment. J. Gastrointest. Oncol. 2024, 15, 1282–1296. [Google Scholar] [CrossRef]
- Sutendra, G.; Michelakis, E.D. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology. Front. Oncol. 2013, 3, 38. [Google Scholar] [CrossRef]
- Sutendra, G.; Dromparis, P.; Kinnaird, A.; Stenson, T.H.; Haromy, A.; Parker, J.M.; McMurtry, M.S.; Michelakis, E.D. Mitochondrial Activation by Inhibition of PDKII Suppresses HIF1a Signaling and Angiogenesis in Cancer. Oncogene 2013, 32, 1638–1650. [Google Scholar] [CrossRef]
- Škorja Milić, N.; Dolinar, K.; Miš, K.; Matkovič, U.; Bizjak, M.; Pavlin, M.; Podbregar, M.; Pirkmajer, S. Suppression of Pyruvate Dehydrogenase Kinase by Dichloroacetate in Cancer and Skeletal Muscle Cells Is Isoform Specific and Partially Independent of HIF-1α. Int. J. Mol. Sci. 2021, 22, 8610. [Google Scholar] [CrossRef]
- Anwar, S.; Shamsi, A.; Mohammad, T.; Islam, A.; Hassan, M.I. Targeting Pyruvate Dehydrogenase Kinase Signaling in the Development of Effective Cancer Therapy. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188568. [Google Scholar] [CrossRef] [PubMed]
- Hanberry, B.S.; Berger, R.; Zastre, J.A. High-Dose Vitamin B1 Reduces Proliferation in Cancer Cell Lines Analogous to Dichloroacetate. Cancer Chemother. Pharmacol. 2014, 73, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Madhok, B.M.; Yeluri, S.; Perry, S.L.; Hughes, T.A.; Jayne, D.G. Dichloroacetate Induces Apoptosis and Cell-Cycle Arrest in Colorectal Cancer Cells. Br. J. Cancer 2010, 102, 1746–1752. [Google Scholar] [CrossRef]
- Roh, J.L.; Park, J.Y.; Kim, E.H.; Jang, H.J.; Kwon, M. Activation of Mitochondrial Oxidation by PDK2 Inhibition Reverses Cisplatin Resistance in Head and Neck Cancer. Cancer Lett. 2016, 371, 20–29. [Google Scholar] [CrossRef]
- Jonus, H.C.; Hanberry, B.S.; Khatu, S.; Kim, J.; Luesch, H.; Dang, L.H.; Bartlett, M.G.; Zastre, J.A. The Adaptive Regulation of Thiamine Pyrophosphokinase-1 Facilitates Malignant Growth During Supplemental Thiamine Conditions. Oncotarget 2018, 9, 35422–35438. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, P.; Wu, Y.; Zhou, H.; Wu, H.; Jin, Y.; Wu, D.; Wu, G. SLC25A19 Is a Novel Prognostic Biomarker Related to Immune Invasion and Ferroptosis in HCC. Int. Immunopharmacol. 2024, 136, 112367. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, M.; Czerniecka, M.; Jastrzebska, I.; Ratkiewicz, A.; Wawrusiewicz-Kurylonek, N. In Vitro and In Silico Studies on Cytotoxic Properties of Oxythiamine and 2′-Methylthiamine. Int. J. Mol. Sci. 2024, 25, 4359. [Google Scholar] [CrossRef]
- Bai, L.; Zhu, H.L. A Dose- and Time-Dependent Effect of Oxythiamine on Cell Growth Inhibition in Non-Small Cell Lung Cancer. Cogn. Neurodyn. 2022, 16, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Boros, L.G.; Puigjaner, J.; Cascante, M.; Lee, W.N.; Brandes, J.L.; Bassilian, S.; Yusuf, F.I.; Williams, R.D.; Muscarella, P.; Melvin, W.S.; et al. Oxythiamine and Dehydroepiandrosterone Inhibit the Nonoxidative Synthesis of Ribose and Tumor Cell Proliferation. Cancer Res. 1997, 57, 4242–4248. [Google Scholar]
- Liu, X.; Montissol, S.; Uber, A.; Ganley, S.; Grossestreuer, A.V.; Berg, K.; Heydrick, S.; Donnino, M.W. The Effects of Thiamine on Breast Cancer Cells. Molecules 2018, 23, 1464. [Google Scholar] [CrossRef] [PubMed]
- Sweet, R.; Paul, A.; Zastre, J. Hypoxia Induced Upregulation and Function of the Thiamine Transporter, SLC19A3 in a Breast Cancer Cell Line. Cancer Biol. Ther. 2010, 10, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, H.; Lu, X.; Golinski, M.; Comesse, S.; Watt, D.; Grossman, R.B.; Moscow, J.A. Down-Regulation of Thiamine Transporter THTR2 Gene Expression in Breast Cancer and Its Association with Resistance to Apoptosis. Mol. Cancer Res. 2003, 1, 665–673. [Google Scholar] [PubMed]
- Sabui, S.; Ramamoorthy, K.; Romero, J.M.; Simoes, R.D.; Fleckenstein, J.M.; Said, H.M. Hypoxia Inhibits Colonic Uptake of the Microbiota-Generated Forms of Vitamin B1 via HIF-1α-Mediated Transcriptional Regulation of Their Transporters. J. Biol. Chem. 2022, 298, 101562. [Google Scholar] [CrossRef]
- Jonus, H.C.; Byrnes, C.C.; Kim, J.; Valle, M.L.; Bartlett, M.G.; Said, H.M.; Zastre, J.A. Thiamine Mimetics Sulbutiamine and Benfotiamine as a Nutraceutical Approach to Anticancer Therapy. Biomed. Pharmacother. 2020, 121, 109648. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Ahmed Azmi, M.; Siddiqui, J.A.; Panhwar, G.; Shaikh, F.; Ariff, M. Thiamine Level in Type I and Type II Diabetes Mellitus Patients: A Comparative Study Focusing on Hematological and Biochemical Evaluations. Cureus 2020, 12, e8027. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Mubeen, M.; Chohan, H.K.; Jawed, S.; Jamal, A.; Qamar, J.A.; Chohan, M.K.; Siddiqui, A.A.; Anwar, A.; Hashmi, A.A. Correlation of Fasting Blood Sugar and Glycated Hemoglobin (HbA1c) with Thiamine Levels in Diabetic Patients. Cureus 2023, 15, e46178. [Google Scholar] [CrossRef]
- Boopathy, D.; Grahf, D.; Ross, J.; Hawatian, K.; Rammal, J.A.; Alaimo, K.; Miller, J.B. Thiamine Deficiency Is Common and Underrecognized in Emergency Department Oncology Patients. J. Clin. Med. 2025, 14, 257. [Google Scholar] [CrossRef] [PubMed]
- Seligmann, H.; Levi, R.; Konijn, A.M.; Prokocimer, M. Thiamine Deficiency in Patients with B-Chronic Lymphocytic Leukaemia: A Pilot Study. Postgrad. Med. J. 2001, 77, 582–585. [Google Scholar] [CrossRef]
- Baldo, F.; Drago, E.; Nisticò, D.; Buratti, S.; Calvillo, M.; Micalizzi, C.; Schiaffino, M.C.; Maghnie, M. Severe Lactic Acidosis Caused by Thiamine Deficiency in a Child with Relapsing Acute Lymphoblastic Leukemia: A Case Report. Children 2023, 10, 1602. [Google Scholar] [CrossRef] [PubMed]
- Hammes, H.P.; Du, X.; Edelstein, D.; Taguchi, T.; Matsumura, T.; Ju, Q.; Lin, J.; Bierhaus, A.; Nawroth, P.; Hannak, D.; et al. Benfotiamine Blocks Three Major Pathways of Hyperglycemic Damage and Prevents Experimental Diabetic Retinopathy. Nat. Med. 2003, 9, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Allowitz, K.V.; Yoo, J.J.; Taylor, J.R.; Baloch, O.A.; Harames, K.; Ramana, K.V. Therapeutic Potential of Vitamin B1 Derivative Benfotiamine from Diabetes to COVID-19. Future Med. Chem. 2022, 14, 809–826. [Google Scholar] [CrossRef]
- Lubis, B.; Lelo, A.; Amelia, P.; Prima, A. The Effect of Thiamine, Ascorbic Acid, and the Combination of Them on the Levels of Matrix Metalloproteinase-9 (MMP-9) and Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1) in Sepsis Patients. Infect. Drug Resist. 2022, 15, 5741–5751. [Google Scholar] [CrossRef]
- Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix Metalloproteinase-9 (MMP-9) and Its Inhibitors in Cancer: A Minireview. Eur. J. Med. Chem. 2020, 194, 112260. [Google Scholar] [CrossRef] [PubMed]
- Fornieles, G.; Núñez, M.I.; Expósito, J. Matrix Metalloproteinases and Their Inhibitors as Potential Prognostic Biomarkers in Head and Neck Cancer After Radiotherapy. Int. J. Mol. Sci. 2023, 25, 527. [Google Scholar] [CrossRef]
- Ćupić Miladinović, D.; Prevendar Crnić, A.; Peković, S.; Dacić, S.; Ivanović, S.; Santibanez, J.F.; Ćupić, V.; Borozan, N.; Antonijević Miljaković, E.; Borozan, S. Recovery of Brain Cholinesterases and Effect on Parameters of Oxidative Stress and Apoptosis in Quails (Coturnix japonica) After Chlorpyrifos and Vitamin B1 Administration. Chem. Biol. Interact. 2021, 333, 109312. [Google Scholar] [CrossRef] [PubMed]
- Lu’o’ng, K.V.; Nguyễn, L.T. The Role of Thiamine in Cancer: Possible Genetic and Cellular Signaling Mechanisms. Cancer Genom. Proteom. 2013, 10, 169–185. [Google Scholar] [PubMed]
- Boot, I.W.A.; Wesselius, A.; Yu, E.Y.W.; Brinkman, M.; van den Brandt, P.; Grant, E.J.; White, E.; Weiderpass, E.; Ferrari, P.; Schulze, M.B.; et al. Dietary B Group Vitamin Intake and the Bladder Cancer Risk: A Pooled Analysis of Prospective Cohort Studies. Eur. J. Nutr. 2022, 61, 2397–2416. [Google Scholar] [CrossRef] [PubMed]
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef]
- Powers, H.J. Riboflavin (Vitamin B-2) and Health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Powers, H.J.; Corfe, B.M.; Nakano, E. Riboflavin in Development and Cell Fate. In Subcellular Biochemistry; Springer: Berlin/Heidelberg, Germany, 2012; Volume 56, pp. 229–245. [Google Scholar] [CrossRef]
- Thakur, K.; Tomar, S.K.; Singh, A.K.; Mandal, S.; Arora, S. Riboflavin and Health: A Review of Recent Human Research. Crit. Rev. Food Sci. Nutr. 2017, 57, 3650–3660. [Google Scholar] [CrossRef]
- McNulty, H.; Ward, M.; Hoey, L.; Hughes, C.F.; Pentieva, K. Addressing Optimal Folate and Related B-Vitamin Status Through the Lifecycle: Health Impacts and Challenges. Proc. Nutr. Soc. 2019, 78, 449–462. [Google Scholar] [CrossRef] [PubMed]
- McNulty, H.; Pentieva, K.; Ward, M. Causes and Clinical Sequelae of Riboflavin Deficiency. Annu. Rev. Nutr. 2023, 43, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Khaydukov, E.V.; Mironova, K.E.; Semchishen, V.A.; Generalova, A.N.; Nechaev, A.V.; Khochenkov, D.A.; Stepanova, E.V.; Lebedev, O.I.; Zvyagin, A.V.; Deyev, S.M.; et al. Riboflavin Photoactivation by Upconversion Nanoparticles for Cancer Treatment. Sci. Rep. 2016, 6, 35103. [Google Scholar] [CrossRef]
- Insińska-Rak, M.; Sikorski, M.; Wolnicka-Glubisz, A. Riboflavin and Its Derivatives as Potential Photosensitizers in the Photodynamic Treatment of Skin Cancers. Cells 2023, 12, 2304. [Google Scholar] [CrossRef]
- Darguzyte, M.; Drude, N.; Lammers, T.; Kiessling, F. Riboflavin-Targeted Drug Delivery. Cancers 2020, 12, 295. [Google Scholar] [CrossRef]
- Juarez, A.V.; Sosa, L.d.V.; De Paul, A.L.; Costa, A.P.; Farina, M.; Leal, R.B.; Torres, A.I.; Pons, P. Riboflavin Acetate Induces Apoptosis in Squamous Carcinoma Cells After Photodynamic Therapy. J. Photochem. Photobiol. B. 2015, 153, 445–454. [Google Scholar] [CrossRef]
- Sau, A.; Sanyal, S.; Bera, K.; Sen, S.; Mitra, A.K.; Pal, U.; Chakraborty, P.K.; Ganguly, S.; Satpati, B.; Das, C.; et al. DNA Damage and Apoptosis Induction in Cancer Cells by Chemically Engineered Thiolated Riboflavin Gold Nanoassembly. ACS Appl. Mater. Interfaces 2018, 10, 4582–4589. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Huang, Y.; Song, Z.; Yang, R. Lumiflavin Enhances the Effects of Ionising Radiation on Ovarian Cancer Stem-Like Cells by Inhibiting Autophagy. Anticancer. Agents Med. Chem. 2021, 21, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Manthey, K.C.; Rodriguez-Melendez, R.; Hoi, J.T.; Zempleni, J. Riboflavin Deficiency Causes Protein and DNA Damage in HepG2 Cells, Triggering Arrest in G1 Phase of the Cell Cycle. J. Nutr. Biochem. 2006, 17, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cao, J.T.; Wu, Y.B.; Gao, K.X.; Xie, M.; Zhou, Z.K.; Tang, J.; Hou, S.S. Riboflavin (Vitamin B2) Deficiency Induces Apoptosis Mediated by Endoplasmic Reticulum Stress and the CHOP Pathway in HepG2 Cells. Nutrients 2022, 14, 3356. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.; Naseem, I. Riboflavin as Adjuvant with Cisplatin: Study in Mouse Skin Cancer Model. Front. Biosci. (Elite Ed.) 2015, 7, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Naseem, I.; Hassan, I.; Alhazza, I.M.; Chibber, S. Protective Effect of Riboflavin on Cisplatin-Induced Toxicities: A Gender-Dependent Study. J. Trace Elem. Med. Biol. 2015, 29, 303–314. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Q.Y.; Zhu, Z.L.; Tang, P.Y.; Li, K. Vitamin B2 Intake and the Risk of Colorectal Cancer: A Meta-Analysis of Observational Studies. Asian Pac. J. Cancer Prev. 2015, 16, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Ben, S.; Du, M.; Ma, G.; Qu, J.; Zhu, L.; Chu, H.; Zhang, Z.; Wu, Y.; Gu, D.; Wang, M. Vitamin B2 Intake Reduces the Risk for Colorectal Cancer: A Dose-Response Analysis. Eur. J. Nutr. 2019, 58, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.S.; Jung, S.; Zhang, X.; Ogino, S.; Giovannucci, E.L.; Cho, E. Vitamin B2 Intake and Colorectal Cancer Risk: Results from the Nurses’ Health Study and the Health Professionals Follow-Up Study Cohort. Int. J. Cancer 2016, 139, 996–1008. [Google Scholar] [CrossRef]
- Lu, Y.T.; Gunathilake, M.; Lee, J.; Choi, I.J.; Kim, Y.I.; Kim, J. Riboflavin Intake, MTRR Genetic Polymorphism (rs1532268), and Gastric Cancer Risk in a Korean Population: A Case-Control Study. Br. J. Nutr. 2022, 127, 1026–1033. [Google Scholar] [CrossRef]
- Xu, L.; Wu, Q.X.; Li, X.; Fang, Y.J.; Zhou, R.L.; Che, M.M.; Ma, T.; Zhang, C.X. Serum Flavin Mononucleotide but Not Riboflavin Is Inversely Associated with the Risk of Colorectal Cancer. Food Funct. 2022, 13, 12246–12257. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Tan, Y.; Zhu, L. Dietary Vitamin B2 Intake and Breast Cancer Risk: A Systematic Review and Meta-Analysis. Arch. Gynecol. Obstet. 2017, 295, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Majumder, R.; Banerjee, S.; Paul, S.; Mondal, S.; Mandal, M.; Ghosh, P.; Maity, D.; Anoop, A.; Singh, N.D.P.; Mandal, M. Riboflavin-Induced DNA Damage and Anticancer Activity in Breast Cancer Cells Under Visible Light: A TD-DFT and In Vitro Study. J. Chem. Inf. Model. 2024, 64, 5580–5589. [Google Scholar] [CrossRef] [PubMed]
- Sturm, S.; Niegisch, G.; Windolf, J.; Suschek, C.V. Exposure of Bladder Cancer Cells to Blue Light (λ = 453 nm) in the Presence of Riboflavin Synergistically Enhances the Cytotoxic Efficiency of Gemcitabine. Int. J. Mol. Sci. 2024, 25, 4868. [Google Scholar] [CrossRef]
- Chiu, C.M.; Lee, S.Y.; Chen, P.R.; Zhan, S.Q.; Yuann, J.P.; Huang, S.T.; Wu, M.F.; Cheng, C.W.; Chang, Y.C.; Liang, J.Y. An Investigation of the Influence of Reactive Oxygen Species Produced from Riboflavin-5′-Phosphate by Blue or Violet Light on the Inhibition of WiDr Colon Cancer Cells. Photodiagnosis Photodyn. Ther. 2023, 44, 103810. [Google Scholar] [CrossRef]
- Lv, J.J.; Zhang, L.J.; Kong, X.M.; Zhao, Y.; Li, X.Y.; Wang, J.B.; Yang, X.T.; Cheng, Z.H.; Li, W.Z.; Wang, X.H.; et al. Association Between Vitamin B2 Intake and Prostate-Specific Antigen in American Men: 2003–2010 National Health and Nutrition Examination Survey. BMC Public Health 2024, 24, 1224. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, X.; Jin, X.; Dong, T.; Gao, X.; Wang, J.; Li, Y.; Ma, E. Riboflavin Protects Against Pancreatic Cancer Metastasis by Targeting TGF-β Receptor 1. Bioorg. Chem. 2024, 146, 107274. [Google Scholar] [CrossRef]
- Gunathilake, M.; Kim, M.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Interactions Between Vitamin B2, the MTRR rs1801394 and MTR rs1805087 Genetic Polymorphisms, and Colorectal Cancer Risk in a Korean Population. Epidemiol. Health 2024, 46, e2024037. [Google Scholar] [CrossRef]
- Paragomi, P.; Wang, R.; Huang, J.Y.; Midttun, Ø.; Ulvik, A.; Ueland, P.M.; Koh, W.P.; Yuan, J.M.; Luu, H.N. The Association Between Serum Riboflavin and Flavin Mononucleotide with Pancreatic Cancer: Findings from a Prospective Cohort Study. Pancreas 2023, 52, e127–e134. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Huangfu, Y.; Deng, L.; Wang, P.; Shen, L.; Zhou, Y. High Serum Riboflavin Is Associated with the Risk of Sporadic Colorectal Cancer. Cancer Epidemiol. 2023, 83, 102342. [Google Scholar] [CrossRef] [PubMed]
- Barile, M.; Giancaspero, T.A.; Leone, P.; Galluccio, M.; Indiveri, C. Riboflavin Transport and Metabolism in Humans. J. Inherit. Metab. Dis. 2016, 39, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Mosegaard, S.; Dipace, G.; Bross, P.; Carlsen, J.; Gregersen, N.; Olsen, R.K.J. Riboflavin Deficiency—Implications for General Human Health and Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020, 21, 3847. [Google Scholar] [CrossRef] [PubMed]
- McNulty, H.; Dowey, L.R.C.; Strain, J.J.; Dunne, A.; Ward, M.; Molloy, A.M.; McAnena, L.B.; Hughes, J.P.; Hannon-Fletcher, M.; Scott, J.M. Riboflavin Lowers Homocysteine in Individuals Homozygous for the MTHFR 677C→T Polymorphism. Circulation 2006, 113, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, J.; Wang, L.; Li, Y.; Jin, J.; Ai, L.; Li, C.; Li, Z.; Mao, S. MTHFR Genetic Polymorphisms May Contribute to the Risk of Chronic Myelogenous Leukemia in Adults: A Meta-Analysis of 12 Genetic Association Studies. Tumor Biol. 2014, 35, 4233–4245. [Google Scholar] [CrossRef] [PubMed]
- Karande, A.A.; Sridhar, L.; Gopinath, K.S.; Adiga, P.R. Riboflavin Carrier Protein: A Serum and Tissue Marker for Breast Carcinoma. Int. J. Cancer 2001, 95, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Mekseriwattana, W.; Guardia, P.; Herrero, B.T.; de la Fuente, J.M.; Kuhakarn, C.; Roig, A.; Katewongsa, K.P. Riboflavin-Citrate Conjugate Multicore SPIONs with Enhanced Magnetic Responses and Cellular Uptake in Breast Cancer Cells. Nanoscale Adv. 2022, 4, 1988–1998. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.; Ouhtit, A.; Gaur, R.; Fernando, A.; Schwarzenberger, P.; Su, J.; Ismail, M.F.; El-Sayyad, H.I.; Karande, A.; Elmageed, Z.A.; et al. Biochemical Characterization of Riboflavin Carrier Protein (RCP) in Prostate Cancer. Front. Biosci. (Landmark Ed.) 2009, 14, 3634–3640. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Xu, Y.W.; Wu, J.Y.; Tan, H.Z.; Wu, Z.Y.; Xue, Y.J.; Zhang, J.J.; Li, E.M.; Xu, L.Y. Plasma Riboflavin Level Is Associated with Risk, Relapse, and Survival of Esophageal Squamous Cell Carcinoma. Nutr. Cancer 2017, 69, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Luo, H.J.; Wu, Z.Y.; Chen, S.Z.; Wang, X.; Yu, S.X.; Wang, J.M.; Lin, S.Y.; Cai, Z.Y.; Gao, Y.L.; et al. Decreased Plasma Riboflavin Is Associated with Poor Prognosis, Invasion, and Metastasis in Esophageal Squamous Cell Carcinoma. Eur. J. Clin. Nutr. 2020, 74, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.M.; Taylor, P.R.; Fan, J.H.; Pfeiffer, R.M.; Gail, M.H.; Liang, H.; Murphy, G.A.; Dawsey, S.M.; Qiao, Y.L.; Abnet, C.C. Effects of Nutrition Intervention on Total and Cancer Mortality: 25-Year Post-Trial Follow-Up of the 5.25-Year Linxian Nutrition Intervention Trial. J. Natl. Cancer Inst. 2018, 110, 1229–1238. [Google Scholar] [CrossRef]
- Takata, Y.; Cai, Q.; Beeghly-Fadiel, A.; Li, H.; Shrubsole, M.J.; Ji, B.T.; Yang, G.; Chow, W.H.; Gao, Y.T.; Zheng, W.; et al. Dietary B Vitamin and Methionine Intakes and Lung Cancer Risk Among Female Never Smokers in China. Cancer Causes Control 2012, 23, 1965–1975. [Google Scholar] [CrossRef]
- Aili, A.; Hasim, A.; Kelimu, A.; Guo, X.; Mamtimin, B.; Abudula, A.; Upur, H. Association of the Plasma and Tissue Riboflavin Levels with C20orf54 Expression in Cervical Lesions and Its Relationship to HPV16 Infection. PLoS ONE 2013, 8, e79937. [Google Scholar] [CrossRef]
- Hernandez, B.Y.; McDuffie, K.; Wilkens, L.R.; Kamemoto, L.; Goodman, M.T. Diet and Premalignant Lesions of the Cervix: Evidence of a Protective Role for Folate, Riboflavin, Thiamin, and Vitamin B12. Cancer Causes Control 2003, 14, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Cook, N.R.; Albert, C.M.; Gaziano, J.M.; Buring, J.E.; Manson, J.E. Effect of Combined Folic Acid, Vitamin B6, and Vitamin B12 on Cancer Risk in Women: A Randomized Trial. JAMA 2008, 300, 2012–2021. [Google Scholar] [CrossRef]
- Lee, S.M.; Seol, A.; Cho, H.W.; Min, K.J.; Lee, S.; Hong, J.H.; Song, J.Y.; Lee, J.K.; Lee, N.W. Optimal Dietary Intake of Riboflavin Associated with Lower Risk of Cervical Cancer in Korea: Korean National Health and Nutrition Examination Survey 2010–2021. Life 2024, 14, 529. [Google Scholar] [CrossRef]
- Freese, R.; Lysne, V. Niacin—A Scoping Review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67. [Google Scholar] [CrossRef]
- Michalowska, M.; Znorko, B.; Kaminski, T.; Oksztulska-Kolanek, E.; Pawlak, D. New Insights into Tryptophan and Its Metabolites in the Regulation of Bone Metabolism. J. Physiol. Pharmacol. 2015, 66, 779–791. [Google Scholar] [PubMed]
- Zhang, X.M.; Jing, Y.P.; Jia, M.Y.; Zhang, L. Negative Transcriptional Regulation of Inflammatory Genes by Group B3 Vitamin Nicotinamide. Mol. Biol. Rep. 2012, 39, 10367–10371. [Google Scholar] [CrossRef]
- Campagna, R.; Pozzi, V.; Sartini, D.; Salvolini, E.; Brisigotti, V.; Molinelli, E.; Campanati, A.; Offidani, A.; Emanuelli, M. Beyond Nicotinamide Metabolism: Potential Role of Nicotinamide N-Methyltransferase as a Biomarker in Skin Cancers. Cancers 2021, 13, 4943. [Google Scholar] [CrossRef]
- Alves-Fernandes, D.K.; Jasiulionis, M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019, 20, 3153. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Lu, J.; Li, Y.; Zeng, J.; Du, X.; Yu, A.; Zhao, X.; Chi, F.; Xi, Z.; Cao, S. SIRT1: A Novel Regulator in Colorectal Cancer. Biomed. Pharmacother. 2024, 178, 117176. [Google Scholar] [CrossRef] [PubMed]
- Hołubiec, P.; Leończyk, M.; Staszewski, F.; Łazarczyk, A.; Jaworek, A.K.; Wojas-Pelc, A. Pathophysiology and Clinical Management of Pellagra—A Review. Folia Med. Cracov. 2021, 61, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Pérez, R.; Wanders, R.J.A.; van Karnebeek, C.D.M.; Houtkooper, R.H. NAD+ Homeostasis in Human Health and Disease. EMBO Mol. Med. 2021, 13, e13943. [Google Scholar] [CrossRef]
- Nikas, I.P.; Paschou, S.A.; Ryu, H.S. The Role of Nicotinamide in Cancer Chemoprevention and Therapy. Biomolecules 2020, 10, 477. [Google Scholar] [CrossRef]
- Luna, A.; Aladjem, M.I.; Kohn, K.W. SIRT1/PARP1 Crosstalk: Connecting DNA Damage and Metabolism. Genome Integr. 2013, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Scatozza, F.; Moschella, F.; D’Arcangelo, D.; Rossi, S.; Tabolacci, C.; Giampietri, C.; Proietti, E.; Facchiano, F.; Facchiano, A. Nicotinamide Inhibits Melanoma In Vitro and In Vivo. J. Exp. Clin. Cancer Res. 2020, 39, 211. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Li, T.; Wu, S.; Li, W.Q.; Weinstock, M.; Qureshi, A.A.; Cho, E. Niacin Intake and Risk of Skin Cancer in US Women and Men. Int. J. Cancer 2017, 140, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Camillo, L.; Gironi, L.C.; Zavattaro, E.; Esposto, E.; Savoia, P. Nicotinamide Attenuates UV-Induced Stress Damage in Human Primary Keratinocytes from Cancerization Fields. J. Invest. Dermatol. 2022, 142, 1466–1477.e1. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Martin, A.J.; Choy, B.; Fernández-Peñas, P.; Dalziell, R.A.; McKenzie, C.A.; Scolyer, R.A.; Dhillon, H.M.; Vardy, J.L.; Kricker, A.; et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N. Engl. J. Med. 2015, 373, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, C.; Nardone, B.; Kiguradze, T.; Posligua, A.; West, D.P.; Rani, M. Investigating the Potential for Protective Effect Against Non-Melanoma Skin Cancer in Cancer Patients Receiving Oral Niacin. G. Ital. Dermatol. Venereol. 2017, 152, 387–388. [Google Scholar] [CrossRef] [PubMed]
- Tosti, G.; Pepe, F.; Gnagnarella, P.; Silvestri, F.; Gaeta, A.; Queirolo, P.; Gandini, S. The Role of Nicotinamide as a Chemo-Preventive Agent in NMSCs: A Systematic Review and Meta-Analysis. Nutrients 2023, 16, 100. [Google Scholar] [CrossRef] [PubMed]
- Lohani, M.; Dhasmana, A.; Haque, S.; Dar, S.A.; Jawed, A.; Wahid, M.; Mandal, R.K.; Akhter, N.; Farasani, A.; Hobani, Y.H.; et al. Niacin Deficiency Modulates Genes Involved in Cancer: Are Smokers at Higher Risk? J. Cell Biochem. 2019, 120, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, M.S.; Caffa, I.; Monacelli, F.; Nencioni, A. Inhibitors of NAD+ Production in Cancer Treatment: State of the Art and Perspectives. Int. J. Mol. Sci. 2024, 25, 2092. [Google Scholar] [CrossRef] [PubMed]
- Sampath, D.; Zabka, T.S.; Misner, D.L.; O’Brien, T.; Dragovich, P.S. Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Strategy in Cancer. Pharmacol. Ther. 2015, 151, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.; Guiot, M.C.; Gravel, M.; Bernier, C.; Shore, G.C.; Roulston, A. Novel NAPRT Specific Antibody Identifies Small Cell Lung Cancer and Neuronal Cancers as Promising Clinical Indications for a NAMPT Inhibitor/Niacin Co-Administration Strategy. Oncotarget 2017, 8, 77846–77859. [Google Scholar] [CrossRef] [PubMed]
- Nomura, M.; Ohuchi, M.; Sakamoto, Y.; Kudo, K.; Yaku, K.; Soga, T.; Sugiura, Y.; Morita, M.; Hayashi, K.; Miyahara, S.; et al. Niacin Restriction with NAMPT-Inhibition is Synthetic Lethal to Neuroendocrine Carcinoma. Nat. Commun. 2023, 14, 8095. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, L.; Abyar, F. De Novo Design of Cu (II) Complex Containing CNC-Pincer-Vitamin B3 and B7 Conjugates for Breast Cancer Application. Mol. Pharm. 2019, 16, 3802–3813. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mohsen, M.A.; Badawy, A.M.; Abu-Youssef, M.A.; Yehia, M.A.; Abou Shamaa, L.D.; Mohamed, S.A. Influence of Copper(I) Nicotinate Complex on the Notch1 Signaling Pathway in Triple Negative Breast Cancer Cell Lines. Sci. Rep. 2024, 14, 2522. [Google Scholar] [CrossRef]
- Jung, M.; Lee, K.M.; Im, Y.; Seok, S.H.; Chung, H.; Kim, D.Y.; Han, D.; Lee, C.H.; Hwang, E.H.; Park, S.Y.; et al. Nicotinamide (Niacin) Supplement Increases Lipid Metabolism and ROS-Induced Energy Disruption in Triple-Negative Breast Cancer: Potential for Drug Repositioning as an Anti-Tumor Agent. Mol. Oncol. 2022, 16, 1795–1815. [Google Scholar] [CrossRef]
- He, Y.C.; He, L.; Khoshaba, R.; Lu, F.G.; Cai, C.; Zhou, F.L.; Liao, D.F.; Cao, D. Curcumin Nicotinate Selectively Induces Cancer Cell Apoptosis and Cycle Arrest Through a P53-Mediated Mechanism. Molecules 2019, 24, 4179. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Lee, J.H.; Moon, J.H.; Nazim, U.M.; Lee, Y.J.; Seol, J.W.; Hur, J.; Eo, S.K.; Lee, J.H.; Park, S.Y. Niacin Alleviates TRAIL-Mediated Colon Cancer Cell Death via Autophagy Flux Activation. Oncotarget 2016, 7, 4356–4368. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Yang, R.; Mirzaei, R.; Rawji, K.; Poon, C.; Mishra, M.K.; Zemp, F.J.; Bose, P.; Kelly, J.; Dunn, J.F.; et al. Control of Brain Tumor Growth by Reactivating Myeloid Cells with Niacin. Sci. Transl. Med. 2020, 12, eaay9924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Acklin, S.; Gillenwater, J.; Du, W.; Patra, M.; Yu, H.; Xu, B.; Yu, J.; Xia, F. SIRT2 Promotes Murine Melanoma Progression Through Natural Killer Cell Inhibition. Sci. Rep. 2021, 11, 12988. [Google Scholar] [CrossRef] [PubMed]
- Selvanesan, B.C.; Meena, K.; Beck, A.; Meheus, L.; Lara, O.; Rooman, I.; Gravekamp, C. Nicotinamide Combined with Gemcitabine is an Immunomodulatory Therapy That Restrains Pancreatic Cancer in Mice. J. Immunother. Cancer 2020, 8, e001250. [Google Scholar] [CrossRef]
- Shu, L.; Ren, L.; Wang, Y.; Fang, T.; Ye, Z.; Han, W.; Chen, C.; Wang, H. Niacin-Ligated Platinum (IV)-Ruthenium (II) Chimeric Complexes Synergistically Suppress Tumor Metastasis and Growth with Potentially Reduced Toxicity in Vivo. Chem. Commun. 2020, 56, 3069–3072. [Google Scholar] [CrossRef]
- Giacalone, S.; Spigariolo, C.B.; Bortoluzzi, P.; Nazzaro, G. Oral Nicotinamide: The Role in Skin Cancer Chemoprevention. Dermatol. Ther. 2021, 34, e14892. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Gao, L.; Liao, N.; Xu, X.; Yu, W.; Hong, W. Association Between Niacin and Mortality Among Patients with Cancer in the NHANES Retrospective Cohort. BMC Cancer 2022, 22, 1173. [Google Scholar] [CrossRef] [PubMed]
- Miallot, R.; Millet, V.; Galland, F.; Naquet, P. The Vitamin B5/Coenzyme a Axis: A Target for Immunomodulation? Eur. J. Immunol. 2023, 53, e2350435. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, R.; Jackowski, S. Biosynthesis of Pantothenic Acid and Coenzyme A. EcoSal Plus 2007, 2, 10.1128/ecosalplus.3.6.3.4. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, K.; Iuso, A.; Reunert, J.; Grüneberg, M.; Seelhöfer, A.; Rust, S.; Fiermonte, G.; Paradies, E.; Piazzolla, C.; Mannil, M.; et al. Expanding the Genetic and Clinical Spectrum of SLC25A42-Associated Disorders and Testing of Pantothenic Acid to Improve CoA Level In Vitro. JIMD Rep. 2024, 65, 417–425. [Google Scholar] [CrossRef]
- Miallot, R.; Millet, V.; Roger, A.; Fenouil, R.; Tardivel, C.; Martin, J.C.; Tranchida, F.; Shintu, L.; Berchard, P.; Sousa Lanza, J.; et al. The Coenzyme A Precursor Pantethine Enhances Antitumor Immunity in Sarcoma. Life Sci. Alliance 2023, 6, e202302200. [Google Scholar] [CrossRef]
- McAllister, R.; Fixter, L.; Campbell, E. The Effect of Tumor Growth on Liver Pantothenate, CoA, and Fatty Acid Synthetase Activity in the Mouse. Br. J. Cancer 1988, 57, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Hajizadeh, B.; Jessri, M.; Akhoondan, M.; Moasheri, S.M.; Rashidkhani, B. Nutrient Patterns and Risk of Esophageal Squamous Cell Carcinoma: A Case-Control Study. Dis. Esophagus 2012, 25, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Dugué, P.A.; Brinkman, M.T.; Hodge, A.M.; Bassett, J.K.; Bolton, D.; Longano, A.; Hopper, J.L.; Southey, M.C.; English, D.R.; Milne, R.L.; et al. Dietary Intake of Nutrients Involved in One-Carbon Metabolism and Risk of Urothelial Cell Carcinoma: A Prospective Cohort Study. Int. J. Cancer 2018, 143, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Dugué, P.A.; Bassett, J.K.; Brinkman, M.T.; Southey, M.C.; Joo, J.E.; Wong, E.M.; Milne, R.L.; English, D.R.; Giles, G.G.; Boussioutas, A.; et al. Dietary Intake of Nutrients Involved in One-Carbon Metabolism and Risk of Gastric Cancer: A Prospective Study. Nutr. Cancer 2019, 71, 605–614. [Google Scholar] [CrossRef]
- Egnell, M.; Fassier, P.; Lécuyer, L.; Zelek, L.; Vasson, M.P.; Hercberg, S.; Latino-Martel, P.; Galan, P.; Deschasaux, M.; Touvier, M. B-Vitamin Intake from Diet and Supplements and Breast Cancer Risk in Middle-Aged Women: Results from the Prospective NutriNet-Santé Cohort. Nutrients 2017, 9, 488. [Google Scholar] [CrossRef] [PubMed]
- Ship, A.G.; Schal’Ten, W.E.; Watkin, D.M.; Romine, M. Effects of Pantothenic Acid-Deficient Diets in Patients with Carcinomas. Cancer 1958, 11, 933–937. [Google Scholar] [CrossRef]
- Hutschenreuther, A.; Birkenmeier, G.; Bigl, M.; Krohn, K.; Birkemeyer, C. Glycerophosphoglycerol, Beta-Alanine, and Pantothenic Acid as Metabolic Companions of Glycolytic Activity and Cell Migration in Breast Cancer Cell Lines. Metabolites 2013, 3, 1084–1101. [Google Scholar] [CrossRef] [PubMed]
- Kreuzaler, P.; Inglese, P.; Ghanate, A.; Gjelaj, E.; Wu, V.; Panina, Y.; Mendez-Lucas, A.; MacLachlan, C.; Patani, N.; Hubert, C.B.; et al. Vitamin B5 Supports MYC Oncogenic Metabolism and Tumor Progression in Breast Cancer. Nat. Metab. 2023, 5, 1870–1886. [Google Scholar] [CrossRef] [PubMed]
- Slyshenkov, V.S.; Rakowska, M.; Wojtczak, L. Protective Effect of Pantothenic Acid and Related Compounds Against Permeabilization of Ehrlich Ascites Tumour Cells by Digitonin. Acta Biochim. Pol. 1996, 43, 407–410. [Google Scholar] [CrossRef]
- Slyshenkov, V.S.; Rakowska, M.; Moiseenok, A.G.; Wojtczak, L. Pantothenic Acid and Its Derivatives Protect Ehrlich Ascites Tumor Cells Against Lipid Peroxidation. Free Radic. Biol. Med. 1995, 19, 767–772. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, L.; Lin, S.; Li, Y.; Xiao, S.; Liu, J.; Li, Z.; Cui, Y.; Zhang, J. Metabolic Profiles of Gastric Cancer Cell Lines with Different Degrees of Differentiation. Int. J. Clin. Exp. Pathol. 2018, 11, 869–875. [Google Scholar] [PubMed] [PubMed Central]
- Secchi, D.G.; Aballay, L.R.; Galíndez, M.F.; Piccini, D.; Lanfranchi, H.; Brunotto, M. Red Meat, Micronutrients, and Oral Squamous Cell Carcinoma of Argentine Adult Patients. Nutr. Hosp. 2015, 32, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- St Paul, M.; Saibil, S.D.; Han, S.; Israni-Winger, K.; Lien, S.C.; Laister, R.C.; Sayad, A.; Penny, S.; Amaria, R.N.; Haydu, L.E.; et al. Coenzyme A Fuels T Cell Anti-Tumor Immunity. Cell Metab. 2021, 33, 2415–2427.e6. [Google Scholar] [CrossRef]
- Giessner, C.; Millet, V.; Mostert, K.J.; Gensollen, T.; Vu Manh, T.P.; Garibal, M.; Dieme, B.; Attaf-Bouabdallah, N.; Chasson, L.; Brouilly, N.; et al. Vnn1 Pantetheinase Limits the Warburg Effect and Sarcoma Growth by Rescuing Mitochondrial Activity. Life Sci. Alliance 2018, 1, e201800073. [Google Scholar] [CrossRef] [PubMed]
- Roseblade, A.; Luk, F.; Ung, A.; Bebawy, M. Targeting Microparticle Biogenesis: A Novel Approach to the Circumvention of Cancer Multidrug Resistance. Curr. Cancer Drug Targets 2015, 15, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Penet, M.F.; Krishnamachary, B.; Wildes, F.; Mironchik, Y.; Mezzanzanica, D.; Podo, F.; de Reggi, M.; Gharib, B.; Bhujwalla, Z.M. Effect of Pantethine on Ovarian Tumor Progression and Choline Metabolism. Front. Oncol. 2016, 6, 244. [Google Scholar] [CrossRef] [PubMed]
- Stach, K.; Stach, W.; Augoff, K. Vitamin B6 in Health and Disease. Nutrients 2021, 13, 3229. [Google Scholar] [CrossRef] [PubMed]
- Ueland, P.M.; McCann, A.; Midttun, Ø.; Ulvik, A. Inflammation, Vitamin B6, and Related Pathways. Mol. Aspects Med. 2017, 53, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Stover, P.J.; Field, M.S. Vitamin B-6. Adv. Nutr. 2015, 6, 132–133. [Google Scholar] [CrossRef] [PubMed]
- Mocellin, S.; Briarava, M.; Pilati, P. Vitamin B6 and Cancer Risk: A Field Synopsis and Meta-Analysis. JNCI J. Natl. Cancer Inst. 2017, 109, djw230. [Google Scholar] [CrossRef]
- Lurie, G.; Wilkens, L.R.; Shvetsov, Y.B.; Ollberding, N.J.; Franke, A.A.; Henderson, B.E.; Kolonel, L.N.; Goodman, M.T. Prediagnostic Plasma Pyridoxal 5′-Phosphate (Vitamin B6) Levels and Invasive Breast Carcinoma Risk: The Multiethnic Cohort. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1942–1948. [Google Scholar] [CrossRef]
- Wei, D.H.; Mao, Q.Q. Vitamin B6, Vitamin B12, and Methionine and Risk of Pancreatic Cancer: A Meta-Analysis. Nutr. J. 2020, 19, 111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H. Vitamin B6 and Colorectal Cancer: Current Evidence and Future Directions. World J. Gastroenterol. 2013, 19, 1005. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Orsini, N.; Wolk, A. Vitamin B6 and Risk of Colorectal Cancer: A Meta-Analysis of Prospective Studies. JAMA 2010, 303, 1077. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Guo, M.; Wang, D.; Liu, K.; Hu, D.; Li, J. Association Between Vitamin B6 and the Risk of Colorectal Cancer: A Meta-Analysis of Observational Studies. Nutr. Cancer 2023, 75, 1281–1294. [Google Scholar] [CrossRef] [PubMed]
- Holowatyj, A.N.; Ose, J.; Gigic, B.; Lin, T.; Ulvik, A.; Geijsen, A.J.M.R.; Brezina, S.; Kiblawi, R.; van Roekel, E.H.; Baierl, A.; et al. Higher Vitamin B6 Status Is Associated with Improved Survival Among Patients with Stage I–III Colorectal Cancer. Am. J. Clin. Nutr. 2022, 116, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, L.; Ou, Q.J.; Xu, H.; Chen, Y.Y.; Fang, Y.J.; Zhang, C.X. Serum Pyridoxal 5′-Phosphate and Pyridoxic Acid Ratio Index with Prognosis of Colorectal Cancer: A Prospective Cohort Study. Nutrients 2024, 16, 3685. [Google Scholar] [CrossRef]
- Xu, L.; Fang, Y.J.; Che, M.M.; Abulimiti, A.; Huang, C.Y.; Zhang, C.X. Association of Serum Pyridoxal-5′-Phosphate, Pyridoxal, and PAr with Colorectal Cancer Risk: A Large-Scale Case-Control Study. Nutrients 2022, 14, 2389. [Google Scholar] [CrossRef]
- Wu, X.; Xu, W.; Zhou, T.; Cao, N.; Ni, J.; Zou, T.; Liang, Z.; Wang, X.; Fenech, M. The Role of Genetic Polymorphisms as Related to One-Carbon Metabolism, Vitamin B6, and Gene-Nutrient Interactions in Maintaining Genomic Stability and Cell Viability in Chinese Breast Cancer Patients. Int. J. Mol. Sci. 2016, 17, 1003. [Google Scholar] [CrossRef]
- Huq, M.D.M.; Tsai, N.P.; Lin, Y.P.; Higgins, L.; Wei, L.N. Vitamin B6 Conjugation to Nuclear Corepressor RIP140 and Its Role in Gene Regulation. Nat. Chem. Biol. 2007, 3, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Pilesi, E.; Tesoriere, G.; Ferriero, A.; Mascolo, E.; Liguori, F.; Argirò, L.; Angioli, C.; Tramonti, A.; Contestabile, R.; Volontè, C.; et al. Vitamin B6 Deficiency Cooperates with Oncogenic Ras to Induce Malignant Tumors in Drosophila. Cell Death Dis. 2024, 15, 388. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Tsutsui, M.; Ando, J.; Inano, T.; Noguchi, M.; Yahata, Y.; Tanaka, M.; Tsukune, Y.; Masuda, A.; Shirane, S.; et al. Vitamin B6 Deficiency Is Prevalent in Primary and Secondary Myelofibrosis Patients. Int. J. Hematol. 2019, 110, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Kato, N.; Kimoto, A.; Zhang, P.; Bumrungkit, C.; Karunaratne, S.; Yanaka, N.; Kumrungsee, T. Relationship of Low Vitamin B6 Status with Sarcopenia, Frailty, and Mortality: A Narrative Review. Nutrients 2024, 16, 177. [Google Scholar] [CrossRef] [PubMed]
- Spinneker, A.; Sola, R.; Lemmen, V.; Castillo, M.J.; Pietrzik, K.; González-Gross, M. Vitamin B6 Status, Deficiency, and Its Consequences—An Overview. Nutr. Hosp. 2007, 22, 7–24. [Google Scholar]
- Zuo, H.; Ueland, P.M.; Midttun, Ø.; Tell, G.S.; Fanidi, A.; Zheng, W.; Shu, X.; Xiang, Y.; Wu, J.; Prentice, R.; et al. Vitamin B6 Catabolism and Lung Cancer Risk: Results from the Lung Cancer Cohort Consortium (LC3). Ann. Oncol. 2019, 30, 478–485. [Google Scholar] [CrossRef]
- Theofylaktopoulou, D.; Midttun, Ø.; Ueland, P.M.; Meyer, K.; Fanidi, A.; Zheng, W.; Shu, X.O.; Xiang, Y.B.; Prentice, R.; Pettinger, M.; et al. Impaired Functional Vitamin B6 Status Is Associated with Increased Risk of Lung Cancer. Int. J. Cancer 2018, 142, 2425–2434. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Senovilla, L.; Olaussen, K.A.; Pinna, G.; Eisenberg, T.; Goubar, A.; Martins, I.; Michels, J.; Kratassiouk, G.; et al. Prognostic Impact of Vitamin B6 Metabolism in Lung Cancer. Cell Rep. 2012, 2, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Butler, L.M.; Midttun, Ø.; Koh, W.P.; Ueland, P.M.; Wang, R.; Jin, A.; Gao, Y.T.; Yuan, J.M. Serum B6 Vitamers (Pyridoxal 5′-Phosphate, Pyridoxal, and 4-Pyridoxic Acid) and Pancreatic Cancer Risk: Two Nested Case-Control Studies in Asian Populations. Cancer Causes Control 2016, 27, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Santos, R.J.; McGuigan, A.J.; Singh, U.; Johnson, P.; Kunzmann, A.T.; Turkington, R.C. The Role of Circulating Protein and Metabolite Biomarkers in the Development of Pancreatic Ductal Adenocarcinoma (PDAC): A Systematic Review and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1090–1102. [Google Scholar] [CrossRef]
- Mock, D.M. Biotin: From Nutrition to Therapeutics. J. Nutr. 2017, 147, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- León-Del-Río, A. Biotin in Metabolism, Gene Expression, and Human Disease. J. Inherit. Metab. Dis. 2019, 42, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Sirithanakorn, C.; Cronan, J.E. Biotin, a Universal and Essential Cofactor: Synthesis, Ligation, and Regulation. FEMS Microbiol. Rev. 2021, 45, fuab003. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kinoshita, M.; Sato, T.; Shimada, S.; Kawamura, T. Biotin Is Required for the Zinc Homeostasis in the Skin. Nutrients 2019, 11, 919. [Google Scholar] [CrossRef]
- Zempleni, J.; Hassan, Y.I.; Wijeratne, S.S. Biotin and Biotinidase Deficiency. Expert. Rev. Endocrinol. Metab. 2008, 3, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Sugita, Y.; Shirakawa, H.; Sugimoto, R.; Furukawa, Y.; Komai, M. Effect of Biotin Treatment on Hepatic Gene Expression in Streptozotocin-Induced Diabetic Rats. Biosci. Biotechnol. Biochem. 2008, 72, 1290–1298. [Google Scholar] [CrossRef]
- McCarty, M.F. In Type 1 Diabetics, High-Dose Biotin May Compensate for Low Hepatic Insulin Exposure, Promoting a More Normal Expression of Glycolytic and Gluconeogenic Enzymes and Thereby Aiding Glycemic Control. Med. Hypotheses 2016, 95, 45–48. [Google Scholar] [CrossRef]
- Shen, K.; Johnson, D.W.; Gobe, G.C. The Role of cGMP and Its Signaling Pathways in Kidney Disease. Am. J. Physiol. Renal Physiol. 2016, 311, F671–F681. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Paira, P. Biotin Conjugated Organic Molecules and Proteins for Cancer Therapy: A Review. Eur. J. Med. Chem. 2018, 145, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Peng, Y.; Yue, Q.; Pu, Y.; Li, R.; Zhao, Y.; Hai, L.; Guo, L.; Wu, Y. Design, Preparation, and Evaluation of Different Branched Biotin-Modified Liposomes for Targeting Breast Cancer. Eur. J. Med. Chem. 2020, 193, 112204. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Singh, A.; Amin, S.; Spallholz, J.E.; Sharma, A.K. Identification and Biotin Receptor-Mediated Activity of a Novel Seleno-Biotin Compound That Inhibits Viability of and Induces Apoptosis in Ovarian Cancer Cells. Chem. Biol. Interact. 2022, 365, 110071. [Google Scholar] [CrossRef]
- Kundu, B.K.; Pragti; Carlton Ranjith, W.A.; Shankar, U.; Kannan, R.R.; Mobin, S.M.; Bandyopadhyay, A.; Mukhopadhyay, S. Cancer-Targeted Chitosan-Biotin-Conjugated Mesoporous Silica Nanoparticles as Carriers of Zinc Complexes to Achieve Enhanced Chemotherapy In Vitro and In Vivo. ACS Appl. Bio Mater. 2022, 5, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, Folate, and the Methionine Remethylation Cycle—Biochemistry, Pathways, and Regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef]
- Lee, Y.; Vousden, K.H.; Hennequart, M. Cycling back to folate metabolism in cancer. Nat. Cancer 2024, 5, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Pieroth, R.; Paver, S.; Day, S.; Lammersfeld, C. Folate and Its Impact on Cancer Risk. Curr. Nutr. Rep. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Linhart, H.G.; Troen, A.; Bell, G.W.; Cantu, E.; Chao, W.H.; Moran, E.; Steine, E.; He, T.; Jaenisch, R. Folate deficiency induces genomic uracil misincorporation and hypomethylation but does not increase DNA point mutations. Gastroenterology 2009, 136, 227–235.e3. [Google Scholar] [CrossRef]
- Duthie, S.J.; Narayanan, S.; Blum, S.; Pirie, L.; Brand, G.M. Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr. Cancer 2000, 37, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.; Prakash, M.D.; Kuol, N.; Nurgali, K.; Stojanovska, L.; Apostolopoulos, V. Anti-Tumor Effects of Vitamin B2, B6, and B9 in Promonocytic Lymphoma Cells. Int. J. Mol. Sci. 2019, 20, 3763. [Google Scholar] [CrossRef]
- Koklesova, L.; Mazurakova, A.; Samec, M.; Biringer, K.; Samuel, S.M.; Büsselberg, D.; Kubatka, P.; Golubnitschaja, O. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021, 12, 477–505. [Google Scholar] [CrossRef]
- Hasan, T.; Arora, R.; Bansal, A.K.; Bhattacharya, R.; Sharma, G.S.; Singh, L.R. Disturbed homocysteine metabolism is associated with cancer. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Naushad, S.M.; Reddy, C.A.; Kumaraswami, K.; Divyya, S.; Kotamraju, S.; Gottumukkala, S.R.; Digumarti, R.R.; Kutala, V.K. Impact of hyperhomocysteinemia on breast cancer initiation and progression: Epigenetic perspective. Cell Biochem. Biophys. 2014, 68, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Beetstra, S.; Suthers, G.; Dhillon, V.; Salisbury, C.; Turner, J.; Altree, M.; McKinnon, R.; Fenech, M. Methionine-dependence phenotype in the de novo pathway in BRCA1 and BRCA2 mutation carriers with and without breast cancer. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2565–2571. [Google Scholar] [CrossRef] [PubMed]
- Shrubsole, M.J.; Jin, F.; Dai, Q.; Shu, X.O.; Potter, J.D.; Hebert, J.R.; Gao, Y.T.; Zheng, W. Dietary folate intake and breast cancer risk: Results from the Shanghai Breast Cancer Study. Cancer Res. 2001, 61, 7136–7141. [Google Scholar]
- Xie, H.; Wei, L.; Wang, Q.; Tang, S.; Gan, J. Elevated serum homocysteine levels associated with poor recurrence-free and overall survival in patients with colorectal cancer. Sci. Rep. 2024, 14, 10057. [Google Scholar] [CrossRef]
- Pelucchi, C.; Talamini, R.; Negri, E.; Levi, F.; Conti, E.; Franceschi, S.; La Vecchia, C. Folate intake and risk of oral and pharyngeal cancer. Ann. Oncol. 2003, 14, 1677–1681. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Wang, D.; Yang, M.; Pang, Y.; Li, M.; Qin, S.; Cui, K. Folate intake and the risk of endometrial cancer: A dose-response meta-analysis. Medicine 2024, 103, e39775. [Google Scholar] [CrossRef]
- Gersekowski, K.; Ibiebele, T.I.; Australian Ovarian Cancer Study Group; Doherty, J.A.; Harris, H.R.; Goodman, M.T.; Terry, K.L.; Wu, A.H.; Bandera, E.V.; Qin, B.; et al. Folate Intake and Ovarian Cancer Risk among Women with Endometriosis: A Case-Control Study from the Ovarian Cancer Association Consortium. Cancer Epidemiol. Biomark. Prev. 2023, 32, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Shi, W.W.; Gao, H.F.; Zhou, L.; Hou, A.J.; Zhou, Y.H. Folate intake and the risk of breast cancer: A dose-response meta-analysis of prospective studies. PLoS ONE 2014, 9, e100044. [Google Scholar] [CrossRef]
- Larsson, S.C.; Giovannucci, E.; Wolk, A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: A meta-analysis. Gastroenterology 2006, 131, 1271–1283. [Google Scholar] [CrossRef]
- Larsson, S.C.; Giovannucci, E.; Wolk, A. Folate intake and stomach cancer incidence in a prospective cohort of Swedish women. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1409–1412. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.T.; Chang, C.; Lee, W.S. Folic acid inhibits COLO-205 colon cancer cell proliferation through activating the FRα/c-SRC/ERK1/2/NFκB/TP53 pathway: In vitro and in vivo studies. Sci. Rep. 2015, 5, 11187. [Google Scholar] [CrossRef]
- Thabet, R.H.; Alessa, R.E.M.; Al-Smadi, Z.K.K.; Alshatnawi, B.S.G.; Amayreh, B.M.I.; Al-Dwaaghreh, R.B.A.; Salah, S.K.A. Folic acid: Friend or foe in cancer therapy. J. Int. Med. Res. 2024, 52, 3000605231223064. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.B. Folate and colon cancer: Dietary habits from the distant past coming home to roost. Am. J. Clin. Nutr. 2021, 114, 1–2. [Google Scholar] [CrossRef]
- Bouras, E.; Kim, A.E.; Lin, Y.; Morrison, J.; Du, M.; Albanes, D.; Barry, E.L.; Baurley, J.W.; Berndt, S.I.; Bien, S.A.; et al. Genome-wide interaction analysis of folate for colorectal cancer risk. Am. J. Clin. Nutr. 2023, 118, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Hubner, R.A.; Houlston, R.S. Folate and colorectal cancer prevention. Br. J. Cancer 2009, 100, 233–239. [Google Scholar] [CrossRef]
- Giovannucci, E. Epidemiologic studies of folate and colorectal neoplasia: A review. J. Nutr. 2002, 132, 2350S–2355S. [Google Scholar] [CrossRef]
- Kim, Y.I. Role of folate in colon cancer development and progression. J. Nutr. 2003, 133, 3731S–3739S. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I. Folate and colorectal cancer: An evidence-based critical review. Mol. Nutr. Food Res. 2007, 51, 267–292. [Google Scholar] [CrossRef] [PubMed]
- Catala, G.N.; Bestwick, C.S.; Russell, W.R.; Tortora, K.; Giovannelli, L.; Moyer, M.P.; Lendoiro, E.; Duthie, S.J. Folate, genomic stability and colon cancer: The use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 843, 73–80. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, S.L.; McGlynn, A.P.; McNulty, H.; Reynolds, J.; Wasson, G.R.; Molloy, A.M.; Strain, J.J.; Weir, D.G.; Ward, M.; McKerr, G.; et al. Folic Acid Supplementation in Postpolypectomy Patients in a Randomized Controlled Trial Increases Tissue Folate Concentrations and Reduces Aberrant DNA Biomarkers in Colonic Tissues Adjacent to the Former Polyp Site. J. Nutr. 2016, 146, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic acid food fortification—Its history, effect, concerns, and future directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef]
- Wu, K.; Platz, E.A.; Willett, W.C.; Fuchs, C.S.; Selhub, J.; Rosner, B.A.; Hunter, D.J.; Giovannucci, E. A randomized trial on folic acid supplementation and risk of recurrent colorectal adenoma. Am. J. Clin. Nutr. 2009, 90, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Sauer, J.; Mason, J.B.; Choi, S.W. Too much folate: A risk factor for cancer and cardiovascular disease? Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 30–36. [Google Scholar] [CrossRef]
- Mucha, P.; Kus, F.; Cysewski, D.; Smolenski, R.T.; Tomczyk, M. Vitamin B12 Metabolism: A Network of Multi-Protein Mediated Processes. Int. J. Mol. Sci. 2024, 25, 8021. [Google Scholar] [CrossRef]
- Halczuk, K.; Kaźmierczak-Barańska, J.; Karwowski, B.T.; Karmańska, A.; Cieślak, M. Vitamin B12—Multifaceted In Vivo Functions and In Vitro Applications. Nutrients 2023, 15, 2734. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, S.; Waly, M.I.; Taranikanti, V.; Guizani, N.; Ali, A.; Rahman, M.S.; Al-Attabi, Z.; Al-Malky, R.N.; Al-Maskari, S.N.M.; Al-Ruqaishi, B.R.S.; et al. Folate/Vitamin B12 Supplementation Combats Oxidative Stress-Associated Carcinogenesis in a Rat Model of Colon Cancer. Nutr. Cancer 2019, 71, 100–110. [Google Scholar] [CrossRef]
- Obeid, R. High Plasma Vitamin B12 and Cancer in Human Studies: A Scoping Review to Judge Causality and Alternative Explanations. Nutrients 2022, 14, 4476. [Google Scholar] [CrossRef]
- Banjari, I.; Kožić, S. Dietary intake of vitamin B12 in relation to diet and lifestyle characteristics in a population at high risk for colorectal cancer. Cent. Eur. J. Public. Health 2018, 26, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Khairan, P.; Sobue, T.; Eshak, E.S.; Zha, L.; Kitamura, T.; Sawada, N.; Iwasaki, M.; Inoue, M.; Yamaji, T.; Shimazu, T.; et al. Association of dietary intakes of vitamin B12, vitamin B6, folate, and methionine with the risk of esophageal cancer: The Japan Public Health Center-based (JPHC) prospective study. BMC Cancer 2021, 21, 982. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fowke, J.H.; Liang, X.; Mozhui, K.; Sen, S.; Bao, W.; Liu, B.; Snetselaar, L.G.; Wallace, R.B.; Shadyab, A.H.; et al. Changes in Dietary Intake of Methionine, Folate/Folic Acid and Vitamin B12 and Survival in Postmenopausal Women with Breast Cancer: A Prospective Cohort Study. Nutrients 2022, 14, 4747. [Google Scholar] [CrossRef] [PubMed]
- Price, A.J.; Travis, R.C.; Appleby, P.N.; Albanes, D.; Barricarte Gurrea, A.; Bjørge, T.; Bueno-de-Mesquita, H.B.; Chen, C.; Donovan, J.; Gislefoss, R.; et al. Circulating Folate and Vitamin B12 and Risk of Prostate Cancer: A Collaborative Analysis of Individual Participant Data from Six Cohorts Including 6875 Cases and 8104 Controls. Eur. Urol. 2016, 70, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Sharp, L.; Carsin, A.-E.; Cantwell, M.M.; Anderson, L.A.; Murray, L.J. Intakes of dietary folate and other B vitamins are associated with risks of esophageal adenocarcinoma, Barrett’s esophagus, and reflux esophagitis. J. Nutr. 2013, 143, 1966–1973. [Google Scholar] [PubMed]
- Miranti, E.H.; Stolzenberg-Solomon, R.; Weinstein, S.J.; Selhub, J.; Männistö, S.; Taylor, P.R.; Freedman, N.D.; Albanes, D.; Abnet, C.C.; Murphy, G. Low vitamin B12 increases risk of gastric cancer: A prospective study of one-carbon metabolism nutrients and risk of upper gastrointestinal tract cancer. Int. J. Cancer 2017, 141, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Collin, S.M.; Metcalfe, C.; Refsum, H.; Lewis, S.J.; Zuccolo, L.; Smith, G.D.; Chen, L.; Harris, R.; Davis, M.; Marsden, G.; et al. Circulating folate, vitamin B12, homocysteine, vitamin B12 transport proteins, and risk of prostate cancer: A case-control study, systematic review, and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1632–1642. [Google Scholar] [CrossRef]
- Brasky, T.M.; White, E.; Chen, C.L. Long-Term, Supplemental, One-Carbon Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort. J. Clin. Oncol. 2017, 35, 3440–3448. [Google Scholar] [CrossRef]
- Luu, H.N.; Wang, R.; Jin, A.; Koh, W.P.; Yuan, J.M. The association between dietary vitamin B12 and lung cancer risk: Findings from a prospective cohort study. Eur. J. Cancer Prev. 2021, 30, 275–281. [Google Scholar] [CrossRef]
- Ebbing, M.; Bonaa, K.H.; Nygard, O.; Arnesen, E.; Ueland, P.M.; Nordrehaug, J.E.; Rasmussen, K.; Njolstad, I.; Refsum, H.; Nilsen, D.W.; et al. Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA 2009, 302, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Fanidi, A.; Carreras-Torres, R.; Larose, T.L.; Yuan, J.-M.; Stevens, V.L.; Weinstein, S.J.; Albanes, D.; Prentice, R.; Pettinger, M.; Cai, Q.; et al. Is high vitamin B12 status a cause of lung cancer? Int. J. Cancer 2019, 145, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.F.H.; Farkas, D.K.; Pedersen, L.; Nexo, E.; Sørensen, H.T. Elevated plasma vitamin B12 levels and cancer prognosis: A population-based cohort study. Cancer Epidemiol. 2016, 40, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.F.H.; Farkas, D.K.; Pedersen, L.; Sørensen, H.T. Elevated plasma vitamin B12 levels and risk of venous thromboembolism among cancer patients: A population-based cohort study. Thromb. Res. 2017, 156, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Amado-Garzon, S.B.; Molina-Pimienta, L.; Vejarano-Pombo, A.; Vélez-Bonilla, M.; Moreno-Chaparro, J.; Buitrago-Lopez, A. Elevated Vitamin B12, Risk of Cancer, and Mortality: A Systematic Review. Cancer Investig. 2024, 42, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.F.H.; Sørensen, H.T.; Horsfall, L.J.; Petersen, I. Elevated Vitamin B12 Levels and Cancer Risk in UK Primary Care: A THIN Database Cohort Study. Cancer Epidemiol. Biomark. Prev. 2019, 28, 814–821. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force; Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; et al. Vitamin, Mineral, and Multivitamin Supplementation to Prevent Cardiovascular Disease and Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2022, 327, 2326–2333. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; Gatica, F.; Rodríguez-Quintero, P.; Morales, Z.; Romo-Parra, H. A Molecular Approach of Caloric Restriction and Vitamins for Cancer Prevention. Anticancer. Agents Med. Chem. 2023, 23, 571–584. [Google Scholar] [CrossRef]
- Panda, P.K.; Saraf, S.; Verma, A.; Jain, A.; Bidla, P.D.; Raikwar, S.; Kumari, P.; Jain, S.K. Role of Vitamins in Therapeutic and Targeting Approaches for Prostate Cancer: An Overview. Curr. Drug Targets 2024, 25, 934–952. [Google Scholar] [CrossRef]
- Fallah, M.; Karim Dehnavi, M.; Lotfi, K.; Aminianfar, A.; Azadbakht, L.; Esmaillzadeh, A. Folate Biomarkers, Folate Intake, and Risk of Death from All Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutr. Rev. 2025, 83, e801–e813. [Google Scholar] [CrossRef]
- Le, N.T.; Pham, Y.T.; Lu, Y.T.; Le, L.T.; Huynh, N.Y.N.; Dao, H.V.; Nguyen, D.D.; Demanelis, K.; Ha, T.H.; Kuchipudi, S.V.; et al. Vitamin B12 Intake and Cancer Risk: Findings from a Case-Control Study in Vietnam. Nutr. Cancer 2025, 77, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, V.G.; Yuvaraj, S.; Shanthi, P.; Sachdanandam, P. Co-enzyme Q10, riboflavin and niacin supplementation on alteration of DNA repair enzyme and DNA methylation in breast cancer patients undergoing tamoxifen therapy. Br. J. Nutr. 2008, 100, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, V.G.; Yuvaraj, S.; Sathish, S.; Shanthi, P.; Sachdanandam, P. Anti-angiogenic potential of Coenzyme Q10, riboflavin and niacin in breast cancer patients undergoing tamoxifen therapy. Vascul. Pharmacol. 2008, 48, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Subay, L.B.; Gencer, A.E.B.; Akçok, İ. Rapamycin and Niacin combination induces apoptosis and cell cycle arrest through autophagy activation on acute myeloid leukemia cells. Mol. Biol. Rep. 2024, 52, 75. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, S.; Premkumar, V.G.; Shanthi, P.; Vijayasarathy, K.; Gangadaran, S.G.; Sachdanandam, P. Effect of Coenzyme Q(10), Riboflavin and Niacin on Tamoxifen treated postmenopausal breast cancer women with special reference to blood chemistry profiles. Breast Cancer Res. Treat. 2009, 114, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Huynh, D.T.; Nguyen, N.T.; Do, M.D. Vitamin B12 deficiency in diabetic patients treated with metformin: A cross-sectional study. PLoS ONE 2024, 19, e0302500. [Google Scholar] [CrossRef]
- Wise, A.; Lemus, H.N.; Fields, M.; Swan, M.; Bressman, S. Refractory Seizures Secondary to Vitamin B6 Deficiency in Parkinson Disease: The Role of Carbidopa-Levodopa. Case Rep. Neurol. 2022, 14, 291–295. [Google Scholar] [CrossRef]
- Kothawade, P.B.; Thomas, A.B.; Chitlange, S.S. Novel Niacin Receptor Agonists: A Promising Strategy for the Treatment of Dyslipidemia. Mini Rev. Med. Chem. 2021, 21, 2481–2496. [Google Scholar] [CrossRef] [PubMed]
- Harris, E. High Niacin Levels May Raise Cardiovascular Disease Risk. JAMA. 2024, 331, 1001. [Google Scholar] [CrossRef] [PubMed]
- Nomair, A.M.; Abdelati, A.; Dwedar, F.I.; Elnemr, R.; Kamel, Y.N.; Nomeir, H.M. The impact of folate pathway variants on the outcome of methotrexate therapy in rheumatoid arthritis patients. Clin. Rheumatol. 2024, 43, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.E.; Willett, W.C.; Fung, T.T.; Holvik, K.; Feskanich, D. Association of High Intakes of Vitamins B6 and B12 From Food and Supplements with Risk of Hip Fracture Among Postmenopausal Women in the Nurses’ Health Study. JAMA Netw. Open. 2019, 2, e193591. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Smith, A.; Troen, A.M.; Mason, J.B.; Jacques, P.F.; Selhub, J. Excess Folic Acid and Vitamin B12 Deficiency: Clinical Implications? Food Nutr. Bull. 2024, 45, S67–S72. [Google Scholar] [CrossRef] [PubMed]
- Moses, G. The safety of commonly used vitamins and minerals. Aust. Prescr. 2021, 44, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Marupuru, S.; Axon, D.R.; Slack, M.K. How do pharmacists use and recommend vitamins, minerals, herbals and other dietary supplements? BMC Complement. Altern. Med. 2019, 19, 229. [Google Scholar] [CrossRef] [PubMed]
Vitamin | Key Role | Type of Co-Factor Formed | Key Step in Metabolism | Role in Cancer-Related Pathways |
---|---|---|---|---|
B1 (Thiamine) | Decarboxylation of α-keto acids, transketolase reactions | Thiamine pyrophosphate (TPP) | Pyruvate dehydrogenase complex: Pyruvate → Acetyl-CoA | Thiamine deficiency leads to impaired mitochondrial function and altered glucose metabolism which could promote cancer cell survival. |
B2 (Riboflavin) | Redox reactions (electron transfer) | Flavin adenine dinucleotide (FAD), Flavin mononucleotide (FMN) | TCA cycle: Succinate dehydrogenase at step Succinate → Fumarate | Riboflavin deficiency could enhance oxidative DNA damage and increase cancer risk. |
B3 (Niacin) | Redox reactions (electron transfer) | Nicotinamide adenine dinucleotide (NAD), Nicotinamide adenine dinucleotide phosphate (NADP) | Glycolysis: Glyceraldehyde-3-phosphate dehydrogenase step (Glyceraldehyde-3-phosphate → 1,3-Bisphosphoglycerate) | Niacin deficiency could impair DNA repair and increase mutation rates. |
B5 (Pantothenic Acid) | Acyl group transfer | Coenzyme A (CoA) | Fatty acid synthesis: Formation of Malonyl-CoA from Acetyl-CoA | Altered CoA in cancer cells promote proliferation and membrane biosynthesis. |
B6 (Pyridoxine) | Amino acid metabolism (transamination, decarboxylation) | Pyridoxal phosphate (PLP) | Transamination: Conversion of Aspartate to Oxaloacetate | PLP deficiency can increase homocysteine levels and impair DNA synthesis, which contribute to tumorigenesis. |
B7 (Biotin) | Carboxylation reactions (gluconeogenesis, fatty acid synthesis) | Biotin-enzymes complex | Gluconeogenesis: Pyruvate carboxylase reaction (Pyruvate → Oxaloacetate) | Biotin is involved in histone modification which affects gene regulation and cancer cell growth. |
B9 (Folate) | One-carbon metabolism (DNA synthesis) | Tetrahydrofolate (THF) | DNA synthesis: Methylation of deoxyuridylate to form thymidylate (dUMP → dTMP) | Folate deficiency can cause DNA strand breaks and an aberrant gene expression which increase cancer risk. |
B12 (Cobalamin) | Methylation and rearrangement reactions | Methylcobalamin, 5′-deoxyadenosylcobalamin | Methionine synthesis: Conversion of homocysteine to methionine | B12 deficiency can lead to genome instability and increase cancer susceptibility. |
B Vitamin | Key Enzymes & Intermediates | Impact on the Warburg Effect | Interaction with Oncogenic Metabolic Regulators |
---|---|---|---|
B1 | Pyruvate dehydrogenase (PDH) Transketolase (TKT) | Deficiency: Inhibits PDH, increase pyruvate-to-lactate conversion, reinforce glycolysis. Excess: Enhances PDH activity, promoting oxidative phosphorylation (OXPHOS) and reducing glycolysis. | HIF-1α: Upregulates PDK, which inhibits PDH, favor glycolysis over oxidative phosphorylation. MYC: Activates TKT, promotes pentose phosphate pathway, increases nucleotide synthesis |
B2 | Succinate dehydrogenase (SDH, ETC Complex II) NADH dehydrogenase (ETC Complex I) | Deficiency: Impairs ETC function, increase glycolysis. Excess: Supports mitochondrial function, promote oxidative phosphorylation. | AMPK: riboflavin deficiency leads to AMPK activation and mitochondrial dysfunction, promotes glycolysis. |
B3 | NAD+/NADH balance Sirtuins (SIRT1, SIRT3) PARPs | Deficiency: Reduces NAD+/NADH ratio, impairs TCA cycle, promotes glycolysis. Excess: Increases NAD+, enhances mitochondrial function, reverses the Warburg effect. | HIF-1α: NAD+ depletion stabilizes HIF-1α, enhancing glycolysis. SIRT1: Inhibits HIF-1α and promotes oxidative phosphorylation. PARP1: Initiates DNA repair mechanisms, maintains genomic stability. |
B5 | Acetyl-CoA synthase Fatty acid synthase (FASN) | Deficiency: Reduces acetyl-CoA availability, increases glycolysis dependence. Excess: Enhances lipid metabolism, supports tumor growth | MYC: Increases FASN expression, promotes lipid metabolism for cell proliferation. AMPK: Low acetyl-CoA triggers AMPK activation, promotes glycolysis. |
B6 | Glutaminase (GLS) Serine hydroxy-methyltransferase (SHMT) | Deficiency: Impairs glutamine metabolism in TCA cycle, reinforces glycolysis. Excess: Enhances one-carbon metabolism, supports oxidative phosphorylation. | MYC: Upregulates GLS, increases glutamine metabolism, promotes cell proliferation. |
B7 | Pyruvate carboxylase (PC) | Deficiency: Reduces oxaloacetate, impairs TCA cycles, promotes glycolysis. Excess: Promotes mitochondrial metabolism and TCA cycle. | HIF-1α: Suppress PC expression, diverts pyruvate to lactate. |
B9 | Thymidylate synthase (TS)—Methylenetetrahydrofolate reductase (MTHFR) | Deficiency: Impairs nucleotide synthesis, causes DNA damage and metabolic stress. Excess: Promotes nucleotide biosynthesis, increases tumor growth. | MYC: Enhances folate metabolism, increases cell proliferation. HIF-1α: Induces nucleotide synthesis genes, increases folate demand. |
B12 | Methionine synthase (MS) | Deficiency: Disrupts methylation, alters metabolic enzyme expression. Excess: Supports epigenetic regulation, promotes tumor survival. | MYC: Upregulates methionine cycle enzymes, promotes epigenetic modifications and oncogene expressions. |
B Vitamin | Effects of Deficiency | Effects of Over-Supplementation |
---|---|---|
B1 (Thiamine) | Impairs mitochondrial function, decreases oxidative phosphorylation, increases oxidative stress and metabolic dysfunction, inhibits tumor growth [32,33,34,35,42,45,46,47,48,49]. | Enhances cancer cell metabolism by promoting glycolysis and the pentose phosphate pathway and accelerates cancer progression in specific cancers [50,51,52,67]. |
B2 (Riboflavin) | Reduces flavoprotein activity, increases oxidative stress and DNA damage; impairs Krebs cycle; inhibits tumor progression in some cancers [70,71,72,73,86,87,88,89]. | Enhances Krebs cycle and oxidative phosphorylation, reduces free radical production, promotes cancer cell growth, and inhibits oxidative stress-induced apoptosis [74,75,76,77,78,79,80,81,93,94]. |
B3 (Niacin) | Reduces NAD+ levels, impairs DNA repair, inhibits PARP and SIRT activation, increases genomic instability and promotes tumorigenesis [113,114,115,116,129]. | Increases NAD+ levels, enhances cancer metabolism and DNA repair; may prevent cancer progression in some cases but also promote tumor survival in therapy-resistant cancers [123,124,125,126,144]. |
B5 (Pantothenic Acid) | Disrupts Coenzyme A (CoA) production, impairs fatty acid synthesis and energy metabolism, and prevents tumor growth [147,148,149,155]. | Enhances lipid metabolism, promotes cancer cell proliferation and progression [150,151,152,153,154,155,156,160]. |
B6 (Pyridoxine) | Reduces amino acid metabolism and neurotransmitter synthesis; increases homocysteine levels which lead to inflammatory responses that may promote cancer progression [165,166,167,168,177,178,179,180]. | Stimulates angiogenesis and increases cancer cell survival in specific conditions [169,170,171,172,173,174,175,176,182,183,184,185,186,187]. |
B7 (Biotin) | Decreases biotin-dependent carboxylase activities, limits fatty acid synthesis and prevents tumor growth [188,189,193,194]. | Promotes biotinylation, affects oncogene expression, and contributes to tumor growth [196,197,198,199]. |
B9 (Folate) | Impairs one-carbon metabolism, hinders DNA synthesis and repair, increases mutation rates and cancer risk [201,202,203,204,207,208,209,210,211,212]. | Enhances one-carbon metabolism, promotes tumor progression by providing nucleotides for DNA replication [219,220,221,222,223,224,225,226,227,228,229,230]. |
B12 (Cobalamin) | Causes genomic instability due to impaired methylation and DNA synthesis, increases cancer risk and progression [231,232,233,234,239]. | Supports cancer cell metabolism and promote the risk of certain cancers [235,236,237,238,239,240,241,242,243,244,245,246]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frost, Z.; Bakhit, S.; Amaefuna, C.N.; Powers, R.V.; Ramana, K.V. Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. Int. J. Mol. Sci. 2025, 26, 1967. https://doi.org/10.3390/ijms26051967
Frost Z, Bakhit S, Amaefuna CN, Powers RV, Ramana KV. Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. International Journal of Molecular Sciences. 2025; 26(5):1967. https://doi.org/10.3390/ijms26051967
Chicago/Turabian StyleFrost, Zachary, Sandra Bakhit, Chelsea N. Amaefuna, Ryan V. Powers, and Kota V. Ramana. 2025. "Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression" International Journal of Molecular Sciences 26, no. 5: 1967. https://doi.org/10.3390/ijms26051967
APA StyleFrost, Z., Bakhit, S., Amaefuna, C. N., Powers, R. V., & Ramana, K. V. (2025). Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. International Journal of Molecular Sciences, 26(5), 1967. https://doi.org/10.3390/ijms26051967