GDF15 Circulating Levels Are Associated with Metabolic-Associated Liver Injury and Atherosclerotic Cardiovascular Disease
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Population
2.2. Serum GDF15 Is Associated with Liver Injury and Inflammation Hallmarks
2.3. Associations Between Serum GDF15 and CV Risk
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Clinical Data and Biochemical Determinations
4.3. Non-Invasive Scores for Liver Steatosis and Fibrosis
4.4. Serum GDF15 Determination
4.5. Glycoprotein Analysis
4.6. Advanced Lipoprotein Profile
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonora, E.; Targher, G. Increased risk of cardiovascular disease and chronic kidney disease in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.J.; Aguilar, M.; Cheung, R.; Perumpail, R.B.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015, 148, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, F.; Kramer, J.R.; Duan, Z.; Yu, X.; White, D.; El-Serag, H.B. Trends in the Burden of Nonalcoholic Fatty Liver Disease in a United States Cohort of Veterans. Clin. Gastroenterol. Hepatol. 2016, 14, 301–308.e2. [Google Scholar] [CrossRef]
- Satapathy, S.K.; Sanyal, A.J. Epidemiology and Natural History of Nonalcoholic Fatty Liver Disease. Semin. Liver Dis. 2015, 35, 221–235. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Lambert, J.E.; Ramos-Roman, M.A.; Browning, J.D.; Parks, E.J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014, 146, 726–735. [Google Scholar] [CrossRef]
- Mittal, S.; El-Serag, H.B.; Sada, Y.H.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans is Associated with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 124–131.e1. [Google Scholar] [CrossRef]
- Machado, M.; Marques-Vidal, P.; Cortez-Pinto, H. Hepatic histology in obese patients undergoing bariatric surgery. J. Hepatol. 2006, 45, 600–606. [Google Scholar] [CrossRef]
- Leite, N.C.; Salles, G.F.; Araujo, A.L.; Villela-Nogueira, C.A.; Cardoso, C.R. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. Off. J. Int. Assoc. Study Liver 2009, 29, 113–119. [Google Scholar] [CrossRef]
- Titchenell, P.M.; Lazar, M.A.; Birnbaum, M.J. Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol. Metab. TEM 2017, 28, 497–505. [Google Scholar] [CrossRef]
- Marston, N.A.; Giugliano, R.P.; Melloni, G.E.M.; Park, J.G.; Morrill, V.; Blazing, M.A.; Ference, B.; Stein, E.; Stroes, E.S.; Braunwald, E.; et al. Association of Apolipoprotein B-Containing Lipoproteins and Risk of Myocardial Infarction in Individuals With and Without Atherosclerosis: Distinguishing Between Particle Concentration, Type, and Content. JAMA Cardiol. 2022, 7, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Bjornson, E.; Adiels, M.; Taskinen, M.R.; Burgess, S.; Rawshani, A.; Boren, J.; Packard, C.J. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: A UK Biobank study. Eur. Heart J. 2023, 44, 4186–4195. [Google Scholar] [CrossRef] [PubMed]
- Ekstedt, M.; Franzen, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006, 44, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.A.; Sanderson, S.; Lindor, K.D.; Angulo, P. The histological course of nonalcoholic fatty liver disease: A longitudinal study of 103 patients with sequential liver biopsies. J. Hepatol. 2005, 42, 132–138. [Google Scholar] [CrossRef]
- Arab, J.P.; Arrese, M.; Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu. Rev. Pathol. 2018, 13, 321–350. [Google Scholar] [CrossRef]
- Review, T.; LaBrecque, D.R.; Abbas, Z.; Anania, F.; Ferenci, P.; Khan, A.G.; Goh, K.L.; Hamid, S.S.; Isakov, V.; Lizarzabal, M.; et al. World Gastroenterology Organisation global guidelines: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 2014, 48, 467–473. [Google Scholar]
- Deffieux, T.; Gennisson, J.L.; Bousquet, L.; Corouge, M.; Cosconea, S.; Amroun, D.; Tripon, S.; Terris, B.; Mallet, V.; Sogni, P.; et al. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography. J. Hepatol. 2015, 62, 317–324. [Google Scholar] [CrossRef]
- Khov, N.; Sharma, A.; Riley, T.R. Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 6821–6825. [Google Scholar] [CrossRef]
- Pais, R.; Charlotte, F.; Fedchuk, L.; Bedossa, P.; Lebray, P.; Poynard, T.; Ratziu, V.; Group, L.S. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 2013, 59, 550–556. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Ding, Q.; Mracek, T.; Gonzalez-Muniesa, P.; Kos, K.; Wilding, J.; Trayhurn, P.; Bing, C. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology 2009, 150, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Kempf, T.; Guba-Quint, A.; Torgerson, J.; Magnone, M.C.; Haefliger, C.; Bobadilla, M.; Wollert, K.C. Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: Results from the XENDOS trial. Eur. J. Endocrinol. 2012, 167, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chi, X.; Gong, Q.; Gao, L.; Niu, Y.; Chi, X.; Cheng, M.; Si, Y.; Wang, M.; Zhong, J.; et al. Association of serum level of growth differentiation factor 15 with liver cirrhosis and hepatocellular carcinoma. PLoS ONE 2015, 10, e0127518. [Google Scholar] [CrossRef]
- Lee, E.S.; Kim, S.H.; Kim, H.J.; Kim, K.H.; Lee, B.S.; Ku, B.J. Growth Differentiation Factor 15 Predicts Chronic Liver Disease Severity. Gut Liver 2017, 11, 276–282. [Google Scholar] [CrossRef]
- Koo, B.K.; Um, S.H.; Seo, D.S.; Joo, S.K.; Bae, J.M.; Park, J.H.; Chang, M.S.; Kim, J.H.; Lee, J.; Jeong, W.I.; et al. Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease. Liver Int. Off. J. Int. Assoc. Study Liver 2018, 38, 695–705. [Google Scholar] [CrossRef]
- Aguilar-Recarte, D.; Barroso, E.; Palomer, X.; Wahli, W.; Vazquez-Carrera, M. Knocking on GDF15’s door for the treatment of type 2 diabetes mellitus. Trends Endocrinol. Metab. TEM 2022, 33, 741–754. [Google Scholar] [CrossRef]
- Tsai, V.W.W.; Husaini, Y.; Sainsbury, A.; Brown, D.A.; Breit, S.N. The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metab. 2018, 28, 353–368. [Google Scholar] [CrossRef]
- Liuize Abramaviciute, A.; Mongirdiene, A. TGF-beta Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. Int. J. Mol. Sci. 2024, 25, 2104. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Clark, J.M.; Brancati, F.L.; Diehl, A.M. The prevalence and etiology of elevated aminotransferase levels in the United States. Am. J. Gastroenterol. 2003, 98, 960–967. [Google Scholar] [CrossRef]
- Fuertes-Martin, R.; Correig, X.; Vallve, J.C.; Amigo, N. Title: Human Serum/Plasma Glycoprotein Analysis by (1)H-NMR, an Emerging Method of Inflammatory Assessment. J. Clin. Med. 2020, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, X.M.; Li, E.H.; Chen, P.H.; Zheng, L.M.; Zhang, S. Associations between serum GDF15 and glycolipid metabolism disorder in metabolic associated fatty liver patients. Zhonghua Nei Ke Za Zhi 2023, 62, 987–992. [Google Scholar] [PubMed]
- Chen, X.; Tang, Y.; Chen, S.; Ling, W.; Wang, Q. IGFBP-2 as a biomarker in NAFLD improves hepatic steatosis: An integrated bioinformatics and experimental study. Endocr. Connect. 2021, 10, 1315–1325. [Google Scholar] [CrossRef]
- Lindenmeyer, C.C.; McCullough, A.J. The Natural History of Nonalcoholic Fatty Liver Disease-An Evolving View. Clin. Liver Dis. 2018, 22, 11–21. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Chen, S.; Ke, Y.; Li, Y.; Chen, Y. Growth differentiation factor 15: Emerging role in liver diseases. Cytokine 2024, 182, 156727. [Google Scholar] [CrossRef]
- Chrysafi, P.; Valenzuela-Vallejo, L.; Stefanakis, K.; Kelesidis, T.; Connelly, M.A.; Mantzoros, C.S. Total and H-specific GDF-15 levels increase in caloric deprivation independently of leptin in humans. Nat. Commun. 2024, 15, 5190. [Google Scholar] [CrossRef]
- Balling, M.; Afzal, S.; Varbo, A.; Langsted, A.; Davey Smith, G.; Nordestgaard, B.G. VLDL Cholesterol Accounts for One-Half of the Risk of Myocardial Infarction Associated With apoB-Containing Lipoproteins. J. Am. Coll. Cardiol. 2020, 76, 2725–2735. [Google Scholar] [CrossRef]
- Guardiola, M.; Girona, J.; Barroso, E.; Garcia-Altares, M.; Ibarretxe, D.; Plana, N.; Ribalta, J.; Correig, X.; Vazquez-Carrera, M.; Masana, L.; et al. The GDF15 3’ UTR Polymorphism rs1054564 Is Associated with Diabetes and Subclinical Atherosclerosis. Int. J. Mol. Sci. 2024, 25, 11985. [Google Scholar] [CrossRef]
- Cuthbertson, D.J.; Weickert, M.O.; Lythgoe, D.; Sprung, V.S.; Dobson, R.; Shoajee-Moradie, F.; Umpleby, M.; Pfeiffer, A.F.; Thomas, E.L.; Bell, J.D.; et al. External validation of the fatty liver index and lipid accumulation product indices, using 1H-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals. Eur. J. Endocrinol. 2014, 171, 561–569. [Google Scholar] [CrossRef]
- Akinkugbe, A.A.; Slade, G.D.; Barritt, A.S.; Cole, S.R.; Offenbacher, S.; Petersmann, A.; Kocher, T.; Lerch, M.M.; Mayerle, J.; Volzke, H.; et al. Periodontitis and Non-alcoholic Fatty Liver Disease, a population-based cohort investigation in the Study of Health in Pomerania. J. Clin. Periodontol. 2017, 44, 1077–1087. [Google Scholar] [CrossRef]
- Rodriguez-Calvo, R.; Moreno-Vedia, J.; Girona, J.; Ibarretxe, D.; Martinez-Micaelo, N.; Merino, J.; Plana, N.; Masana, L. Relationship Between Fatty Acid Binding Protein 4 and Liver Fat in Individuals at Increased Cardiometabolic Risk. Front. Physiol. 2021, 12, 781789. [Google Scholar] [CrossRef] [PubMed]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez Hernandez, R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [PubMed]
- Moreno-Vedia, J.; Rosales, R.; Ozcariz, E.; Llop, D.; Lahuerta, M.; Benavent, M.; Rodriguez-Calvo, R.; Plana, N.; Pedragosa, A.; Masana, L.; et al. Triglyceride-Rich Lipoproteins and Glycoprotein A and B Assessed by 1H-NMR in Metabolic-Associated Fatty Liver Disease. Front. Endocrinol. 2021, 12, 775677. [Google Scholar] [CrossRef] [PubMed]
- Mallol, R.; Amigo, N.; Rodriguez, M.A.; Heras, M.; Vinaixa, M.; Plana, N.; Rock, E.; Ribalta, J.; Yanes, O.; Masana, L.; et al. Liposcale: A novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy. J. Lipid Res. 2015, 56, 737–746. [Google Scholar] [CrossRef]
- Jeyarajah, E.J.; Cromwell, W.C.; Otvos, J.D. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin. Lab. Med. 2006, 26, 847–870. [Google Scholar] [CrossRef]
Healthy Volunteers (N = 58) | Patients (N = 98) | p-Value | |
---|---|---|---|
Clinical Data | |||
Age (years) | 48.5 (39.8–53.3) | 62.0 (53.4–68.0) | <0.001 |
Gender (F) | 58.6% | 50% | 0.229 |
Hypertension | 0% | 56.1% | <0.001 |
Diabetes | 0% | 72.4% | <0.001 |
Obesity | 0% | 56.1% | <0.001 |
Metabolic syndrome | 0% | 91.8% | <0.001 |
Steatosis | 1.8% | 73.2% | <0.001 |
Anthropometric and analytical data | |||
Systolic BP (mmHg) | 115.0 (103.8–125.0) | 136.0 (129.5–150.0) | <0.001 |
Diastolic BP (mmHg) | 76.0 (70.0–80.0) | 79.0 (72.5–85.0) | 0.021 |
Weight (Kg) | 65.9 (61.4–78.4) | 83.0 (74.3–94.2) | <0.001 |
Waist circumference (cm) | 84.0 (79.0–91.0) | 103.0 (97.0–112.0) | <0.001 |
BMI (Kg/m2) | 24.9 (23.1–26.8) | 30.4 (28.6–33.6) | <0.001 |
Total cholesterol (mmol/L) | 5.1 (4.5–5.6) | 6.2 (5.0–7.3) | <0.001 |
Glucose (mg/dL) | 85.1 (79.8–91.2) | 132.0 (105.8–157.0) | <0.001 |
AST (U/L) | 21.0 (19.0–24.3) | 23.0 (20.8–29.3) | 0.004 |
ALT (U/L) | 13.0 (10.0–19.0) | 20.0 (14.0–26.5) | <0.001 |
GGT (U/L) | 16.0 (13.0–20.3) | 24.0 (16.8–40.3) | <0.001 |
HsCRP (mg/L) | 1.1 (0.5–1.7) | 2.3 (1.4–3.1) | <0.001 |
Glyc-A (µmol/L) | 587.1 (523.1–679.0) | 957.4 (807.1–1137.8) | <0.001 |
Glyc-B (µmol/L) | 292.3 (258.4–336.3) | 371.2 (333.6–417.4) | <0.001 |
FIB-4 | 1.4 (1.2–1.6) | 1.6 (1.4–2.0) | <0.001 |
FLI (%) | 12.6 (6.1–28.8) | 81.8 (58.7–93.5) | <0.001 |
Treatments | |||
Insulin therapy | 0% | 16.3% | 0.001 |
Oral antidiabetic therapy | 0% | 51.0% | <0.001 |
Hypotensive therapy | 0% | 55.1% | <0.001 |
Variables | ρ (N = 156) | p-Value |
---|---|---|
AST | 0.069 | 0.391 |
ALT | 0.195 | 0.015 |
GGT | 0.259 | 0.001 * |
HsCRP | 0.345 | <0.001 |
Glyc-A | 0.544 | <0.001 * |
Glyc-B | 0.450 | <0.001 * |
FIB-4 | 0.434 | <0.001 # |
FLI | 0.543 | <0.001 # |
Variables | ρ (N = 156) | p-Value |
---|---|---|
VLDL-C | 0.475 | <0.001 * |
LDL-C | 0.217 | 0.007 |
HDL-C | −0.273 | 0.001 |
VLDL-TG | 0.478 | <0.001 * |
LDL-TG | 0.503 | <0.001 * |
HDL-TG | 0.327 | <0.001 |
VLDL-P | 0.474 | <0.001 * |
Large VLDL-P | 0.430 | <0.001 * |
Medium VLDL-P | 0.500 | <0.001 * |
Small VLDL-P | 0.473 | <0.001 * |
LDL-P | 0.296 | <0.001 |
Large LDL-P | 0.248 | 0.002 |
Medium LDL-P | 0.202 | 0.012 |
Small LDL-P | 0.343 | <0.001 |
HDL-P | −0.070 | 0.386 |
Large HDL-P | 0.283 | <0.001 |
Medium HDL-P | −0.044 | 0.586 |
Small HDL-P | −0.074 | 0.360 |
VLDL-Z | 0.014 | 0.860 |
LDL-Z | −0.170 | 0.035 |
HDL-Z | 0.074 | 0.358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girona, J.; Guardiola, M.; Barroso, E.; García-Altares, M.; Ibarretxe, D.; Plana, N.; Ribalta, J.; Amigó, N.; Correig, X.; Vázquez-Carrera, M.; et al. GDF15 Circulating Levels Are Associated with Metabolic-Associated Liver Injury and Atherosclerotic Cardiovascular Disease. Int. J. Mol. Sci. 2025, 26, 2039. https://doi.org/10.3390/ijms26052039
Girona J, Guardiola M, Barroso E, García-Altares M, Ibarretxe D, Plana N, Ribalta J, Amigó N, Correig X, Vázquez-Carrera M, et al. GDF15 Circulating Levels Are Associated with Metabolic-Associated Liver Injury and Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences. 2025; 26(5):2039. https://doi.org/10.3390/ijms26052039
Chicago/Turabian StyleGirona, Josefa, Montse Guardiola, Emma Barroso, María García-Altares, Daiana Ibarretxe, Núria Plana, Josep Ribalta, Núria Amigó, Xavier Correig, Manuel Vázquez-Carrera, and et al. 2025. "GDF15 Circulating Levels Are Associated with Metabolic-Associated Liver Injury and Atherosclerotic Cardiovascular Disease" International Journal of Molecular Sciences 26, no. 5: 2039. https://doi.org/10.3390/ijms26052039
APA StyleGirona, J., Guardiola, M., Barroso, E., García-Altares, M., Ibarretxe, D., Plana, N., Ribalta, J., Amigó, N., Correig, X., Vázquez-Carrera, M., Masana, L., & Rodríguez-Calvo, R. (2025). GDF15 Circulating Levels Are Associated with Metabolic-Associated Liver Injury and Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 26(5), 2039. https://doi.org/10.3390/ijms26052039