Molecular Approaches to Treating Chronic Obstructive Pulmonary Disease: Current Perspectives and Future Directions
Abstract
:1. Introduction
2. Current Pharmacologic Therapies
3. Phosphodiesterase Inhibitors
4. Targeting Inflammation
4.1. Steroid
4.2. Neutrophilic Inflammation
4.3. Eosinophilic Inflammation
4.4. Biologics Targeting the Inflammation for the Treatment of COPD
5. Small-Molecule Inhibitors
6. Antioxidant Therapies
7. Clinical Trials
8. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Celli, B.; Fabbri, L.; Criner, G.; Martinez, F.J.; Msannino, D.; Vogelmeier, C.; Montes de Oca, M.; Papi, A.; Sin, D.D.; Han, M.K.; et al. Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. Am. J. Respir. Crit. Care Med. 2022, 206, 1317–1325. [Google Scholar] [CrossRef]
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global and Regional Estimates of COPD Prevalence: Systematic Review and Meta-Analysis. J. Glob. Health 2015, 5, 020415. [Google Scholar] [CrossRef]
- GBD 2013 Mortality and Causes of Death Collaborators. Global, Regional, and National Age-Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.; Peto, R. The Natural History of Chronic Airflow Obstruction. Br. Med. J. 1977, 1, 1645–1648. [Google Scholar] [CrossRef] [PubMed]
- Kohansal, R.; Martinez-Camblor, P.; Agustí, A.; Buist, A.S.; Mannino, D.M.; Soriano, J.B. The Natural History of Chronic Airflow Obstruction Revisited: An Analysis of the Framingham Offspring Cohort. Am. J. Respir. Crit. Care Med. 2009, 180, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Pelkonen, M.; Notkola, I.-L.; Nissinen, A.; Tukiainen, H.; Koskela, H. Thirty-Year Cumulative Incidence of Chronic Bronchitis and COPD in Relation to 30-Year Pulmonary Function and 40-Year Mortality: A Follow-up in Middle-Aged Rural Men. Chest 2006, 130, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Yang, I.A.; Jenkins, C.R.; Salvi, S.S. Chronic Obstructive Pulmonary Disease in Never-Smokers: Risk Factors, Pathogenesis, and Implications for Prevention and Treatment. Lancet Respir. Med. 2022, 10, 497–511. [Google Scholar] [CrossRef]
- Stoller, J.K.; Aboussouan, L.S. Alpha1-Antitrypsin Deficiency. Lancet 2005, 365, 2225–2236. [Google Scholar] [CrossRef]
- Cho, M.H.; McDonald, M.-L.N.; Zhou, X.; Mattheisen, M.; Castaldi, P.J.; Hersh, C.P.; Demeo, D.L.; Sylvia, J.S.; Ziniti, J.; Laird, N.M.; et al. Risk Loci for Chronic Obstructive Pulmonary Disease: A Genome-Wide Association Study and Meta-Analysis. Lancet Respir. Med. 2014, 2, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Levi, M.; Garcia-Aymerich, J.; Villar, J.; Ramírez-Sarmiento, A.; Antó, J.M.; Gea, J. Wood Smoke Exposure and Risk of Chronic Obstructive Pulmonary Disease. Eur. Respir. J. 2006, 27, 542–546. [Google Scholar] [CrossRef]
- Assad, N.A.; Balmes, J.; Mehta, S.; Cheema, U.; Sood, A. Chronic Obstructive Pulmonary Disease Secondary to Household Air Pollution. Semin. Respir. Crit. Care Med. 2015, 36, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zou, Y.; Li, X.; Chen, S.; Zhao, Z.; He, F.; Zou, W.; Luo, Q.; Li, W.; Pan, Y.; et al. Lung Function and Incidence of Chronic Obstructive Pulmonary Disease after Improved Cooking Fuels and Kitchen Ventilation: A 9-Year Prospective Cohort Study. PLoS Med. 2014, 11, e1001621. [Google Scholar] [CrossRef]
- Bourbeau, J.; Doiron, D.; Biswas, S.; Smith, B.M.; Benedetti, A.; Brook, J.R.; Aaron, S.D.; Chapman, K.R.; Hernandez, P.; Maltais, F.; et al. Ambient Air Pollution and Dysanapsis: Associations with Lung Function and Chronic Obstructive Pulmonary Disease in the Canadian Cohort Obstructive Lung Disease Study. Am. J. Respir. Crit. Care Med. 2022, 206, 44–55. [Google Scholar] [CrossRef]
- Li, J.; Sun, S.; Tang, R.; Qiu, H.; Huang, Q.; Mason, T.G.; Tian, L. Major Air Pollutants and Risk of COPD Exacerbations: A Systematic Review and Meta-Analysis. Int. J. Chron. Obs. Pulmon Dis. 2016, 11, 3079–3091. [Google Scholar] [CrossRef] [PubMed]
- Hnizdo, E.; Sullivan, P.A.; Bang, K.M.; Wagner, G. Association Between Chronic Obstructive Pulmonary Disease and Employment by Industry and Occupation in the US Population: A Study of Data from the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 2002, 156, 738–746. [Google Scholar] [CrossRef]
- Jacques, M.R.; Kuhn, B.T.; Albertson, T.E. Update on the Pharmacological Treatment of Chronic Obstructive Pulmonary Disease. Expert. Opin. Pharmacother. 2024, 25, 1903–1922. [Google Scholar] [CrossRef] [PubMed]
- Karner, C.; Chong, J.; Poole, P. Tiotropium Versus Placebo for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2014, 7, CD009285. [Google Scholar] [CrossRef]
- Kew, K.M.; Mavergames, C.; Walters, J.A.E. Long-Acting Beta2-Agonists for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2013, 10, CD010177. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R.; Anderson, J.A.; Cowans, N.J.; Crim, C.; Hartley, B.F.; Martinez, F.J.; Morris, A.N.; Quasny, H.; Yates, J.; Vestbo, J.; et al. Pharmacotherapy and Lung Function Decline in Patients with Chronic Obstructive Pulmonary Disease. A Systematic Review. Am. J. Respir. Crit. Care Med. 2021, 203, 689–698. [Google Scholar] [CrossRef]
- Lipson, D.A.; Crim, C.; Criner, G.J.; Day, N.C.; Dransfield, M.T.; Halpin, D.M.G.; Han, M.K.; Jones, C.E.; Kilbride, S.; Lange, P.; et al. Reduction in All-Cause Mortality with Fluticasone Furoate/Umeclidinium/Vilanterol in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2020, 201, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.J.; Rabe, K.F.; Ferguson, G.T.; Wedzicha, J.A.; Singh, D.; Wang, C.; Rossman, K.; St Rose, E.; Trivedi, R.; Ballal, S.; et al. Reduced All-Cause Mortality in the ETHOS Trial of Budesonide/Glycopyrrolate/Formoterol for Chronic Obstructive Pulmonary Disease. A Randomized, Double-Blind, Multicenter, Parallel-Group Study. Am. J. Respir. Crit. Care Med. 2021, 203, 553–564. [Google Scholar] [CrossRef]
- Suissa, S. Triple Therapy in COPD: Understanding the Data. ERJ Open Res. 2023, 9, 00615–02022. [Google Scholar] [CrossRef] [PubMed]
- Anthonisen, N.R.; Skeans, M.A.; Wise, R.A.; Manfreda, J.; Kanner, R.E.; Connett, J.E.; Lung Health Study Research Group. The Effects of a Smoking Cessation Intervention on 14.5-Year Mortality: A Randomized Clinical Trial. Ann. Intern. Med. 2005, 142, 233–239. [Google Scholar] [CrossRef]
- Puhan, M.A.; Scharplatz, M.; Troosters, T.; Steurer, J. Respiratory Rehabilitation after Acute Exacerbation of COPD May Reduce Risk for Readmission and Mortality-A Systematic Review. Respir. Res. 2005, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Nocturnal Oxygen Therapy Trial Group. Continuous or Nocturnal Oxygen Therapy in Hypoxemic Chronic Obstructive Lung Disease: A Clinical Trial. Ann. Intern. Med. 1980, 93, 391–398. [Google Scholar] [CrossRef]
- Report of the Medical Research Council Working Party. Long Term Domiciliary Oxygen Therapy in Chronic Hypoxic Cor Pulmonale Complicating Chronic Bronchitis and Emphysema. Lancet 1981, 1, 681–686. [Google Scholar]
- Köhnlein, T.; Windisch, W.; Köhler, D.; Drabik, A.; Geiseler, J.; Hartl, S.; Karg, O.; Laier-Groeneveld, G.; Nava, S.; Schönhofer, B.; et al. Non-Invasive Positive Pressure Ventilation for the Treatment of Severe Stable Chronic Obstructive Pulmonary Disease: A Prospective, Multicentre, Randomised, Controlled Clinical Trial. Lancet Respir. Med. 2014, 2, 698–705. [Google Scholar] [CrossRef]
- Fishman, A.; Martinez, F.; Naunheim, K.; Piantadosi, S.; Wise, R.; Ries, A.; Weinmann, G.; Wood, D.E.; National Emphysema Treatment Trial Research Group. A randomized Trial Comparing Lung-Volume-Reduction Surgery with Medical Therapy for Severe Emphysema. N. Engl. J. Med. 2003, 348, 2059–2073. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.F. Update on Roflumilast, a Phosphodiesterase 4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. Br. J. Pharmacol. 2011, 163, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, L.M.; Calverley, P.M.A.; Izquierdo-Alonso, J.L.; Bundschuh, D.S.; Brose, M.; Martinez, F.J.; Rabe, K.F.; M2-127 and M2-128 Study Groups. Roflumilast in Moderate-to-Severe Chronic Obstructive Pulmonary Disease Treated with Long Acting Bronchodilators: Two Randomised Clinical Trials. Lancet 2009, 374, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Calverley, P.M.A.; Rabe, K.F.; Goehring, U.-M.; Kristiansen, S.; Fabbri, L.M.; Martinez, F.J.; M2-124 and M2-125 Study Groups. Roflumilast in Symptomatic Chronic Obstructive Pulmonary Disease: Two Randomised Clinical Trials. Lancet 2009, 374, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Leung, B.; Poole, P. Phosphodiesterase 4 Inhibitors for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2013, 2017, CD002309. [Google Scholar] [CrossRef]
- Martinez, F.J.; Curtis, J.L.; Albert, R. Role of Macrolide Therapy in Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obs. Pulmon Dis. 2008, 3, 331–350. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.K.; Connett, J.; Bailey, W.C.; Casaburi, R.; Cooper, J.A.D.; Criner, G.J.; Curtis, J.L.; Dransfield, M.T.; Han, M.K.; Lazarus, S.C.; et al. Azithromycin for Prevention of Exacerbations of COPD. N. Engl. J. Med. 2011, 365, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Uzun, S.; Djamin, R.S.; Kluytmans, J.A.J.W.; Mulder, P.G.H.; van’t Veer, N.E.; Ermens, A.A.M.; Pelle, A.J.; Hoogsteden, H.C.; Aerts, J.G.J.V.; van der Eerden, M.M. Azithromycin Maintenance Treatment in Patients with Frequent Exacerbations of Chronic Obstructive Pulmonary Disease (COLUMBUS): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Respir. Med. 2014, 2, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Seemungal, T.A.R.; Wilkinson, T.M.A.; Hurst, J.R.; Perera, W.R.; Sapsford, R.J.; Wedzicha, J.A. Long-Term Erythromycin Therapy is Associated with Decreased Chronic Obstructive Pulmonary Disease Exacerbations. Am. J. Respir. Crit. Care Med. 2008, 178, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, M.E.; Wells, J.M. What Every Clinician Should Know about Inflammation in COPD. ERJ Open Res. 2024, 10, 00177–02024. [Google Scholar] [CrossRef]
- Cazzola, M.; Calzetta, L.; Rogliani, P.; Matera, M.G. The Need for Inhaled Phosphodiesterase Inhibitors in Chronic Obstructive Pulmonary Disease. Expert. Rev. Clin. Pharmacol. 2024, 17, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Anzueto, A.; Barjaktarevic, I.Z.; Siler, T.M.; Rheault, T.; Bengtsson, T.; Rickard, K.; Sciurba, F. Ensifentrine, a Novel Phosphodiesterase 3 and 4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease: Randomized, Double-Blind, Placebo-controlled, Multicenter Phase III Trials (the ENHANCE Trials). Am. J. Respir. Crit. Care Med. 2023, 208, 406–416. [Google Scholar] [CrossRef] [PubMed]
- De Boer, W.I. Cytokines and Therapy in COPD: A Promising Combination? Chest 2002, 121, 209S–218S. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, J.; Wang, J.; Li, S.; Fukunaga, A.; Yodoi, J.; Tian, H. Progress in the Mechanism and Targeted Drug Therapy for COPD. Signal Transduct. Target Ther. 2020, 5, 248. [Google Scholar] [CrossRef] [PubMed]
- Pliyev, B.K. Chemotactically Active Proteins of Neutrophils. Biochem. Mosc. 2008, 73, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Garth, J.; Barnes, J.W.; Krick, S. Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int. J. Mol. Sci. 2018, 19, 3402. [Google Scholar] [CrossRef] [PubMed]
- Stockley, J.A.; Walton, G.M.; Lord, J.M.; Sapey, E. Aberrant Neutrophil Functions in Stable Chronic Obstructive Pulmonary Disease: The Neutrophil as an Immunotherapeutic Target. Int. Immunopharmacol. 2013, 17, 1211–1217. [Google Scholar] [CrossRef]
- Barnes, P.J. Corticosteroid Resistance in Airway Disease. Proc. Am. Thorac. Soc. 2004, 1, 264–268. [Google Scholar] [CrossRef]
- Barnes, P.J.; Stockley, R.A. COPD: Current Therapeutic Interventions and Future Approaches. Eur. Respir. J. 2005, 25, 1084–1106. [Google Scholar] [CrossRef] [PubMed]
- Matera, M.G.; Page, C.; Rogliani, P.; Calzetta, L.; Cazzola, M. Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 2016, 76, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Katsoulis, O.; Toussaint, M.; Jackson, M.M.; Mallia, P.; Footitt, J.; Mincham, K.T.; Meyer, G.F.M.; Kebadze, T.; Gilmour, A.; Long, M.; et al. Neutrophil Extracellular Traps Promote Immunopathogenesis of Virus-Induced COPD Exacerbations. Nat. Commun. 2024, 15, 5766. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, Z.; Liu, Z. Role of IL-33-ST2 Pathway in Regulating Inflammation: Current Evidence and Future Perspectives. J. Transl. Med. 2023, 21, 902. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; Patel, N.; et al. Dupilumab for COPD with Blood Eosinophil Evidence of Type 2 Inflammation. N. Engl. J. Med. 2024, 390, 2274–2283. [Google Scholar] [CrossRef]
- Criner, G.J.; Celli, B.R.; Brightling, C.E.; Agusti, A.; Papi, A.; Singh, D.; Sin, D.D.; Vogelmeier, C.F.; Sciurba, F.C.; Bafadhel, M.; et al. Benralizumab for the Prevention of COPD Exacerbations. N. Engl. J. Med. 2019, 381, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Chanez, P.; Criner, G.J.; Kerstjens, H.A.M.; Korn, S.; Lugogo, N.; Martinot, J.-B.; Sagara, H.; Albers, F.C.; Bradford, E.S.; et al. Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2017, 377, 1613–1629. [Google Scholar] [CrossRef]
- Rabe, K.F.; Celli, B.R.; Wechsler, M.E.; Abdulai, R.M.; Luo, X.; Boomsma, M.M.; Staudinger, H.; Horowitz, J.E.; Baras, A.; Ferreira, M.A.; et al. Safety and Efficacy of Itepekimab in Patients with Moderate-to-Severe COPD: A Genetic Association Study and Randomised, Double-Blind, Phase 2a Trial. Lancet Respir. Med. 2021, 9, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R.; Anzueto, A.; Singh, D.; Hanania, N.A.; Fabbri, L.; Martinez, F.J.; Soler, X.; Djandji, M.; Jacob-Nara, J.A.; Rowe, P.J.; et al. The Emerging Role of Alarmin-Targeting Biologics in the Treatment of Patients with COPD. Chest 2024, S0012369224056022. [Google Scholar] [CrossRef]
- King, P.T.; Dousha, L. Neutrophil Extracellular Traps and Respiratory Disease. J. Clin. Med. 2024, 13, 2390. [Google Scholar] [CrossRef]
- Long, M.B.; Chalmers, J.D. Treating Neutrophilic Inflammation in Airways Diseases. Arch. Bronconeumol. 2022, 58, 463–465. [Google Scholar] [CrossRef]
- Jasper, A.E.; McIver, W.J.; Sapey, E.; Walton, G.M. Understanding the Role of Neutrophils in Chronic Inflammatory Airway Disease. F1000Res 2019, 8, F1000 Faculty Rev-557. [Google Scholar] [CrossRef] [PubMed]
- Varricchi, G.; Poto, R. Towards Precision Medicine in COPD: Targeting Type 2 Cytokines and Alarmins. Eur. J. Intern. Med. 2024, 125, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Cole, J.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. N. Engl. J. Med. 2023, 389, 205–214. [Google Scholar] [CrossRef]
- Byers, D.E.; Alexander-Brett, J.; Patel, A.C.; Agapov, E.; Dang-Vu, G.; Jin, X.; Wu, K.; You, Y.; Alevy, Y.; Girard, J.-P.; et al. Long-Term IL-33-Producing Epithelial Progenitor Cells in Chronic Obstructive Lung Disease. J. Clin. Investig. 2013, 123, 3967–3982. [Google Scholar] [CrossRef]
- Yamada, H.; Hida, N.; Masuko, H.; Sakamoto, T.; Hizawa, N. Effects of Lung Function-Related Genes and TSLP on COPD Phenotypes. COPD 2020, 17, 59–64. [Google Scholar] [CrossRef]
- Xia, J.; Zhao, J.; Shang, J.; Li, M.; Zeng, Z.; Zhao, J.; Wang, J.; Xu, Y.; Xie, J. Increased IL-33 Expression in Chronic Obstructive Pulmonary Disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 308, L619-627. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol. Rev. 2016, 68, 788–815. [Google Scholar] [CrossRef]
- Defnet, A.E.; Hasday, J.D.; Shapiro, P. Kinase Inhibitors in the Treatment of Obstructive Pulmonary Diseases. Curr. Opin. Pharmacol. 2020, 51, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Finan, P.M.; Thomas, M.J. PI 3-Kinase Inhibition: A Therapeutic Target for Respiratory Disease. Biochem. Soc. Trans. 2004, 32, 378–382. [Google Scholar] [CrossRef] [PubMed]
- McClean, N.; Hasday, J.D.; Shapiro, P. Progress in the Development of Kinase Inhibitors for Treating Asthma and COPD. Adv. Pharmacol. 2023, 98, 145–178. [Google Scholar] [CrossRef]
- Milara, J.; Ballester, B.; de Diego, A.; Calbet, M.; Ramis, I.; Miralpeix, M.; Cortijo, J. The Pan-JAK Inhibitor LAS194046 Reduces Neutrophil Activation from Severe Asthma and COPD Patients in VITRO. Sci. Rep. 2022, 12, 5132. [Google Scholar] [CrossRef] [PubMed]
- Vézina, F.-A.; Cantin, A.M. Antioxidants and Chronic Obstructive Pulmonary Disease. Chronic Obstr. Pulm. Dis. 2018, 5, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Kansal, H.; Chopra, V.; Garg, K.; Sharma, S. Role of Thioredoxin in Chronic Obstructive Pulmonary Disease (COPD): A Promising Future Target. Respir. Res. 2023, 24, 295. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Pula, G. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 2018, 19, 3824. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
- Wang, X.; Murugesan, P.; Zhang, P.; Xu, S.; Peng, L.; Wang, C.; Cai, H. NADPH Oxidase Isoforms in COPD Patients and Acute Cigarette Smoke-Exposed Mice: Induction of Oxidative Stress and Lung Inflammation. Antioxidants 2022, 11, 1539. [Google Scholar] [CrossRef] [PubMed]
- Santus, P.; Signorello, J.C.; Danzo, F.; Lazzaroni, G.; Saad, M.; Radovanovic, D. Anti-Inflammatory and Anti-Oxidant Properties of N-Acetylcysteine: A Fresh Perspective. J. Clin. Med. 2024, 13, 4127. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I. Antioxidant Therapies in COPD. Int. J. Chron. Obs. Pulmon Dis. 2006, 1, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; MacNee, W. Antioxidant Pharmacological Therapies for COPD. Curr. Opin. Pharmacol. 2012, 12, 256–265. [Google Scholar] [CrossRef]
- Kaluza, J.; Larsson, S.C.; Orsini, N.; Linden, A.; Wolk, A. Fruit and Vegetable Consumption and Risk of COPD: A Prospective Cohort Study of Men. Thorax 2017, 72, 500–509. [Google Scholar] [CrossRef]
- Ban, W.H.; Rhee, C.K. Role of Nuclear Factor Erythroid 2—Related Factor 2 in Chronic Obstructive Pulmonary Disease. Tuberc. Respir. Dis. 2022, 85, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, E.; Zinellu, A.; Pau, M.C.; Piras, B.; Fois, A.G.; Mellino, S.; Carru, C.; Mangoni, A.A.; Pirina, P. Glutathione Peroxidase in Stable Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis. Antioxidants 2021, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Kluchová, Z.; Petrášová, D.; Joppa, P.; Dorková, Z.; Tkáčová, R. The association Between Oxidative Stress and Obstructive Lung Impairment in Patients with COPD. Physiol. Res. 2007, 56, 51–56. [Google Scholar] [CrossRef]
- Panday, A.; Sahoo, M.K.; Osorio, D.; Batra, S. NADPH Oxidases: An Overview from Structure to Innate Immunity-Associated Pathologies. Cell Mol. Immunol. 2015, 12, 5–23. [Google Scholar] [CrossRef]
- Aer Therapeutics. A Study to Investigate Using Inhaled Fexlamose to Treat Adult Participants Who Have Moderate to Severe COPD (AER-01-002). 2024. Available online: https://ctv.veeva.com/study/a-study-to-investigate-using-inhaled-fexlamose-to-treat-adult-participants-who-have-moderate-to-seve (accessed on 18 January 2025).
- Lai, S.; Guo, Z. Stem Cell Therapies for Chronic Obstructive Pulmonary Disease: Mesenchymal Stem Cells as a Promising Treatment Option. Stem Cell Res. Ther. 2024, 15, 312. [Google Scholar] [CrossRef] [PubMed]
- Río, C.; Jahn, A.K.; Martin-Medina, A.; Calvo Bota, A.M.; De Francisco Casado, M.T.; Pont Antona, P.J.; Gigirey Castro, O.; Carvajal, Á.F.; Villena Portella, C.; Gómez Bellvert, C.; et al. Mesenchymal Stem Cells from COPD Patients Are Capable of Restoring Elastase-Induced Emphysema in a Murine Experimental Model. Int. J. Mol. Sci. 2023, 24, 5813. [Google Scholar] [CrossRef] [PubMed]
Inhaled Therapies for COPD | ||
---|---|---|
Specific | Mechanism | References |
LABAs (Long-Acting Beta-Agonists) | Bronchodilation via beta-2 receptor activation. Improve dyspnea, reduce exacerbations, and improve health status Side effects: Tremors, tachycardia, nervousness, headache, dizziness | [17,18] |
LAMAs (Long-Acting Muscarinic Antagonists) | Inhibit muscarinic receptors to cause bronchodilation. Improve lung function, reduce exacerbations Side effects: Dry mouth, cough, constipation, blurred vision | [17,18] |
ICS (Inhaled Corticosteroid) | Anti-inflammatory effects. Reduces exacerbations, improves symptoms, and reduces mortality in some studies. Side effects: Oral thrush, hoarseness, pneumonia, systemic corticosteroid side effects | [1,19] |
Phosphodiesterase Inhibitors | ||
---|---|---|
Specific | Mechanism | References |
Theophylline | Nonspecific phosphodiesterase inhibitors that reduce inflammation, is a weak bronchodilator, decreased respiratory muscle fatigue, and has mild diuretic properties Side effects: Had limited utility due to side effects and drug interactions | [16] |
Roflumilast/Tanimilast | Phosphodiesterase 4. Reduces airway inflammation via the cAMP pathway. Improves lung function and reduces exacerbations in severe COPD Side effects: weight loss, depression, gastrointestinal symptoms, insomnia | [29,30,31,32] |
Ensifentrine | Phosphodiesterase 3 and 4. Dual bronchodilator and anti-inflammatory effects. Improves lung function and reduces exacerbations Side effects: Similar adverse events to placebo, low incidence of side effects | [39] |
Molecules Targeting Inflammation | ||
---|---|---|
Specific | Mechanism | References |
Macrolides | Anti-inflammatory and immunomodulatory effects. Long-term usage reduces COPD exacerbations. Side effects: Associated with hearing loss, prolonged QT interval, bacterial resistance | [34,35,36] |
Corticosteroids | Reduce inflammation by inhibiting inflammatory mediators. Alleviate inflammation and reduce exacerbations. Side effects: Increased risk of infections, osteoporosis, diabetes, weight gain | [44,45,46] |
TNF-α inhibitor | Inhibit the action of TNF-α, reducing inflammation. Showed a reduction in COPD exacerbation and a potential synergy with corticosteroid therapy Side effects: Increased risk of infections, gastrointestinal issues | [47] |
NET inhibitor | Modulate neutrophilic inflammation. Further in vitro/in vivo research is needed. Side effect: pharmacological inhibition of NETs attenuates inflammation while restoring lung function in mice model | [48] |
Mepolizumab | Modulate eosinophilic inflammation. Target specific cytokines or receptors to reduce eosinophilic inflammation, IL-5. Reduce exacerbations in eosinophilic COPD; improve lung function and symptoms in specific phenotypes. Side effect: Further research/observation is needed | [43,49] |
Dupilumab | Modulate eosinophilic inflammation. Target IL-4 and IL-13, which are the primary drivers of type 2 inflammation Side effect: Increased risk of infections, elevated liver enzymes, and potential cardiovascular effects | [43,49,50] |
Lebrikizumab | Modulate eosinophilic inflammation. Target IL-13. Clinical trials reported no effects on lung function. | [43,49] |
Benralizumab | Modulate eosinophilic inflammation. Target IL-5. Clinical trials reported minimal positive effects on lung function. | [43,49,51,52] |
Itepekimab | Target IL-33. Phase 2 trials reported good improvement in lung functions; however, the study did not reach its endpoint aims. | [53] |
Tozorakimab/Tezepelumab | Target IL-33. Clinical trials are undergoing | [54] |
Small-Molecule Inhibitors | |||
---|---|---|---|
Specific | Mechanism | References | |
Other kinase inhibitors | Dilmapimod | P38 MAPK inhibitors. Currently in Phase 2, no significant efficacy | [63,64,65,66,67] |
Losmapimod | |||
JAK inhibitors | Tofacitinib | Target the JAK-STAT signaling pathway. Early phases of clinical trials, pending results. JAK inhibitors suppress the immune system, increasing the risk of infections, a significant concern for COPD patients already prone to respiratory infections | |
Ruxolitinib | |||
LAS194046 | In vitro study shows anti-inflammatory and antioxidant effects |
Antioxidant Therapies | |||
---|---|---|---|
Group | Specific | Mechanism | References |
N-Acetyl-L-cysteine | Increases cysteine’s stability and absorption for the synthesis of glutathione. Improve mucociliary clearance; reduce inflammation | [68,69,73] | |
A Thiol-based antioxidant | Procystein | A cysteine donor that improves the synthesis of cellular glutathione. | [74] |
Erdostein | Has mucoactive and antioxidant properties | [75] | |
Carbocystein | A mucolytic antioxidant increases sialomucin content while significantly reducing the levels of pro-inflammatory Interleukin 6 | [75] | |
Fudostein | Has greater bioavailability that can increase cellular cysteine, reduce mucin production, and goblet cell hyperplasia. | [68] | |
Agonists of Nuclear factor erythroid 2-related factor 2 | Imidazoline | Activate Nrf2 pathway to enhance antioxidant gene expression and reduce inflammation. Favorable results reported in pre-clinical studies | [68] |
Sulforaphane | Activate Nrf2 pathway to enhance antioxidant gene expression and reduce inflammation. Favorable results reported in pre-clinical studies | [68] | |
Chalcones | Favorable results reported in pre-clinical studies | [68] | |
Glutathione Peroxidase | Ebselen | A mimic of glutathione peroxidase-1 catalyzes hydrogen peroxide and lipid hydroperoxide reduction. Protects against inflammation resulting from cigarette smoke | [68,76] |
Thioredoxin | A redox sensor that reduces oxidized proteins and enhances autophagy. Improve NF-kB activity by preventing it from translocating to the nuclease and subsequently activating inflammatory genes. | [69] | |
Agents from natural sources | Celastrol | Nrf2 agonist and NADPH oxidase inhibitor | [68] |
Hydrogen | Hydrogen-rich pure water has been found to decrease DNA oxidative stress in preclinical studies. | [68] |
Current COPD Clinical Trials | ||
---|---|---|
Drug/Intervention | Mechanism | NCT Number |
Fexlamose | mucolytic | NCT06731959 |
Mesenchymal stem cells | cell therapy | NCT04047810, NCT06491043, NCT05147688 |
Airway basal cells | cell therapy | NCT05638776 |
Tanimilast | PDE-4 inhibitor | NCT04636801, NCT04636814 |
Tozorakimab | IL-33 inhibitor | NCT06040086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, S.-P.; Veit, K.; Sadikot, R.T. Molecular Approaches to Treating Chronic Obstructive Pulmonary Disease: Current Perspectives and Future Directions. Int. J. Mol. Sci. 2025, 26, 2184. https://doi.org/10.3390/ijms26052184
Vu S-P, Veit K, Sadikot RT. Molecular Approaches to Treating Chronic Obstructive Pulmonary Disease: Current Perspectives and Future Directions. International Journal of Molecular Sciences. 2025; 26(5):2184. https://doi.org/10.3390/ijms26052184
Chicago/Turabian StyleVu, Sheryl-Phuc, Kaleb Veit, and Ruxana T. Sadikot. 2025. "Molecular Approaches to Treating Chronic Obstructive Pulmonary Disease: Current Perspectives and Future Directions" International Journal of Molecular Sciences 26, no. 5: 2184. https://doi.org/10.3390/ijms26052184
APA StyleVu, S.-P., Veit, K., & Sadikot, R. T. (2025). Molecular Approaches to Treating Chronic Obstructive Pulmonary Disease: Current Perspectives and Future Directions. International Journal of Molecular Sciences, 26(5), 2184. https://doi.org/10.3390/ijms26052184