Low-Dose Ionizing Radiation and Male Reproductive Immunity: Elucidating Subtle Modulations and Long-Term Health Implications
Abstract
:1. Introduction
2. Effects of Low-Dose Ionizing Radiation on Male Reproductive Health
2.1. Spermatogenesis
2.2. DNA Damage
2.3. Epigenetic Alterations and Long-Term Implications
3. Effects of Low-Dose Ionizing Radiation on the Testicular Immune Microenvironment
3.1. Low-Dose Ionizing Radiation-Induced Changes in Immune Cell Populations
3.1.1. Natural Killer Cells
3.1.2. Macrophages
3.1.3. Dendritic Cells
3.1.4. T Cells
3.2. Low-Dose Ionizing Radiation-Induced Changes in Cytokine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
AKT | protein kinase-B |
APCs | antigen-presenting cells |
ASA | anti-sperm antibodies |
ATM | ataxia telangiectasia mutated |
ATP | adenosine triphosphate |
ATRX | ATP-dependent helicase |
BTB | blood–testis barrier |
CD1a | cluster of differentiation 1a |
CHK2 | checkpoint kinase 2 |
CTLA-4 | cytotoxic T lymphocyte-associated antigen-4 |
CTLs | cytotoxic T lymphocytes |
CXCL10 | CXC chemokine ligands 10 |
CXCL12 | CXC chemokine ligands 12 |
CYR61 | cysteine-rich angiogenic protein 61 |
DCs | dendritic cells |
DMCs | differentially methylated cytosines |
DSBs | double-strand breaks |
EAO | experimental autoimmune orchitis |
Fas/FasL | Fas/Fas ligand |
Gas6/ProS-TAM | growth arrest-specific gene 6/protein S-Tyro3, Axl, and Mer |
H2AX | H2A histone family member X |
H2O2 | hydrogen peroxide |
HG | high glucose |
ICAM | intracellular adhesion molecule |
IFN-γ | interferon-γ |
iNOS | nitric oxide synthase |
LDIR | low-dose ionizing radiation |
MAPK | mitogen-activated protein kinase |
MAPK/ERK | mitogen-activated protein kinase/extracellular regulatory kinase |
MHCs | major histocompatibility complexes |
MYC | myelocytomatosis oncogene |
NF-κB | nuclear factor κB |
NHEJ | non-homologous end joining |
NO | nitric oxide |
O2⁻ | superoxide anions |
LINE-1 | long interspersed nuclear element-1 |
·OH | hydroxyl radicals |
p38/MAPK | P38-mitogen-activated protein kinases |
PD-1/PD-L1 | programmed death-1/programmed death-ligand 1 |
PI3K/AKT | phosphatidylinositol 3-kinase/AKT serine/threonine kinase |
PRRs | pattern recognition receptors |
RIGI | radiation-induced genome instability |
ROS | reactive oxygen specie |
SAPK/JNK | stress-activated protein kinase/c-Jun NH2-terminal kinase |
SCs | sertoli cells |
TAMs | tumor-associated macrophages |
TCR | T cell receptor |
TGF | transforming growth factors |
Th1 | type 1 helper T cells |
Th2 | type 2 helper T cells |
TNF-α | tumor necrosis factor-α |
Tregs | regulatory T cells |
References
- Su, Y.W.; Wang, J.Y.; Zhang, Y.; Huang, H.B.; Zhang, M.F.; Hou, S.F.; Liu, Y.M. Effect of low dose ionizing radiation on peripheral blood cells of radiation workers in nuclear power industry. Chin. J. Ind. Hyg. Occup. Dis. 2020, 38, 633–635. [Google Scholar] [CrossRef]
- Frangione, B.; Hinton, P.; Villeneuve, P.J. Low-dose ionizing radiation and adverse birth outcomes: A systematic review and meta-analysis. Int. Arch. Occup. Environ. Health 2023, 96, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Lumniczky, K.; Impens, N.; Armengol, G.; Candéias, S.; Georgakilas, A.G.; Hornhardt, S.; Martin, O.A.; Rödel, F.; Schaue, D. Low dose ionizing radiation effects on the immune system. Environ. Int. 2020, 149, 106212. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US) Board on Radiation Effects Research. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII, Phase I, Letter Report (1998); National Academies Press (US): Washington, DC, USA, 1998. [Google Scholar]
- Khan, M.G.M.; Wang, Y. Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells 2022, 11, 356. [Google Scholar] [CrossRef]
- Leung, C.T.; Yang, Y.; Yu, K.N.; Tam, N.; Chan, T.F.; Lin, X.; Kong, R.Y.C.; Chiu, J.M.Y.; Wong, A.S.T.; Lui, W.Y.; et al. Low-Dose Radiation Can Cause Epigenetic Alterations Associated with Impairments in Both Male and Female Reproductive Cells. Front Genet. 2021, 12, 710143, Erratum in Front Genet. 2022, 13, 945115. [Google Scholar] [CrossRef]
- Najafi, M.; Fardid, R.; Hadadi, G.; Fardid, M. The Mechanisms of Radiation-Induced Bystander Effect. J. Biomed. Phys. Eng. 2014, 4, 163–172. [Google Scholar]
- Tharmalingam, S.; Sreetharan, S.; Kulesza, A.V.; Boreham, D.R.; Tai, T.C. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat. Res. 2017, 188, 525–538. [Google Scholar] [CrossRef]
- Manda, K.; Glasow, A.; Paape, D.; Hildebrandt, G. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Frontiers in Oncology. Front Oncol. 2012, 2, 102. [Google Scholar] [CrossRef]
- Tamminga, J.; Kovalchuk, O. Role of DNA damage and epigenetic DNA methylation changes in radiation-induced genomic instability and bystander effects in germline in vivo. Curr. Mol. Pharmacol. 2011, 4, 115–125. [Google Scholar] [CrossRef]
- Tang, F.R.; Loganovsky, K. Low dose or low dose rate ionizing radiation-induced health effect in the human. J. Environ. Radioact. 2018, 192, 32–47. [Google Scholar] [CrossRef]
- Kamstra, J.H.; Hurem, S.; Martin, L.M.; Lindeman, L.C.; Legler, J.; Oughton, D.; Salbu, B.; Brede, D.A.; Lyche, J.L.; Aleström, P. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci. Rep. 2018, 8, 15373. [Google Scholar] [CrossRef] [PubMed]
- Grewenig, A.; Schuler, N.; Rübe, C.E. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue. Int. J. Radiat. Oncol. 2015, 92, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Gong, E.J.; Shin, I.S.; Son, T.G.; Yang, K.; Heo, K.; Kim, J.S. Low-dose-rate radiation exposure leads to testicular damage with decreases in DNMT1 and HDAC1 in the murine testis. J. Radiat. Res. 2013, 55, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Gong, P.; Zhao, H.; Wang, Z.; Gong, S.; Cai, L. Effect of low-level radiation on the death of male germ cells. Radiat. Res. 2006, 165, 379–389. [Google Scholar] [CrossRef]
- Cheburakov, B.I.u.; Cheburakov, S.I.u.; Belozerov, N.I.u. Morfologicheskie izmeneniia tkani iaichek u likvidatorov posledstviĭ avarii na Chernobyl’skoĭ AIeS [Morphological changes in testicular tissue in clean-up personnel after the Chernobyl nuclear reactor accident]. Arkh Patol. 2004, 66, 19–21. [Google Scholar]
- Ferreira, A.M.; Westers, H.; Albergaria, A.; Seruca, R.; Hofstra, R.M. Estrogens, MSI and Lynch syndrome-associated tumors. Biochim. Biophys. Acta 2009, 1796, 194–200. [Google Scholar] [CrossRef]
- Pescatori, S.; Berardinelli, F.; Albanesi, J.; Ascenzi, P.; Marino, M.; Antoccia, A.; di Masi, A.; Acconcia, F. A Tale of Ice and Fire: The Dual Role for 17β-Estradiol in Balancing DNA Damage and Genome Integrity. Cancers 2021, 13, 1583. [Google Scholar] [CrossRef]
- Georgakilas, A.G. Bystander and non-targeted effects: A unifying model from ionizing radiation to cancer. Cancer Lett. 2015, 356, 3–4. [Google Scholar] [CrossRef]
- Qi, L.; Li, J.; Le, W.; Zhang, J. Low-dose ionizing irradiation triggers apoptosis of undifferentiated spermatogonia in vivo and in vitro. Transl. Androl. Urol. 2019, 8, 591–600. [Google Scholar] [CrossRef]
- Ryabchenko, N.; Domina, E. Radiation-induced instability of human genome. Radiacionno-inducirovannaja nestabil“nost” genoma cheloveka. Probl. Radiac. Med. Radiobiol. 2014, 19, 48–58. [Google Scholar]
- Ahmed, E.A.; Scherthan, H.; De Rooij, D.G. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids. Int. J. Mol. Sci. 2015, 16, 29923–29935. [Google Scholar] [CrossRef] [PubMed]
- Wdowiak, A.; Skrzypek, M.; Stec, M.; Panasiuk, L. Effect of ionizing radiation on the male reproductive system. Ann. Agric. Environ. Med. 2019, 26, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Park, J.I.; Jung, S.Y.; Song, K.H.; Lee, D.H.; Ahn, J.; Hwang, S.G.; Jung, I.S.; Lim, D.S.; Song, J.Y. Predictive DNA damage signaling for low-dose ionizing radiation. Int. J. Mol. Med. 2024, 53, 56. [Google Scholar] [CrossRef]
- Belli, M.; Tabocchini, M.A. Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int. J. Mol. Sci. 2020, 21, 5993. [Google Scholar] [CrossRef]
- Tang, F.R.; Loke, W.K.; Khoo, B.C. Low-dose or low-dose-rate ionizing radiation–induced bioeffects in animal models. J. Radiat. Res. 2017, 58, 165–182. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, Y.J.; Choi, Y.J.; Lee, J.W.; Lee, S.; Cho, Y.H.; Chung, H.W. Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers. Int. J. Radiat. Biol. 2015, 91, 142–149. [Google Scholar] [CrossRef]
- Ye, S.; Yuan, D.; Xie, Y.; Pan, Y.; Shao, C. Role of DNA methylation in long-term low-dose γ-rays induced adaptive response in human B lymphoblast cells. Int. J. Radiat. Biol. 2013, 89, 898–906. [Google Scholar] [CrossRef]
- Nakata, A.; Sato, K.; Fujishima, Y.; Ting, V.G.S.; Nakayama, K.; Ariyoshi, K.; Tsuruoka, C.; Shang, Y.; Iizuka, D.; Kakinuma, S.; et al. Evaluation of Global DNA Methylation and Gene Expression of Izumo1 and Izumo1r in Gonads after High- and Low-Dose Radiation in Neonatal Mice. Biology 2021, 10, 1270. [Google Scholar] [CrossRef]
- Smirnova, S.G.; Orlova, N.V.; Zamulaeva, I.A. Monitoring the frequency of lymphocytes mutant for genes of the t-cell receptor in the liquidators of the consequences of the Chernobyl accident in the remote post-radiation period. Radiat. Risk 2012, 21, 20–29. (In Russian) [Google Scholar]
- Trijau, M.; Asselman, J.; Armant, O.; Adam-Guillermin, C.; De Schamphelaere, K.A.C.; Alonzo, F. Transgenerational DNA Methylation Changes in Daphnia magna Exposed to Chronic γ Irradiation. Environ. Sci. Technol. 2018, 52, 4331–4339. [Google Scholar] [CrossRef]
- Yushkova, E. Genetic mechanisms of formation of radiation-induced instability of the genome and its transgenerational effects in the descendants of chronically irradiated individuals of Drosophila melanogaster. Radiat. Environ. Biophys. 2020, 59, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Kong, Q.; Wang, G.; Jin, H.; Zhou, L.; Yu, D.; Niu, C.; Han, W.; Li, W.; Cui, J. Low-Dose Ionizing Radiation Induces Direct Activation of Natural Killer Cells and Provides a Novel Approach for Adoptive Cellular Immunotherapy. Cancer Biother. Radiopharm. 2014, 29, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Cheda, A.; Nowosielska, E.M.; Wrembel-Wargocka, J.; Janiak, M.K. Production of cytokines by peritoneal macrophages and splenocytes after exposures of mice to low doses of X-Rays. Radiat. Environ. Biophys. 2007, 47, 275–283. [Google Scholar] [CrossRef]
- Bogdándi, E.N.; Balogh, A.; Felgyinszki, N.; Szatmári, T.; Persa, E.; Hildebrandt, G.; Sáfrány, G.; Lumniczky, K. Effects of low-dose radiation on the immune system of mice after total-body irradiation. Radiat. Res. 2010, 174, 480–489. [Google Scholar] [CrossRef]
- Gyuleva, I.; Djounova, J.; Rupova, I. Impact of Low-Dose Occupational Exposure to Ionizing Radiation on T-Cell Populations and Subpopulations and Humoral Factors Included in the Immune Response. Dose-Response 2018, 16, 1559325818785564. [Google Scholar] [CrossRef]
- Rizvi, A.; Pecaut, M.J.; Slater, J.M.; Subramaniam, S.; Gridley, D.S. Low-dose γ-rays modify CD4+T cell signalling response to simulated solar particle event protons in a mouse model. Int. J. Radiat. Biol. 2010, 87, 24–35. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Zeng, Z.; Li, J.; Luo, Y.; Sun, W.; Gong, Y.; Zhang, J.; Wu, Q.; Xie, C. Immunomodulation of NK Cells by Ionizing Radiation. Front. Oncol. 2020, 10, 874. [Google Scholar] [CrossRef]
- Cui, J.; Yang, G.; Pan, Z.; Zhao, Y.; Liang, X.; Li, W.; Cai, L. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications. Int. J. Mol. Sci. 2017, 18, 280. [Google Scholar] [CrossRef]
- Nadella, V.; Singh, S.; Jain, A.; Jain, M.; Vasquez, K.M.; Sharma, A.; Tanwar, P.; Rath, G.K.; Prakash, H. Low dose radiation primed iNOS + M1macrophages modulate angiogenic programming of tumor derived endothelium. Mol. Carcinog. 2018, 57, 1664–1671. [Google Scholar] [CrossRef]
- Prakash, H.; Klug, F.; Nadella, V.; Mazumdar, V.; Schmitz-Winnenthal, H.; Umansky, L. Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: Lesson from insulinoma. Carcinogenesis 2016, 37, 301–313. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Z.; Muluh, T.A.; Fu, S.; Wu, J. Effect of low-dose total-body radiotherapy on immune microenvironment. Transl. Oncol. 2021, 14, 101118. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, A.; Adachi, Y.; Koike-Kiriyama, N.; Suzuki, Y.; Iwasaki, M.; Koike, Y.; Nakano, K.; Mukaide, H.; Imamura, M.; Ikehara, S. Effects of Low-dose Irradiation on Enhancement of Immunity by Dendritic Cells. J. Radiat. Res. 2007, 48, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-J.; Kang, H.; Hong, E.-H.; Kim, J.Y.; Nam, S.Y. Transcriptome analysis of low-dose ionizing radiation-impacted genes in CD4+ T-cells undergoing activation and regulation of their expression of select cytokines. J. Immunotoxicol. 2018, 15, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-H.; Kim, M.-H.; Kang, S.-M.; Jung, S.-Y.; Ahn, J.; Woo, H.-J.; Nam, S.Y.; Hwang, S.-G.; Ryu, S.-Y.; Song, J.-Y. Analysis of immune cell populations and cytokine profiles in murine splenocytes exposed to whole-body low-dose irradiation. Int. J. Radiat. Biol. 2015, 91, 795–803. [Google Scholar] [CrossRef]
- Shankar, B.; Pandey, R.; Sainis, K. Radiation-induced bystander effects and adaptive response in murine lymphocytes. Int. J. Radiat. Biol. 2006, 82, 537–548. [Google Scholar] [CrossRef]
- Pandey, R.; Shankar, B.S.; Sharma, D.; Sainis, K.B. Low dose radiation induced immunomodulation: Effect on macrophages and CD8+T cells. Int. J. Radiat. Biol. 2005, 81, 801–812. [Google Scholar] [CrossRef]
- Duan, Y.G.; Gong, J.; Yeung, W.S.; Haidl, G.; Allam, J.-P. Natural killer and NKT cells in the male reproductive tract. J. Reprod. Immunol. 2020, 142, 103178. [Google Scholar] [CrossRef]
- Pérez, C.V.; Theas, M.S.; Jacobo, P.V.; Jarazo-Dietrich, S.; Guazzone, V.A.; Lustig, L. Dual role of immune cells in the testis: Protective or pathogenic for germ cells? Spermatogenesis 2013, 3, e23870. [Google Scholar] [CrossRef]
- Durović, B.; Spasić-Jokić, V.; Durović, B. Influence of occupational exposure to low-dose ionizing radiation on the plasma activity of superoxide dismutase and glutathione level. Vojnosanit. Pregl. 2008, 65, 613–618. [Google Scholar] [CrossRef]
- Jin, F.; Wu, Z.; Hu, X.; Zhang, J.; Gao, Z.; Han, X.; Qin, J.; Li, C.; Wang, Y. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility. Cancer Biol. Med. 2019, 16, 38–54. [Google Scholar] [CrossRef]
- Gong, T.; Si, K.; Liu, H.; Zhang, X. Research advances in the role of MAPK cascade in regulation of cell growth, immunity, inflammation, and cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2022, 47, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bazhin, A.V.; Werner, J.; Karakhanova, S. Reactive oxygen species in the immune system. Int. Rev. Immunol. 2013, 32, 249–270. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, S.; Meinhardt, A. The macrophages in testis function. J. Reprod. Immunol. 2017, 119, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.; Rius-Pérez, S. Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants 2022, 11, 1394. [Google Scholar] [CrossRef]
- Muller, L.; Muller-Haegele, S.; Mitsuhashi, M.; Gooding, W.; Okada, H.; Whiteside, T.L. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. OncoImmunology 2015, 4, e1008347. [Google Scholar] [CrossRef]
- Chen, S.; Saeed, A.F.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023, 8, 207. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 76. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2021, 12, 775758. [Google Scholar] [CrossRef]
- Medvedeva, G.F.; Kuzmina, D.O.; Nuzhina, J.; Shtil, A.A.; Dukhinova, M.S. How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int. J. Mol. Sci. 2021, 22, 2662. [Google Scholar] [CrossRef]
- Meinhardt, A.; Dejucq-Rainsford, N.; Bhushan, S. Testicular macrophages: Development and function in health and disease. Trends Immunol. 2021, 43, 51–62. [Google Scholar] [CrossRef]
- Royo, L.T.; Redondo, G.A.; Pianetta, M.; Prat, M.A. Low-Dose radiation therapy for benign pathologies. Rep. Pr. Oncol. Radiother. 2020, 25, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Hussien, S.M. Radio-adaptive Response Induced by Low-dose Ionizing Radiation in Innate Immunity for Radiotherapy. Health Phys. 2023, 124, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Deloch, L.; Rückert, M.; Weissmann, T.; Lettmaier, S.; Titova, E.; Wolff, T.; Weinrich, F.; Fietkau, R.; Gaipl, U.S. The various functions and phenotypes of macrophages are also reflected in their responses to irradiation: A current overview. Int. Rev. Cell Mol. Biol. 2023, 376, 99–120. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.; Bigley, V. Human dendritic cell subsets: An update. Immunology 2018, 154, 3–20. [Google Scholar] [CrossRef]
- De Rose, R.; Fernandez, C.S.; Hedger, M.P.; Kent, S.J.; Winnall, W.R. Characterisation of macaque testicular leucocyte populations and T-lymphocyte immunity. J. Reprod. Immunol. 2013, 100, 146–156. [Google Scholar] [CrossRef]
- Wang, P.; Duan, Y. The role of dendritic cells in male reproductive tract. Am. J. Reprod. Immunol. 2016, 76, 186–192. [Google Scholar] [CrossRef]
- Persa, E.; Szatmári, T.; Sáfrány, G.; Lumniczky, K. In Vivo Irradiation of Mice Induces Activation of Dendritic Cells. Int. J. Mol. Sci. 2018, 19, 2391. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Qu, Y.; Wang, L.; Geng, D.; Chen, W.; Li, L.; Tian, Y.; Chang, S.; Zhao, C.; et al. The roles of p38 MAPK → COX2 and NF-κB → COX2 signal pathways in age-related testosterone reduction. Sci. Rep. 2020, 10, 4652. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P.; Slama, P.; Roychoudhury, S. Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction. Int. J. Mol. Sci. 2021, 22, 10043. [Google Scholar] [CrossRef]
- Gridley, D.S.; Pecaut, M.J.; Rizvi, A.; Coutrakon, G.B.; Luo-Owen, X.; Makinde, A.Y.; Slater, J.M. Low-dose, low-dose-rate proton radiation modulates CD4+ T cell gene expression. Int. J. Radiat. Biol. 2009, 85, 250–261. [Google Scholar] [CrossRef]
- Sambani, C. Stimulatory effect of low dose X-irradiation on the expression of the human T lymphocyte CD2 surface antigen. Int. J. Radiat. Biol. 1996, 70, 711–717. [Google Scholar] [CrossRef]
- Liu, S.-Z.; Jin, S.-Z.; Liu, X.-D.; Sun, Y.-M. Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol. 2001, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Esensten, J.H.; Helou, Y.A.; Chopra, G.; Weiss, A.; Bluestone, J.A. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016, 44, 973–988. [Google Scholar] [CrossRef] [PubMed]
- Sarna, N.S.; Desai, S.H.; Kaufman, B.G.; Curry, N.M.; Hanna, A.M.; King, M.R. Enhanced and Sustained T Cell Activation in Response to Fluid Shear Stress. iScience 2024, 27, 109999. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, B.; Dai, Z.; Ren, S.; Bai, M.; Wang, Z.; Li, Z.; Lin, S.; Wang, Z.; Huang, N.; et al. Low-dose splenic radiation inhibits liver tumor development of rats through functional changes in CD4+CD25+Treg cells. Int. J. Biochem. Cell Biol. 2014, 55, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Shimura, N.; Kojima, S. Effects of Low-Dose-Gamma Rays on the Immune System of Different Animal Models of Disease. Dose-Response 2014, 12, 429–465. [Google Scholar] [CrossRef]
- Loveland, K.L.; Klein, B.; Pueschl, D.; Indumathy, S.; Bergmann, M.; Loveland, B.E.; Hedger, M.P.; Schuppe, H.-C. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front. Endocrinol. 2017, 8, 307. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Li, X.; Lei, S.; Chen, Q.; Liu, J.; Sun, Q. Alteration of cytokine profiles in uranium miners exposed to long-term low dose ionizing radiation. Sci. World J. 2014, 2014, 216408. [Google Scholar] [CrossRef]
- Sonn, C.H.; Choi, J.R.; Kim, T.J.; Yu, Y.B.; Kim, K.; Shin, S.C.; Park, G.H.; Shirakawa, T.; Kim, H.S.; Lee, K.M. Augmentation of natural cytotoxicity by chronic low-dose ionizing radiation in murine natural killer cells primed by IL-2. J. Radiat. Res. 2012, 53, 823–829. [Google Scholar] [CrossRef]
- Yu, N.; Wang, S.; Song, X.; Gao, L.; Li, W.; Yu, H.; Zhou, C.; Wang, Z.; Li, F.; Jiang, Q. Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-KappaB Pathway. Radiat. Res. 2018, 189, 409–417. [Google Scholar] [CrossRef]
- Premkumar, K.; Shankar, B.S. Involvement of MAPK signalling in radioadaptive response in BALB/c mice exposed to low dose ionizing radiation. Int. J. Radiat. Biol. 2016, 92, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Hussien, S.M.; Rashed, E.R. Immune system modulation by low-dose ionizing radiation-induced adaptive response. Int. J. Immunopathol. Pharmacol. 2023, 37, 3946320231172080. [Google Scholar] [CrossRef] [PubMed]
- Friebe, K.; Bohring, C.; Skrzypek, J.; Krause, W. Levels of interleukin-6 and interleukin-8 in seminal fluid of men attending an andrological clinic. Andrologia 2003, 35, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Furuya, Y.; Akashi, T.; Fuse, H. Soluble Fas and interleukin-6 and interleukin-8 levels in seminal plasma of infertile men. Arch. Androl. 2003, 49, 449–452. [Google Scholar] [CrossRef]
- Huleihel, M.; Lunenfeld, E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J. Androl. 2004, 6, 259–268. [Google Scholar]
- Hedger, M.P.; Meinhardt, A. Cytokines and the immune-testicular axis. J. Reprod. Immunol. 2003, 58, 1–26. [Google Scholar] [CrossRef]
- el-Demiry, M.I.; Hargreave, T.B.; Busuttil, A.; Elton, R.; James, K.; Chisholm, G.D. Immunocompetent cells in human testis in health and disease. Fertil Steril. 1987, 48, 470–479. [Google Scholar] [CrossRef]
- Lourenço, J.; Pereira, R.; Pinto, F.; Caetano, T.; Silva, A.; Carvalheiro, T.; Guimarães, A.; Gonçalves, F.; Paiva, A.; Mendo, S. Biomonitoring a human population inhabiting nearby a deactivated uranium mine. Toxicology 2013, 305, 89–98. [Google Scholar] [CrossRef]
- Wunderlich, R.; Ernst, A.; Rödel, F.; Fietkau, R.; Ott, O.; Lauber, K.; Frey, B.; Gaipl, U.S. Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin. Exp. Immunol. 2015, 179, 50–61. [Google Scholar] [CrossRef]
- Rey, N.; Ebrahimian, T.; Gloaguen, C.; Kereselidze, D.; Christelle, E.; Brizais, C.; Bachelot, F.; Riazi, G.; Monceau, V.; Demarquay, C.; et al. Low to moderate dose 137Cs (γ) radiation promotes M2 type macrophage skewing and reduces atherosclerotic plaque CD68+ cell content in ApoE(−/−) mice. Sci. Rep. 2024, 14, 12450. [Google Scholar] [CrossRef]
- Fan, H.; Liu, S.; Jiao, B.; Liang, X. Low-dose ionizing radiation attenuates high glucose-induced hepatic apoptosis and immune factor release via modulation of a miR-155-SOCS1 axis. Mol. Med. Rep. 2023, 28, 171. [Google Scholar] [CrossRef] [PubMed]
- Arenas, M.; Sabater, S.; Hernández, V.; Rovirosa, A.; Lara, P.C.; Biete, A.; Panés, J. Anti-inflammatory effects of low-dose radiotherapy. Indications, dose, and radiobiological mechanisms involved. Strahlenther. Onkol. 2012, 188, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Rödel, F.; Keilholz, L.; Herrmann, M.; Sauer, R.; Hildebrandt, G. Radiobiological mechanisms in inflammatory diseases of low-dose radiation therapy. Int. J. Radiat. Biol. 2007, 83, 357–366. [Google Scholar] [CrossRef] [PubMed]
≤100 mGy | >100 mGy | |
---|---|---|
Methylation Changes | Methylation levels of LINE-1 increased. (7.97 mGy [27]) | Global DNA methylation levels decreased. (157.74 mGy [27]) |
Macrophages Activation | Increased TNF-α secretion. (100 mGy or 200 mGy [39]) | Decreased TNF-α levels. (250 mGy [63]) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Ye, Y.; Gao, Y.; Xu, Q.; Su, M.; Sun, S.; Xu, W.; Fu, Q.; Wang, A.; Hu, S. Low-Dose Ionizing Radiation and Male Reproductive Immunity: Elucidating Subtle Modulations and Long-Term Health Implications. Int. J. Mol. Sci. 2025, 26, 2269. https://doi.org/10.3390/ijms26052269
Yin J, Ye Y, Gao Y, Xu Q, Su M, Sun S, Xu W, Fu Q, Wang A, Hu S. Low-Dose Ionizing Radiation and Male Reproductive Immunity: Elucidating Subtle Modulations and Long-Term Health Implications. International Journal of Molecular Sciences. 2025; 26(5):2269. https://doi.org/10.3390/ijms26052269
Chicago/Turabian StyleYin, Jiacheng, Yifan Ye, Yuankai Gao, Qing Xu, Muzhe Su, Shengkui Sun, Wenhui Xu, Qian Fu, An Wang, and Sumin Hu. 2025. "Low-Dose Ionizing Radiation and Male Reproductive Immunity: Elucidating Subtle Modulations and Long-Term Health Implications" International Journal of Molecular Sciences 26, no. 5: 2269. https://doi.org/10.3390/ijms26052269
APA StyleYin, J., Ye, Y., Gao, Y., Xu, Q., Su, M., Sun, S., Xu, W., Fu, Q., Wang, A., & Hu, S. (2025). Low-Dose Ionizing Radiation and Male Reproductive Immunity: Elucidating Subtle Modulations and Long-Term Health Implications. International Journal of Molecular Sciences, 26(5), 2269. https://doi.org/10.3390/ijms26052269