Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample
The Genetic Epidemiology Network of Arteriopathy (GENOA)
4.2. Measures
4.2.1. Genetic Data
4.2.2. Gene Expression Data
4.2.3. GWAS Summary Statistics
General Cognitive Function
White Matter Hyperintensity
Alzheimer’s Disease (GWAS in EA)
Alzheimer’s Disease (GWAS in AA)
4.3. Statistical Methods
4.3.1. Multi-Ancestry Transcriptome-Wide Association Study
4.3.2. Fine-Mapping Analysis
4.3.3. Characterization of Identified Genes
4.3.4. Functional Enrichment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [CrossRef] [PubMed]
- De Reuck, J.; Maurage, C.-A.; Deramecourt, V.; Pasquier, F.; Cordonnier, C.; Leys, D.; Bordet, R. Aging and Cerebrovascular Lesions in Pure and in Mixed Neurodegenerative and Vascular Dementia Brains: A Neuropathological Study. Folia Neuropathol. 2018, 56, 81–87. [Google Scholar] [CrossRef]
- Hof, P.R.; Glannakopoulos, P.; Bouras, C. The Neuropathological Changes Associated with Normal Brain Aging. Histol. Histopathol. 1996, 11, 1075–1088. [Google Scholar] [PubMed]
- Perl, D.P. Neuropathology of Alzheimer’s Disease. Mt. Sinai J. Med. 2010, 77, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Cohuet, G.; Struijker-Boudier, H. Mechanisms of Target Organ Damage Caused by Hypertension: Therapeutic Potential. Pharmacol. Ther. 2006, 111, 81–98. [Google Scholar] [CrossRef]
- Weller, J.; Budson, A. Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000Research 2018, 7, F1000 Faculty Rev-1161. [Google Scholar] [CrossRef]
- Hubbard, B.M.; Fenton, G.W.; Anderson, J.M. A Quantitative Histological Study of Early Clinical and Preclinical Alzheimer’s Disease. Neuropathol. Appl. Neurobiol. 1990, 16, 111–121. [Google Scholar] [CrossRef]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward Defining the Preclinical Stages of Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef]
- Mayeda, E.R.; Glymour, M.M.; Quesenberry, C.P.; Whitmer, R.A. Inequalities in Dementia Incidence between Six Racial and Ethnic Groups over 14 Years. Alzheimer’s Dement. 2016, 12, 216–224. [Google Scholar] [CrossRef]
- Barnes, L.L.; Bennett, D.A. Alzheimer’s Disease in African Americans: Risk Factors and Challenges for the Future. Health Aff. 2014, 33, 580–586. [Google Scholar] [CrossRef]
- Brewster, P.; Barnes, L.; Haan, M.; Johnson, J.K.; Manly, J.J.; Nápoles, A.M.; Whitmer, R.A.; Carvajal-Carmona, L.; Early, D.; Farias, S.; et al. Progress and Future Challenges in Aging and Diversity Research in the United States. Alzheimer’s Dement. 2019, 15, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.B.; Weuve, J.; Barnes, L.L.; Wilson, R.S.; Evans, D.A. Prevalence and Incidence of Clinically Diagnosed Alzheimer’s Disease Dementia from 1994 to 2012 in a Population Study. Alzheimer’s Dement. 2019, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Torrellas, C. Epigenetics of Aging and Alzheimer’s Disease: Implications for Pharmacogenomics and Drug Response. Int. J. Mol. Sci. 2015, 16, 30483–30543. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and Limitations of Genome-Wide Association Studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- Lappalainen, T.; Sammeth, M.; Friedländer, M.R.; ‘t Hoen, P.A.; Monlong, J.; Rivas, M.A.; Gonzàlez-Porta, M.; Kurbatova, N.; Griebel, T.; Ferreira, P.G.; et al. Transcriptome and Genome Sequencing Uncovers Functional Variation in Humans. Nature 2013, 501, 506–511. [Google Scholar] [CrossRef]
- Mogil, L.S.; Andaleon, A.; Badalamenti, A.; Dickinson, S.P.; Guo, X.; Rotter, J.I.; Johnson, W.C.; Im, H.K.; Liu, Y.; Wheeler, H.E. Genetic Architecture of Gene Expression Traits across Diverse Populations. PLoS Genet. 2018, 14, e1007586. [Google Scholar] [CrossRef]
- Wojcik, G.; Graff, M.; Nishimura, K.; Tao, R.; Haessler, J.; Gignoux, C.; Highland, H.; Patel, Y.; Sorokin, E.; Avery, C.; et al. Genetic Analyses of Diverse Populations Improves Discovery for Complex Traits. Nature 2019, 570, 514–518. [Google Scholar] [CrossRef]
- Shang, L.; Smith, J.A.; Zhao, W.; Kho, M.; Turner, S.T.; Mosley, T.H.; Kardia, S.L.R.; Zhou, X. Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA. Am. J. Hum. Genet. 2020, 106, 496–512. [Google Scholar] [CrossRef]
- Nica, A.C.; Dermitzakis, E.T. Expression Quantitative Trait Loci: Present and Future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120362. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Shang, L.; Mosley, T.H.; Kardia, S.L.R.; Smith, J.A.; Zhou, X. METRO: Multi-Ancestry Transcriptome-Wide Association Studies for Powerful Gene-Trait Association Detection. Am. J. Hum. Genet. 2022, 109, 783–801. [Google Scholar] [CrossRef]
- Davies, G.; Lam, M.; Harris, S.E.; Trampush, J.W.; Luciano, M.; Hill, W.D.; Hagenaars, S.P.; Ritchie, S.J.; Marioni, R.E.; Fawns-Ritchie, C.; et al. Study of 300,486 Individuals Identifies 148 Independent Genetic Loci Influencing General Cognitive Function. Nat. Commun. 2018, 9, 2098. [Google Scholar] [CrossRef] [PubMed]
- Sargurupremraj, M.; Suzuki, H.; Jian, X.; Sarnowski, C.; Evans, T.E.; Bis, J.C.; Eiriksdottir, G.; Sakaue, S.; Terzikhan, N.; Habes, M.; et al. Cerebral Small Vessel Disease Genomics and Its Implications across the Lifespan. Nat. Commun. 2020, 11, 6285. [Google Scholar] [CrossRef]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New Insights into the Genetic Etiology of Alzheimer’s Disease and Related Dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef] [PubMed]
- Kunkle, B.W.; Schmidt, M.; Klein, H.-U.; Naj, A.C.; Hamilton-Nelson, K.L.; Larson, E.B.; Evans, D.A.; De Jager, P.L.; Crane, P.K.; Buxbaum, J.D.; et al. Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel: A Meta-Analysis. JAMA Neurol. 2021, 78, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, N.; Freund, M.K.; Johnson, R.; Shi, H.; Kichaev, G.; Gusev, A.; Pasaniuc, B. Probabilistic Fine-Mapping of Transcriptome-Wide Association Studies. Nat. Genet. 2019, 51, 675–682. [Google Scholar] [CrossRef]
- Chagnot, A.; Barnes, S.R.; Montagne, A. Magnetic Resonance Imaging of Blood–Brain Barrier Permeability in Dementia. Neuroscience 2021, 474, 14–29. [Google Scholar] [CrossRef]
- Kalaria, R.N.; Sepulveda-Falla, D. Cerebral Small Vessel Disease in Sporadic and Familial Alzheimer Disease. Am. J. Pathol. 2021, 191, 1888–1905. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, F.; Li, X.; Du, X.; Li, T. Identification of Novel Proteins for Lacunar Stroke by Integrating Genome-Wide Association Data and Human Brain Proteomes. BMC Med. 2022, 20, 211. [Google Scholar] [CrossRef]
- Bai, B.; Vanderwall, D.; Li, Y.; Wang, X.; Poudel, S.; Wang, H.; Dey, K.K.; Chen, P.-C.; Yang, K.; Peng, J. Proteomic Landscape of Alzheimer’s Disease: Novel Insights into Pathogenesis and Biomarker Discovery. Mol. Neurodegener. 2021, 16, 55. [Google Scholar] [CrossRef]
- Wingo, A.P.; Liu, Y.; Gerasimov, E.S.; Gockley, J.; Logsdon, B.A.; Duong, D.M.; Dammer, E.B.; Robins, C.; Beach, T.G.; Reiman, E.M.; et al. Integrating Human Brain Proteomes with Genome-Wide Association Data Implicates New Proteins in Alzheimer’s Disease Pathogenesis. Nat. Genet. 2021, 53, 143–146. [Google Scholar] [CrossRef]
- Ou, Y.-N.; Yang, Y.-X.; Deng, Y.-T.; Zhang, C.; Hu, H.; Wu, B.-S.; Liu, Y.; Wang, Y.-J.; Zhu, Y.; Suckling, J.; et al. Identification of Novel Drug Targets for Alzheimer’s Disease by Integrating Genetics and Proteomes from Brain and Blood. Mol. Psychiatry 2021, 26, 6065–6073. [Google Scholar] [CrossRef] [PubMed]
- Cullell, N.; Gallego-Fábrega, C.; Cárcel-Márquez, J.; Muiño, E.; Llucià-Carol, L.; Lledós, M.; Martín-Campos, J.M.; Molina, J.; Casas, L.; Almeria, M.; et al. ICA1L Is Associated with Small Vessel Disease: A Proteome-Wide Association Study in Small Vessel Stroke and Intracerebral Haemorrhage. Int. J. Mol. Sci. 2022, 23, 3161. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.-Z.; Sharp, F.R. Excitatory and Mitogenic Signaling in Cell Death, Blood–Brain Barrier Breakdown, and BBB Repair after Intracerebral Hemorrhage. Transl. Stroke Res. 2012, 3, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and Stroke: Identifying Novel Targets for Neuroprotection. Prog. Neurobiol. 2014, 115, 157–188. [Google Scholar] [CrossRef]
- Ge, Y.-J.; Ou, Y.-N.; Deng, Y.-T.; Wu, B.-S.; Yang, L.; Zhang, Y.-R.; Chen, S.-D.; Huang, Y.-Y.; Dong, Q.; Tan, L.; et al. Prioritization of Drug Targets for Neurodegenerative Diseases by Integrating Genetic and Proteomic Data From Brain and Blood. Biol. Psychiatry 2023, 93, 770–779. [Google Scholar] [CrossRef]
- Uchida, Y.; Kan, H.; Furukawa, G.; Onda, K.; Sakurai, K.; Takada, K.; Matsukawa, N.; Oishi, K. Relationship between Brain Iron Dynamics and Blood-Brain Barrier Function during Childhood: A Quantitative Magnetic Resonance Imaging Study. Fluids Barriers CNS 2023, 20, 60. [Google Scholar] [CrossRef]
- Uchida, Y.; Kan, H.; Sakurai, K.; Oishi, K.; Matsukawa, N. Contributions of Blood-Brain Barrier Imaging to Neurovascular Unit Pathophysiology of Alzheimer’s Disease and Related Dementias. Front. Aging Neurosci. 2023, 15, 1111448. [Google Scholar] [CrossRef]
- Yamanaka, T.; Uchida, Y.; Sakurai, K.; Kato, D.; Mizuno, M.; Sato, T.; Madokoro, Y.; Kondo, Y.; Suzuki, A.; Ueki, Y.; et al. Anatomical Links between White Matter Hyperintensity and Medial Temporal Atrophy Reveal Impairment of Executive Functions. Aging Dis. 2019, 10, 711–718. [Google Scholar] [CrossRef]
- Uchida, Y.; Kan, H.; Sakurai, K.; Horimoto, Y.; Hayashi, E.; Iida, A.; Okamura, N.; Oishi, K.; Matsukawa, N. APOE Ɛ4 Dose Associates with Increased Brain Iron and β-Amyloid via Blood-Brain Barrier Dysfunction. J. Neurol. Neurosurg. Psychiatry 2022, 93, 772–778. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating Viruses and Cellular Organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- De Bruijn, M.F.; Speck, N.A. Core-Binding Factors in Hematopoiesis and Immune Function. Oncogene 2004, 23, 4238–4248. [Google Scholar] [CrossRef] [PubMed]
- Maillard, I.; Adler, S.H.; Pear, W.S. Notch and the Immune System. Immunity 2003, 19, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Radtke, F.; Wilson, A.; Mancini, S.J.C.; MacDonald, H.R. Notch Regulation of Lymphocyte Development and Function. Nat. Immunol. 2004, 5, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, E.V.; Taghon, T. Molecular Genetics of T Cell Development. Annu. Rev. Immunol. 2005, 23, 601–649. [Google Scholar] [CrossRef] [PubMed]
- Shapiro-Shelef, M.; Calame, K. Regulation of Plasma-Cell Development. Nat. Rev. Immunol. 2005, 5, 230–242. [Google Scholar] [CrossRef]
- Spits, H. Development of Aβ T Cells in the Human Thymus. Nat. Rev. Immunol. 2002, 2, 760–772. [Google Scholar] [CrossRef]
- Lambert, J.-C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; Jun, G.; DeStefano, A.L.; Bis, J.C.; Beecham, G.W.; et al. Meta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s Disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef]
- Hollingworth, P.; Harold, D.; Sims, R.; Gerrish, A.; Lambert, J.-C.; Carrasquillo, M.M.; Abraham, R.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; et al. Common Variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP Are Associated with Alzheimer’s Disease. Nat. Genet. 2011, 43, 429–435. [Google Scholar] [CrossRef]
- Reitz, C.; Mayeux, R. Genetics of Alzheimer’s Disease in Caribbean Hispanic and African American Populations. Biol. Psychiatry 2014, 75, 534–541. [Google Scholar] [CrossRef]
- Reitz, C.; Jun, G.; Naj, A.; Rajbhandary, R. Variants in the ATP-Binding Cassette Transporter (ABCA7), Apolipoprotein E ε4, and the Risk of Late-Onset Alzheimer Disease in African Americans. JAMA 2013, 309, 1483–1492. [Google Scholar] [CrossRef]
- De Roeck, A.; Van Broeckhoven, C.; Sleegers, K. The Role of ABCA7 in Alzheimer’s Disease: Evidence from Genomics, Transcriptomics and Methylomics. Acta Neuropathol. 2019, 138, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, M.; Muntané, G.; Martínez, I.; Martorell, L.; Girona, J.; Ibarretxe, D.; Plana, N.; Bullido, M.J.; Vilella, E.; Ribalta, J. Metabolic Overlap between Alzheimer’s Disease and Metabolic Syndrome Identifies the PVRL2 Gene as a New Modulator of Diabetic Dyslipidemia. Int. J. Mol. Sci. 2023, 24, 7415. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liu, C.; Liu, K.; Cong, L.; Wang, Y.; Liu, R.; Fa, W.; Tian, N.; Cheng, Y.; Wang, N.; et al. Association and Interaction of TOMM40 and PVRL2 with Plasma Amyloid-β and Alzheimer’s Disease among Chinese Older Adults: A Population-Based Study. Neurobiol. Aging 2022, 113, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Roy, D.; Bhattacharyya, M.; Bandyopadhyay, S. Biological Networks in Parkinson’s Disease: An Insight into the Epigenetic Mechanisms Associated with This Disease. BMC Genom. 2017, 18, 721. [Google Scholar] [CrossRef]
- Gialluisi, A.; Reccia, M.G.; Modugno, N.; Nutile, T.; Lombardi, A.; Di Giovannantonio, L.G.; Pietracupa, S.; Ruggiero, D.; Scala, S.; Gambardella, S.; et al. Identification of Sixteen Novel Candidate Genes for Late Onset Parkinson’s Disease. Mol. Neurodegener. 2021, 16, 35. [Google Scholar] [CrossRef]
- Salem, M.; Ammitzboell, M.; Nys, K.; Seidelin, J.B.; Nielsen, O.H. ATG16L1: A Multifunctional Susceptibility Factor in Crohn Disease. Autophagy 2015, 11, 585–594. [Google Scholar] [CrossRef]
- Hansson, O.; Kumar, A.; Janelidze, S.; Stomrud, E.; Insel, P.S.; Blennow, K.; Zetterberg, H.; Fauman, E.; Hedman, Å.K.; Nagle, M.W.; et al. The Genetic Regulation of Protein Expression in Cerebrospinal Fluid. EMBO Mol. Med. 2023, 15, e16359. [Google Scholar] [CrossRef]
- Cali, E.; Dominik, N.; Manole, A.; Houlden, H. Riboflavin Transporter Deficiency. In GeneReviews®; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Novikova, G.; Kapoor, M.; Tcw, J.; Abud, E.M.; Efthymiou, A.G.; Chen, S.X.; Cheng, H.; Fullard, J.F.; Bendl, J.; Liu, Y.; et al. Integration of Alzheimer’s Disease Genetics and Myeloid Genomics Identifies Disease Risk Regulatory Elements and Genes. Nat. Commun. 2021, 12, 1610. [Google Scholar] [CrossRef]
- Allan, C.M.; Walker, D.; Segrest, J.P.; Taylor, J.M. Identification and Characterization of a New Human Gene (APOC4) in the Apolipoprotein E, C-I, and C-II Gene Locus. Genomics 1995, 28, 291–300. [Google Scholar] [CrossRef]
- Wang, P.; Luo, M.; Zhou, W.; Jin, X.; Xu, Z.; Yan, S.; Li, Y.; Xu, C.; Cheng, R.; Huang, Y.; et al. Global Characterization of Peripheral B Cells in Parkinson’s Disease by Single-Cell RNA and BCR Sequencing. Front. Immunol. 2022, 13, 814239. [Google Scholar] [CrossRef]
- Yu, L.P.; Sheehy, M.J. The Cryptic HLA-DQA2 (“DX Alpha”) Gene Is Expressed in Human B Cell Lines. J. Immunol. 1991, 147, 4393–4397. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-J.; Yang, Q.-H.; Yang, G.-K.; Yang, G.; Hou, Y.; Hou, L.-J.; Li, Z.-X.; Du, L.-J. MiR-125b and SATB1-AS1 Might Be Shear Stress-Mediated Therapeutic Targets. Gene 2023, 857, 147181. [Google Scholar] [CrossRef] [PubMed]
- Naguib, A.; Sandmann, T.; Yi, F.; Watts, R.J.; Lewcock, J.W.; Dowdle, W.E. SUPT4H1 Depletion Leads to a Global Reduction in RNA. Cell Rep. 2019, 26, 45–53.e4. [Google Scholar] [CrossRef]
- Greaves, C.V.; Rohrer, J.D. An Update on Genetic Frontotemporal Dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Ballasch, I.; García-García, E.; Vila, C.; Pérez-González, A.; Sancho-Balsells, A.; Fernández, J.; Soto, D.; Puigdellívol, M.; Gasull, X.; Alberch, J.; et al. Ikzf1 as a Novel Regulator of Microglial Homeostasis in Inflammation and Neurodegeneration. Brain Behav. Immun. 2023, 109, 144–161. [Google Scholar] [CrossRef]
- Schutte, B.; Henfling, M.; Ramaekers, F.C.S. DEDD Association with Cytokeratin Filaments Correlates with Sensitivity to Apoptosis. Apoptosis 2006, 11, 1561–1572. [Google Scholar] [CrossRef]
- Dahal, A.; Hinton, S.D. Antagonistic Roles for STYX Pseudophosphatases in Neurite Outgrowth. Biochem. Soc. Trans. 2017, 45, 381–387. [Google Scholar] [CrossRef]
- Burgaletto, C.; Munafò, A.; Di Benedetto, G.; De Francisci, C.; Caraci, F.; Di Mauro, R.; Bucolo, C.; Bernardini, R.; Cantarella, G. The Immune System on the TRAIL of Alzheimer’s Disease. J. Neuroinflamm. 2020, 17, 298. [Google Scholar] [CrossRef]
- Traylor, M.; Persyn, E.; Tomppo, L.; Klasson, S.; Abedi, V.; Bakker, M.K.; Torres, N.; Li, L.; Bell, S.; Rutten-Jacobs, L.; et al. Genetic Basis of Lacunar Stroke: A Pooled Analysis of Individual Patient Data and Genome-Wide Association Studies. Lancet Neurol. 2021, 20, 351–361. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, L.; Guo, L.; Pan, Y.-B.; Feng, D.-F. Maf1 Regulates Dendritic Morphogenesis and Influences Learning and Memory. Cell Death Dis. 2020, 11, 606. [Google Scholar] [CrossRef]
- Kumar, A.A.; Yeo, N.; Whittaker, M.; Attra, P.; Barrick, T.R.; Bridges, L.R.; Dickson, D.W.; Esiri, M.M.; Farris, C.W.; Graham, D.; et al. Vascular Collagen Type-IV in Hypertension and Cerebral Small Vessel Disease. Stroke 2022, 53, 3696–3705. [Google Scholar] [CrossRef] [PubMed]
- Miners, S.; van Helmond, Z.; Barker, R.; Passmore, P.A.; Johnston, J.A.; Todd, S.; McGuinness, B.M.; Panza, F.; Seripa, D.; Solfrizzi, V.; et al. Genetic Variation in MME in Relation to Neprilysin Protein and Enzyme Activity, Aβ Levels, and Alzheimer’s Disease Risk. Int. J. Mol. Epidemiol. Genet. 2012, 3, 30–38. [Google Scholar]
- Chen, G.; Li, L.; Tao, H. Bioinformatics Identification of Ferroptosis-Related Biomarkers and Therapeutic Compounds in Ischemic Stroke. Front. Neurol. 2021, 12, 745240. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Fu, Y.; Baird, P.N.; Guymer, R.H.; Das, T.; Iwata, T. Exploring the Contribution of ARMS2 and HTRA1 Genetic Risk Factors in Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2022, 97, 101159. [Google Scholar] [CrossRef] [PubMed]
- Thee, E.F.; Colijn, J.M.; Cougnard-Grégoire, A.; Meester-Smoor, M.A.; Verzijden, T.; Hoyng, C.B.; Fauser, S.; Hense, H.-W.; Silva, R.; Creuzot-Garcher, C.; et al. The Phenotypic Course of Age-Related Macular Degeneration for ARMS2/HTRA1: The EYE-RISK Consortium. Ophthalmology 2022, 129, 752–764. [Google Scholar] [CrossRef]
- Gatta, L.B.; Vitali, M.; Zanola, A.; Venturelli, E.; Fenoglio, C.; Galimberti, D.; Scarpini, E.; Finazzi, D. Polymorphisms in the LOC387715/ARMS2 Putative Gene and the Risk for Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2008, 26, 169–174. [Google Scholar] [CrossRef]
- Wang, P.; Qin, W.; Wang, P.; Huang, Y.; Liu, Y.; Zhang, R.; Li, S.; Yang, Q.; Wang, X.; Chen, F.; et al. Genomic Variants in NEURL, GJA1 and CUX2 Significantly Increase Genetic Susceptibility to Atrial Fibrillation. Sci. Rep. 2018, 8, 3297. [Google Scholar] [CrossRef]
- Li, R.-G.; Xu, Y.-J.; Ye, W.G.; Li, Y.-J.; Chen, H.; Qiu, X.-B.; Yang, Y.-Q.; Bai, D. Connexin45 (GJC1) Loss-of-Function Mutation Contributes to Familial Atrial Fibrillation and Conduction Disease. Heart Rhythm. 2021, 18, 684–693. [Google Scholar] [CrossRef]
- Zhu, C.; Xiao, F.; Lin, W. EFTUD2 on Innate Immunity. Oncotarget 2015, 6, 32313–32314. [Google Scholar] [CrossRef]
- Abo Elwafa, R.; Gamaleldin, M.; Ghallab, O. The Clinical and Prognostic Significance of FIS1, SPI1, PDCD7 and Ang2 Expression Levels in Acute Myeloid Leukemia. Cancer Genet. 2019, 233–234, 84–95. [Google Scholar] [CrossRef]
- Vadhvani, M.; Schwedhelm-Domeyer, N.; Mukherjee, C.; Stegmüller, J. The Centrosomal E3 Ubiquitin Ligase FBXO31-SCF Regulates Neuronal Morphogenesis and Migration. PLoS ONE 2013, 8, e57530. [Google Scholar] [CrossRef] [PubMed]
- Serpeloni, F.; Nätt, D.; de Assis, S.G.; Wieling, E.; Elbert, T. Experiencing Community and Domestic Violence Is Associated with Epigenetic Changes in DNA Methylation of BDNF and CLPX in Adolescents. Psychophysiology 2020, 57, e13382. [Google Scholar] [CrossRef] [PubMed]
- ZSCAN29 Zinc Finger and SCAN Domain Containing 29 [Homo Sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/146050#summary (accessed on 1 August 2023).
- Baker, T.A.; Sauer, R.T. ClpXP, an ATP-Powered Unfolding and Protein-Degradation Machine. Biochim. Et Biophys. Acta (BBA) Mol. Cell Res. 2012, 1823, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Perdue, M.V.; Khalaf, S.; Landi, N.; Hoeft, F.; Pugh, K.; Grigorenko, E.L. Neuroimaging Genetic Associations between SEMA6D, Brain Structure, and Reading Skills. J. Clin. Exp. Neuropsychol. 2021, 43, 276–289. [Google Scholar] [CrossRef]
- Perdue, M.V.; Mascheretti, S.; Kornilov, S.A.; Jasińska, K.K.; Ryherd, K.; Einar Mencl, W.; Frost, S.J.; Grigorenko, E.L.; Pugh, K.R.; Landi, N. Common Variation within the SETBP1 Gene Is Associated with Reading-Related Skills and Patterns of Functional Neural Activation. Neuropsychologia 2019, 130, 44–51. [Google Scholar] [CrossRef]
- Ziegler, G.C.; Ehlis, A.-C.; Weber, H.; Vitale, M.R.; Zöller, J.E.M.; Ku, H.-P.; Schiele, M.A.; Kürbitz, L.I.; Romanos, M.; Pauli, P.; et al. A Common CDH13 Variant Is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD. Genes 2021, 12, 1356. [Google Scholar] [CrossRef]
- Trubetskoy, V.; Pardiñas, A.F.; Qi, T.; Panagiotaropoulou, G.; Awasthi, S.; Bigdeli, T.B.; Bryois, J.; Chen, C.-Y.; Dennison, C.A.; Hall, L.S.; et al. Mapping Genomic Loci Implicates Genes and Synaptic Biology in Schizophrenia. Nature 2022, 604, 502–508. [Google Scholar] [CrossRef]
- Beeri, M.S.; Lin, H.-M.; Sano, M.; Ravona-Springer, R.; Liu, X.; Bendlin, B.B.; Gleason, C.E.; Guerrero-Berroa, E.; Soleimani, L.; Launer, L.J.; et al. Association of the Haptoglobin Gene Polymorphism with Cognitive Function and Decline in Elderly African American Adults with Type 2 Diabetes: Findings From the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) Study. JAMA Netw. Open 2018, 1, e184458. [Google Scholar] [CrossRef]
- Kikuchi, M.; Yamada, K.; Toyota, T.; Yoshikawa, T. C18orf1 Located on Chromosome 18p11.2 May Confer Susceptibility to Schizophrenia. J. Med. Dent. Sci. 2003, 50, 225–229. [Google Scholar]
- Zhang, Z.; Shang, J.; Dai, Z.; Yao, Y.; Shi, Y.; Zhong, D.; Liang, Y.; Lai, C.; Yang, Q.; Feng, T.; et al. Transmembrane Protein 170B Is a Prognostic Biomarker and Associated With Immune Infiltrates in Pancreatic Adenocarcinoma. Front. Genet. 2022, 13, 848391. [Google Scholar] [CrossRef]
- Ge, Y.; Grossman, R.I.; Babb, J.S.; Rabin, M.L.; Mannon, L.J.; Kolson, D.L. Age-Related Total Gray Matter and White Matter Changes in Normal Adult Brain. Part I: Volumetric MR Imaging Analysis. Am. J. Neuroradiol. 2002, 23, 1327–1333. [Google Scholar] [PubMed]
- Davies, G.; Armstrong, N.; Bis, J.C.; Bressler, J.; Chouraki, V.; Giddaluru, S.; Hofer, E.; Ibrahim-Verbaas, C.A.; Kirin, M.; Lahti, J.; et al. Genetic Contributions to Variation in General Cognitive Function: A Meta-Analysis of Genome-Wide Association Studies in the CHARGE Consortium (N = 53,949). Mol. Psychiatry 2015, 20, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, L.; Mahoney, E.R.; Mukherjee, S.; Lee, M.L.; Bush, W.S.; Engelman, C.D.; Lu, Q.; Fardo, D.W.; Trittschuh, E.H.; Mez, J.; et al. Genetic Variants and Functional Pathways Associated with Resilience to Alzheimer’s Disease. Brain 2020, 143, 2561–2575. [Google Scholar] [CrossRef] [PubMed]
- Sędzikowska, A.; Szablewski, L. Insulin and Insulin Resistance in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 9987. [Google Scholar] [CrossRef] [PubMed]
- Berlanga-Acosta, J.; Guillén-Nieto, G.; Rodríguez-Rodríguez, N.; Bringas-Vega, M.L.; García-Del-Barco-Herrera, D.; Berlanga-Saez, J.O.; García-Ojalvo, A.; Valdés-Sosa, M.J.; Valdés-Sosa, P.A. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front. Endocrinol. 2020, 11, 560375. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, S.-C.; Lee, Y.-S.; Ho, W.-M.; Huang, Y.-H.; Wu, Y.-Y.; Chu, Y.-C.; Wu, K.-H.; Wei, L.-S.; Wang, H.-L.; et al. TOMM40 Genetic Variants Cause Neuroinflammation in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 4085. [Google Scholar] [CrossRef]
- Kellar, D.; Craft, S. Brain Insulin Resistance in Alzheimer’s Disease and Related Disorders: Mechanisms and Therapeutic Approaches. Lancet Neurol. 2020, 19, 758–766. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Fan, S.; An, J.; Luo, X.; Liang, M.; Zhu, F.; Huang, K. WW Domain-Binding Protein 2 Overexpression Prevents Diet-Induced Liver Steatosis and Insulin Resistance through AMPKβ1. Cell Death Dis. 2021, 12, 228. [Google Scholar] [CrossRef]
- Liu, Y.; He, E.; Zhang, Y.; Liu, Y.; Wang, Y.; Chen, S.; Wu, X.; Zeng, Y.; Leng, P. WW Domain Binding Protein 2 (WBP2) as an Oncogene in Breast Cancer: Mechanisms and Therapeutic Prospects—A Narrative Review. Gland Surg. 2022, 11, 1984–2002. [Google Scholar] [CrossRef]
- Kim, D.H.; Perdomo, G.; Zhang, T.; Slusher, S.; Lee, S.; Phillips, B.E.; Fan, Y.; Giannoukakis, N.; Gramignoli, R.; Strom, S.; et al. FoxO6 Integrates Insulin Signaling With Gluconeogenesis in the Liver. Diabetes 2011, 60, 2763–2774. [Google Scholar] [CrossRef]
- Lee, S.; Dong, H.H. FoxO Integration of Insulin Signaling with Glucose and Lipid Metabolism. J. Endocrinol. 2017, 233, R67–R79. [Google Scholar] [CrossRef] [PubMed]
- PubChem INS—Insulin (Human). Available online: https://pubchem.ncbi.nlm.nih.gov/gene/INS/human (accessed on 19 February 2025).
- Fridman, A.L.; Tainsky, M.A. Critical Pathways in Cellular Senescence and Immortalization Revealed by Gene Expression Profiling. Oncogene 2008, 27, 5975–5987. [Google Scholar] [CrossRef]
- Wainberg, M.; Sinnott-Armstrong, N.; Mancuso, N.; Barbeira, A.N.; Knowles, D.A.; Golan, D.; Ermel, R.; Ruusalepp, A.; Quertermous, T.; Hao, K.; et al. Opportunities and Challenges for Transcriptome-Wide Association Studies. Nat. Genet. 2019, 51, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Pan, W. A Powerful Fine-Mapping Method for Transcriptome-Wide Association Studies. Hum. Genet. 2020, 139, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.F.V.; Vogt, N.M.; Jonaitis, E.M.; Buckingham, W.R.; Koscik, R.L.; Zuelsdorff, M.; Clark, L.R.; Gleason, C.E.; Yu, M.; Okonkwo, O.; et al. Association of Neighborhood Context, Cognitive Decline, and Cortical Change in an Unimpaired Cohort. Neurology 2021, 96, e2500–e2512. [Google Scholar] [CrossRef]
- Pohl, D.J.; Seblova, D.; Avila, J.F.; Dorsman, K.A.; Kulick, E.R.; Casey, J.A.; Manly, J. Relationship between Residential Segregation, Later-Life Cognition, and Incident Dementia across Race/Ethnicity. Int. J. Environ. Res. Public Health 2021, 18, 11233. [Google Scholar] [CrossRef]
- Jang, J.B.; Hicken, M.T.; Mullins, M.; Esposito, M.; Sol, K.; Manly, J.J.; Judd, S.; Wadley, V.; Clarke, P.J. Racial Segregation and Cognitive Function Among Older Adults in the United States: Findings From the Reasons for Geographic and Racial Differences in Stroke Study. J. Gerontol. B Psychol. Sci. Soc. Sci. 2022, 77, 1132–1143. [Google Scholar] [CrossRef]
- Forrester, S.N.; Gallo, J.J.; Whitfield, K.E.; Thorpe, R.J. A Framework of Minority Stress: From Physiological Manifestations to Cognitive Outcomes. Gerontologist 2019, 59, 1017–1023. [Google Scholar] [CrossRef]
- Schulz, A.; Northridge, M.E. Social Determinants of Health: Implications for Environmental Health Promotion. Health Educ. Behav. 2004, 31, 455–471. [Google Scholar] [CrossRef]
- Auchincloss, A.H.; Moore, K.A.; Moore, L.V.; Roux, A.V.D. Improving Retrospective Characterization of the Food Environment for a Large Region in the United States during a Historic Time Period. Health Place 2012, 18, 1341–1347. [Google Scholar] [CrossRef]
- Powell, L.M.; Chaloupka, F.J.; Slater, S.J.; Johnston, L.D.; O’Malley, P.M. The Availability of Local-Area Commercial Physical Activity-Related Facilities and Physical Activity among Adolescents. Am. J. Prev. Med. 2007, 33, S292–S300. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Larsen, P.; Nelson, M.C.; Page, P.; Popkin, B.M. Inequality in the Built Environment Underlies Key Health Disparities in Physical Activity and Obesity. Pediatrics 2006, 117, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Finlay, J.; Esposito, M.; Li, M.; Kobayashi, L.C.; Khan, A.M.; Gomez-Lopez, I.; Melendez, R.; Colabianchi, N.; Judd, S.; Clarke, P.J. Can Neighborhood Social Infrastructure Modify Cognitive Function? A Mixed-Methods Study of Urban-Dwelling Aging Americans. J. Aging Health 2021, 33, 772–785. [Google Scholar] [CrossRef] [PubMed]
- Besser, L.M.; McDonald, N.C.; Song, Y.; Kukull, W.A.; Rodriguez, D.A. Neighborhood Environment and Cognition in Older Adults: A Systematic Review. Am. J. Prev. Med. 2017, 53, 241–251. [Google Scholar] [CrossRef]
- Rosso, A.L.; Flatt, J.D.; Carlson, M.C.; Lovasi, G.S.; Rosano, C.; Brown, A.F.; Matthews, K.A.; Gianaros, P.J. Neighborhood Socioeconomic Status and Cognitive Function in Late Life. Am. J. Epidemiol. 2016, 183, 1088–1097. [Google Scholar] [CrossRef]
- Lang, I.A.; Llewellyn, D.J.; Langa, K.M.; Wallace, R.B.; Huppert, F.A.; Melzer, D. Neighborhood Deprivation, Individual Socioeconomic Status, and Cognitive Function in Older People: Analyses from the English Longitudinal Study of Ageing. J. Am. Geriatr. Soc. 2008, 56, 191–198. [Google Scholar] [CrossRef]
- Shih, R.A.; Ghosh-Dastidar, B.; Margolis, K.L.; Slaughter, M.E.; Jewell, A.; Bird, C.E.; Eibner, C.; Denburg, N.L.; Ockene, J.; Messina, C.R. Neighborhood Socioeconomic Status and Cognitive Function in Women. Am. J. Public Health 2011, 101, 1721–1728. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Prina, A.M.; Jones, A.; Matthews, F.E.; Brayne, C. The Built Environment and Cognitive Disorders: Results From the Cognitive Function and Ageing Study II. Am. J. Prev. Med. 2017, 53, 25–32. [Google Scholar] [CrossRef]
- Li, Q.S.; Sun, Y.; Wang, T. Epigenome-Wide Association Study of Alzheimer’s Disease Replicates 22 Differentially Methylated Positions and 30 Differentially Methylated Regions. Clin. Epigenet. 2020, 12, 149. [Google Scholar] [CrossRef]
- Yu, L.; Chibnik, L.B.; Srivastava, G.P.; Pochet, N.; Yang, J.; Xu, J.; Kozubek, J.; Obholzer, N.; Leurgans, S.E.; Schneider, J.A.; et al. Association of Brain DNA Methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 With Pathological Diagnosis of Alzheimer Disease. JAMA Neurol. 2015, 72, 15–24. [Google Scholar] [CrossRef]
- De Jager, P.L.; Srivastava, G.; Lunnon, K.; Burgess, J.; Schalkwyk, L.C.; Yu, L.; Eaton, M.L.; Keenan, B.T.; Ernst, J.; McCabe, C.; et al. Alzheimer’s Disease: Early Alterations in Brain DNA Methylation at ANK1, BIN1, RHBDF2 and Other Loci. Nat. Neurosci. 2014, 17, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Lunnon, K.; Smith, R.; Hannon, E.; De Jager, P.L.; Srivastava, G.; Volta, M.; Troakes, C.; Al-Sarraj, S.; Burrage, J.; Macdonald, R.; et al. Methylomic Profiling Implicates Cortical Deregulation of ANK1 in Alzheimer’s Disease. Nat. Neurosci. 2014, 17, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Yoshino, Y.; Mori, T.; Yoshida, T.; Ozaki, Y.; Sao, T.; Mori, Y.; Ochi, S.; Iga, J.; Ueno, S. Gene Expression and Methylation Analysis of ABCA7 in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Diez Roux, A.V.; Mair, C. Neighborhoods and Health. Ann. N. Y. Acad. Sci. 2010, 1186, 125–145. [Google Scholar] [CrossRef]
- Yen, I.H.; Michael, Y.L.; Perdue, L. Neighborhood Environment in Studies of Health of Older Adults: A Systematic Review. Am. J. Prev. Med. 2009, 37, 455–463. [Google Scholar] [CrossRef]
- Lisabeth, L.; Diez Roux, A.; Escobar, J.; Smith, M.; Morgenstern, L. Neighborhood Environment and Risk of Ischemic Stroke: The Brain Attack Surveillance in Corpus Christi (BASIC) Project. Am. J. Epidemiol. 2007, 165, 279–287. [Google Scholar] [CrossRef]
- Brown, A.F.; Liang, L.-J.; Vassar, S.D.; Stein-Merkin, S.; Longstreth, W.T., Jr.; Ovbiagele, B.; Yan, T.; Escarce, J.J. Neighborhood Disadvantage and Ischemic Stroke: The Cardiovascular Health Study (CHS). Stroke 2011, 42, 3363–3368. [Google Scholar] [CrossRef]
- Chaar, D.L.; Tu, L.; Moore, K.; Du, J.; Opsasnick, L.A.; Ratliff, S.M.; Mosley, T.H.; Kardia, S.L.R.; Zhao, W.; Zhou, X.; et al. Neighborhood Environment Associations with Cognitive Function and Structural Brain Measures in Older African Americans. BMC Med. 2025, 23, 15. [Google Scholar] [CrossRef]
- Chaar, D.L.; Nguyen, K.; Wang, Y.-Z.; Ratliff, S.M.; Mosley, T.H.; Kardia, S.L.R.; Smith, J.A.; Zhao, W. SNP-by-CpG Site Interactions in ABCA7 Are Associated with Cognition in Older African Americans. Genes 2022, 13, 2150. [Google Scholar] [CrossRef]
- Besser, L.; Galvin, J.E.; Rodriguez, D.; Seeman, T.; Kukull, W.; Rapp, S.R.; Smith, J. Associations between Neighborhood Built Environment and Cognition Vary by Apolipoprotein E Genotype: Multi-Ethnic Study of Atherosclerosis. Health Place 2019, 60, 102188. [Google Scholar] [CrossRef]
- Smith, J.A.; Kho, M.; Zhao, W.; Yu, M.; Mitchell, C.; Faul, J.D. Genetic Effects and Gene-by-Education Interactions on Episodic Memory Performance and Decline in an Aging Population. Soc. Sci. Med. 2021, 271, 112039. [Google Scholar] [CrossRef]
- Husain, M.A.; Laurent, B.; Plourde, M. APOE and Alzheimer’s Disease: From Lipid Transport to Physiopathology and Therapeutics. Front. Neurosci. 2021, 15, 630502. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.-C.; Bu, G. Apolipoprotein E and Alzheimer Disease: Pathobiology and Targeting Strategies. Nat. Rev. Neurol. 2019, 15, 501–518. [Google Scholar] [CrossRef] [PubMed]
- McQuade, A.; Kang, Y.J.; Hasselmann, J.; Jairaman, A.; Sotelo, A.; Coburn, M.; Shabestari, S.K.; Chadarevian, J.P.; Fote, G.; Tu, C.H.; et al. Gene Expression and Functional Deficits Underlie TREM2-Knockout Microglia Responses in Human Models of Alzheimer’s Disease. Nat. Commun. 2020, 11, 5370. [Google Scholar] [CrossRef] [PubMed]
- Mirescu, C.; Dejanovic, B.; Larson, K.C.; Kiragasi, B.; Gergits, F.W.; Figley, M.D.; Renoux, A.J.; Huang, L.; Pandya, B.A.; Houze, J.B.; et al. Pharmacological and Functional Characterization of the First Small Molecule TREM2 Agonist, VG-3927, for the Treatment of Alzheimer’s Disease. Alzheimer’s Dement. 2025, 20, e089318. [Google Scholar] [CrossRef]
- Bourquard, T.; Lee, K.; Al-Ramahi, I.; Pham, M.; Shapiro, D.; Lagisetty, Y.; Soleimani, S.; Mota, S.; Wilhelm, K.; Samieinasab, M.; et al. Functional Variants Identify Sex-Specific Genes and Pathways in Alzheimer’s Disease. Nat. Commun. 2023, 14, 2765. [Google Scholar] [CrossRef]
- Andrews, S.J.; Renton, A.E.; Fulton-Howard, B.; Podlesny-Drabiniok, A.; Marcora, E.; Goate, A.M. The Complex Genetic Architecture of Alzheimer’s Disease: Novel Insights and Future Directions. eBioMedicine 2023, 90, 104511. [Google Scholar] [CrossRef]
- Yang, X.; Wen, J.; Yang, H.; Jones, I.R.; Zhu, X.; Liu, W.; Li, B.; Clelland, C.D.; Luo, W.; Wong, M.Y.; et al. Functional Characterization of Alzheimer’s Disease Genetic Variants in Microglia. Nat. Genet. 2023, 55, 1735–1744. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, C.; Guo, W.; Liu, K.; Zhao, Q.; Lu, P.; Yu, F.; Xu, X. EFEMP1 Overexpression Contributes to Neovascularization in Age-Related Macular Degeneration. Front. Pharmacol. 2021, 11, 547436. [Google Scholar] [CrossRef]
- Li, B.; Ritchie, M.D. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries. Front. Genet. 2021, 12, 713230. [Google Scholar] [CrossRef]
- Gusev, A.; Ko, A.; Shi, H.; Bhatia, G.; Chung, W.; Penninx, B.W.J.H.; Jansen, R.; de Geus, E.J.C.; Boomsma, D.I.; Wright, F.A.; et al. Integrative Approaches for Large-Scale Transcriptome-Wide Association Studies. Nat. Genet. 2016, 48, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhou, X. Transcriptome-Wide Association Studies: A View from Mendelian Randomization. Quant. Biol. 2021, 9, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zeng, P.; Xue, F.; Yuan, Z.; Zhou, X. Multi-Trait Transcriptome-Wide Association Studies with Probabilistic Mendelian Randomization. Am. J. Hum. Genet. 2021, 108, 240–256. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhu, H.; Zeng, P.; Yang, S.; Sun, S.; Yang, C.; Liu, J.; Zhou, X. Testing and Controlling for Horizontal Pleiotropy with Probabilistic Mendelian Randomization in Transcriptome-Wide Association Studies. Nat. Commun. 2020, 11, 3861. [Google Scholar] [CrossRef]
- Daniels, P.R.; Kardia, S.L.R.; Hanis, C.L.; Brown, C.A.; Hutchinson, R.; Boerwinkle, E.; Turner, S.T.; Genetic Epidemiology Network of Arteriopathy study. Familial Aggregation of Hypertension Treatment and Control in the Genetic Epidemiology Network of Arteriopathy (GENOA) Study. Am. J. Med. 2004, 116, 676–681. [Google Scholar] [CrossRef]
- Delaneau, O.; Zagury, J.-F.; Marchini, J. Improved Whole-Chromosome Phasing for Disease and Population Genetic Studies. Nat. Methods 2013, 10, 5–6. [Google Scholar] [CrossRef]
- Howie, B.N.; Donnelly, P.; Marchini, J. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef]
- Gogarten, S.M.; Sofer, T.; Chen, H.; Yu, C.; Brody, J.A.; Thornton, T.A.; Rice, K.M.; Conomos, M.P. Genetic Association Testing Using the GENESIS R/Bioconductor Package. Bioinformatics 2019, 35, 5346–5348. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 14 June 2022).
- Lockstone, H.E. Exon Array Data Analysis Using Affymetrix Power Tools and R Statistical Software. Brief. Bioinform. 2011, 12, 634–644. [Google Scholar] [CrossRef]
- Irizarry, R.A.; Bolstad, B.M.; Collin, F.; Cope, L.M.; Hobbs, B.; Speed, T.P. Summaries of Affymetrix GeneChip Probe Level Data. Nucleic Acids Res. 2003, 31, e15. [Google Scholar] [CrossRef]
- Dai, M.; Wang, P.; Boyd, A.D.; Kostov, G.; Athey, B.; Jones, E.G.; Bunney, W.E.; Myers, R.M.; Speed, T.P.; Akil, H.; et al. Evolving Gene/Transcript Definitions Significantly Alter the Interpretation of GeneChip Data. Nucleic Acids Res. 2005, 33, e175. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Battle, A. False Positives in Trans-eQTL and Co-Expression Analyses Arising from RNA-Sequencing Alignment Errors. F1000Research 2018, 7, 1860. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Barbeira, A.N.; Bonazzola, R.; Gamazon, E.R.; Liang, Y.; Park, Y.; Kim-Hellmuth, S.; Wang, G.; Jiang, Z.; Zhou, D.; Hormozdiari, F.; et al. Exploiting the GTEx Resources to Decipher the Mechanisms at GWAS Loci. Genome Biol. 2021, 22, 49. [Google Scholar] [CrossRef] [PubMed]
- The GTEx Consortium. The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- Turner, S.D. Qqman: An R Package for Visualizing GWAS Results Using Q-Q and Manhattan Plots 2014, 005165. Available online: https://www.biorxiv.org/content/10.1101/005165.abstract (accessed on 1 August 2023).
- Berisa, T.; Pickrell, J.K. Approximately Independent Linkage Disequilibrium Blocks in Human Populations. Bioinformatics 2016, 32, 283. [Google Scholar] [CrossRef]
- Chen, H.; Boutros, P.C. VennDiagram: A Package for the Generation of Highly-Customizable Venn and Euler Diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef]
- de Leeuw, C.A.; Stringer, S.; Dekkers, I.A.; Heskes, T.; Posthuma, D. Conditional and Interaction Gene-Set Analysis Reveals Novel Functional Pathways for Blood Pressure. Nat. Commun. 2018, 9, 3768. [Google Scholar] [CrossRef]
- Mancarcı, B.O. Gene Synonym 2022. Available online: https://github.com/oganm/geneSynonym (accessed on 1 August 2023).
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
eQTL mapping study: Genetic Epidemiology Network of Arteriopathy (GENOA) | ||
Mean (SD) or N (%) or N | ||
N | 1833 | |
Age (years) | 56.85 (10.0) | |
Female | 1202 (65.6%) | |
Race/Ethnicity | ||
African Americans | 1032 (56.3%) | |
European Americans | 801 (43.7%) | |
General cognitive function GWAS: CHARGE, COGENT, UKB a | ||
Mean (SD) or N (%) or N | ||
N | 300,486 | |
Age (years) | 56.91 (7.8) | |
Female | 156,854 (52.2%) | |
Excluded for dementia and/or stroke diagnosis (N) | 4919 | |
White matter hyperintensity (WMH) GWAS: CHARGE and UKB a | ||
Mean (SD) or N (%) or N | ||
N | 48,454 | |
Age (years) | 64.17 | |
Female | 29,215 (57.6%) | |
WMH volume (cm3) | 7.06 (8.8) | |
Excluded for stroke or pathologies (N) | 1572 | |
EA Alzheimer’s Disease (AD) GWAS: EADB, GR@ACE, EADI, GERAD/PERADES, DemGene, Bonn, the Rotterdam study, the CCHS study, NxC, and the UKB a | ||
Mean (SD) or N (%) or N | ||
Discovery sample | ||
AD cases (N) | 39,106 | |
AD proxy cases (N) | 46,828 | |
Controls (N) | 401,577 | |
Age (years) | ||
AD cases or proxy cases | 73.55 (8.1) | |
Controls | 67.86 (8.6) | |
Female | ||
AD cases or proxy cases (N) | 54,052 (62.9%) | |
Controls (N) | 48,209 (56.1%) | |
AA Alzheimer’s Disease (AD) GWAS: AD Genetics Consortium b | ||
Mean (SD) or N (%) or N | ||
N | 7970 | |
AD cases | 2748 (34.5%) | |
Controls | 5222 (65.5%) | |
Age (years) | 74.2 (13.6) | |
Female | ||
AD cases | 1944 (69.8%) | |
Controls | 3743 (71.7%) |
Gene | ENSG | Chr | Start | End | Gene Name | Accession Number (HGNC ID) |
---|---|---|---|---|---|---|
CALCRL | ENSG00000064989 | 2 | 188206691 | 188313187 | Calcitonin receptor like receptor | HGNC:16709 |
DCAKD | ENSG00000172992 | 17 | 43100706 | 43138499 | Dephospho-CoA kinase domain containing | HGNC:26238 |
EFEMP1 | ENSG00000115380 | 2 | 56093102 | 56151274 | EGF containing fibulin extracellular matrix protein 1 | HGNC:3218 |
GJC1 | ENSG00000182963 | 17 | 42875816 | 42908184 | Gap junction protein gamma 1 | HGNC:4280 |
ICA1L | ENSG00000163596 | 2 | 203637873 | 203736489 | Islet cell autoantigen 1 like | HGNC:14442 |
KLHL24 | ENSG00000114796 | 3 | 183353398 | 183402307 | Kelch like family member 24 | HGNC:25947 |
NBEAL1 | ENSG00000144426 | 2 | 203879331 | 204091101 | Neurobeachin like 1 | HGNC:20681 |
NEURL | ENSG00000107954 | 10 | 105253462 | 105352303 | Neuralized E3 ubiquitin protein ligase 1 | HGNC:7761 |
NMT1 | ENSG00000136448 | 17 | 43035360 | 43186384 | N-myristoyltransferase 1 | HGNC:7857 |
WBP2 | ENSG00000132471 | 17 | 73841780 | 73852588 | WW domain binding protein 2 | HGNC:12738 |
Gene | ENSG | Chr | Start | End | Gene Name | Accession Number (HGNC ID) |
---|---|---|---|---|---|---|
BLNK | ENSG00000095585 | 10 | 97948927 | 98031344 | B cell linker | HGNC:14211 |
CPSF3 | ENSG00000119203 | 2 | 9563780 | 9613230 | Cleavage and polyadenylation specific factor 3 | HGNC:2326 |
DDX54 | ENSG00000123064 | 12 | 113594978 | 113623284 | DEAD-box helicase 54 | HGNC:20084 |
GRN | ENSG00000030582 | 17 | 42422614 | 42430474 | Granulin precursor | HGNC:4601 |
ICA1L | ENSG00000163596 | 2 | 203637873 | 203736489 | Islet cell autoantigen 1 like | HGNC:14442 |
KLF16 | ENSG00000129911 | 19 | 1852398 | 1863578 | KLF transcription factor 16 | HGNC:16857 |
LACTB | ENSG00000103642 | 15 | 63414032 | 63434260 | Lactamase beta | HGNC:16468 |
PPP4C | ENSG00000149923 | 16 | 30087299 | 30096697 | Protein phosphatase 4 catalytic subunit | HGNC:9319 |
SHARPIN | ENSG00000179526 | 8 | 145153536 | 145163027 | SHANK associated RH domain interactor | HGNC:25321 |
TBX6 | ENSG00000149922 | 16 | 30097114 | 30103245 | T-box transcription factor 6 | HGNC:11605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaar, D.L.; Li, Z.; Shang, L.; Ratliff, S.M.; Mosley, T.H.; Kardia, S.L.R.; Zhao, W.; Zhou, X.; Smith, J.A. Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer’s Disease. Int. J. Mol. Sci. 2025, 26, 2443. https://doi.org/10.3390/ijms26062443
Chaar DL, Li Z, Shang L, Ratliff SM, Mosley TH, Kardia SLR, Zhao W, Zhou X, Smith JA. Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer’s Disease. International Journal of Molecular Sciences. 2025; 26(6):2443. https://doi.org/10.3390/ijms26062443
Chicago/Turabian StyleChaar, Dima L., Zheng Li, Lulu Shang, Scott M. Ratliff, Thomas H. Mosley, Sharon L. R. Kardia, Wei Zhao, Xiang Zhou, and Jennifer A. Smith. 2025. "Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer’s Disease" International Journal of Molecular Sciences 26, no. 6: 2443. https://doi.org/10.3390/ijms26062443
APA StyleChaar, D. L., Li, Z., Shang, L., Ratliff, S. M., Mosley, T. H., Kardia, S. L. R., Zhao, W., Zhou, X., & Smith, J. A. (2025). Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer’s Disease. International Journal of Molecular Sciences, 26(6), 2443. https://doi.org/10.3390/ijms26062443