Integrating PLOR and SPAAC Click Chemistry for Efficient Site-Specific Fluorescent Labeling of RNA
Abstract
:1. Introduction
2. Results
2.1. Incorporation of Cy3 Fluorophore into Specific Sites of riboSAM Using ePLOR
2.2. Incorporation of Cy5 Fluorophore into Specific Sites of riboA Using ePLOR
2.3. Comparison of the Efficiency of PLOR and ePLOR for Fluorescent RNA Synthesis
3. Discussion
4. Materials and Methods
4.1. Preparation of DNA Templates for PLOR Reactions
4.2. Preparation of Site-Specific Labeled riboSAM and riboA
4.3. Post-Transcriptional SPAAC Click Chemistry Reactions
4.4. RP-HPLC Detection
4.5. Comparison of the Efficiency of PLOR and ePLOR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PLOR | Position-selective labeling of RNA |
T7 RNAP | T7 RNA polymerase |
SPAAC | Strain-promoted azido-alkyne cycloaddition |
ePLOR | Efficient PLOR |
References
- Reining, A.; Nozinovic, S.; Schlepckow, K.; Buhr, F.; Fürtig, B.; Schwalbe, H. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature 2013, 499, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Choi, S.R.; An, S.Y.; Bang, K.M.; Song, H.K.; Suh, J.Y.; Kim, N.K. Deciphering ligand and metal ion dependent intricate folding landscape of Vc2 c-di-GMP riboswitch aptamer. Nucleic Acids Res. 2025, 53, gkae1296. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, V.; Qureshi, N.S.; Warhaut, S.; Bains, J.K.; Dietz, M.S.; Heilemann, M.; Schwalbe, H.; Fürtig, B. Switching at the ribosome: Riboswitches need rProteins as modulators to regulate translation. Nat. Commun. 2021, 12, 4723. [Google Scholar] [CrossRef]
- Landgraf, T.; Völklein, A.E.; Fürtig, B.; Schwalbe, H. The cotranscriptional folding landscape for two cyclic di-nucleotide-sensing riboswitches with highly homologous aptamer domains acting either as ON- or OFF-switches. Nucleic Acids Res. 2022, 50, 6639–6655. [Google Scholar] [CrossRef]
- Yadav, R.; Widom, J.R.; Chauvier, A.; Walter, N.G. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat. Commun. 2022, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Xu, Z.; Zhang, Y.; Zuo, X.; Chen, C.; Fang, X. Structural and dynamic mechanisms for coupled folding and tRNA recognition of a translational T-box riboswitch. Nat. Commun. 2023, 14, 7394. [Google Scholar] [CrossRef]
- Liang, X.; Chen, D.; Su, A.; Liu, Y. Divergent molecular assembly and catalytic mechanisms between bacterial and archaeal RNase P in pre-tRNA cleavage. Proc. Natl. Acad. Sci. USA 2024, 121, e2407579121. [Google Scholar] [CrossRef]
- Manz, C.; Kobitski, A.Y.; Samanta, A.; Keller, B.G.; Jäschke, A.; Nienhaus, G.U. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. Nat. Chem. Biol. 2017, 13, 1172–1178. [Google Scholar] [CrossRef]
- Liu, Y.; Holmstrom, E.; Zhang, J.; Yu, P.; Wang, J.; Dyba, M.A.; Chen, D.; Ying, J.; Lockett, S.; Nesbitt, D.J.; et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 2015, 522, 368–372. [Google Scholar] [CrossRef]
- Liu, Y.; Holmstrom, E.; Yu, P.; Tan, K.; Zuo, X.; Nesbitt, D.J.; Sousa, R.; Stagno, J.R.; Wang, Y. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat. Protoc. 2018, 13, 987–1005. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Liu, Y. Optimization and characterization of position-selective labelling of RNA (PLOR) for diverse RNA and DNA sequences. RNA Biol. 2020, 17, 1009–1017. [Google Scholar] [CrossRef]
- Xue, Y.; Li, J.; Chen, D.; Zhao, X.; Hong, L.; Liu, Y. Observation of structural switch in nascent SAM-VI riboswitch during transcription at single-nucleotide and single-molecule resolution. Nat. Commun. 2023, 14, 2320. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Liu, Y. Incorporation of a FRET Pair into a Riboswitch RNA to Measure Mg2+ Concentration and RNA Conformational Change in Cell. Int. J. Mol. Sci. 2022, 23, 1493. [Google Scholar] [CrossRef] [PubMed]
- Stagno, J.R.; Yu, P.; Dyba, M.A.; Wang, Y.X.; Liu, Y. Heavy-atom labeling of RNA by PLOR for de novo crystallographic phasing. PLoS ONE 2019, 14, e0215555. [Google Scholar] [CrossRef]
- Agard, N.J.; Prescher, J.A.; Bertozzi, C.R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046–15047. [Google Scholar] [CrossRef] [PubMed]
- Winz, M.L.; Samanta, A.; Benzinger, D.; Jäschke, A. Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry. Nucleic Acids Res. 2012, 40, e78. [Google Scholar] [CrossRef]
- Chauvier, A.; St-Pierre, P.; Nadon, J.F.; Hien, E.D.M.; Pérez-González, C.; Eschbach, S.H.; Lamontagne, A.M.; Penedo, J.C.; Lafontaine, D.A. Monitoring RNA dynamics in native transcriptional complexes. Proc. Natl. Acad. Sci. USA 2021, 118, e2106564118. [Google Scholar] [CrossRef]
- Hien, E.D.M.; St-Pierre, P.; Penedo, J.C.; Lafontaine, D.A. Cotranscriptional Folding of a 5′ Stem-loop in the Escherichia coli tbpA Riboswitch at Single-nucleotide Resolution. J. Mol. Biol. 2024, 436, 168771. [Google Scholar] [CrossRef]
- Mandal, M.; Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 2004, 5, 451–463. [Google Scholar] [CrossRef]
- Serganov, A.; Nudler, E. A decade of riboswitches. Cell 2013, 152, 17–24. [Google Scholar] [CrossRef]
- Montange, R.K.; Batey, R.T. Riboswitches: Emerging themes in RNA structure and function. Annu. Rev. Biophys. 2008, 37, 117–133. [Google Scholar] [CrossRef] [PubMed]
- DiMartini, E.T.; Kyker-Snowman, K.; Shreiber, D.I. A click chemistry-based, free radical-initiated delivery system for the capture and release of payloads. Drug Deliv. 2023, 30, 2232952. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Gasser, C.; Li, F.; Chen, H.; Mair, S.; Krasheninina, O.; Micura, R.; Ren, A. SAM-VI riboswitch structure and signature for ligand discrimination. Nat. Commun. 2019, 10, 5728. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Si, X.; Yin, D.; Zhang, S.; Dai, H. Integrating PLOR and SPAAC Click Chemistry for Efficient Site-Specific Fluorescent Labeling of RNA. Int. J. Mol. Sci. 2025, 26, 2601. https://doi.org/10.3390/ijms26062601
Xue Y, Si X, Yin D, Zhang S, Dai H. Integrating PLOR and SPAAC Click Chemistry for Efficient Site-Specific Fluorescent Labeling of RNA. International Journal of Molecular Sciences. 2025; 26(6):2601. https://doi.org/10.3390/ijms26062601
Chicago/Turabian StyleXue, Yanyan, Xiao Si, Daxu Yin, Shengzhe Zhang, and Hua Dai. 2025. "Integrating PLOR and SPAAC Click Chemistry for Efficient Site-Specific Fluorescent Labeling of RNA" International Journal of Molecular Sciences 26, no. 6: 2601. https://doi.org/10.3390/ijms26062601
APA StyleXue, Y., Si, X., Yin, D., Zhang, S., & Dai, H. (2025). Integrating PLOR and SPAAC Click Chemistry for Efficient Site-Specific Fluorescent Labeling of RNA. International Journal of Molecular Sciences, 26(6), 2601. https://doi.org/10.3390/ijms26062601