Salmonella Type III Secretion System Effectors
Abstract
:1. Introduction
1.1. Type III Effectors with Pro-Inflammatory Roles
1.2. Type III Effectors That Promote the Systemic Spread of Infection
1.3. Modification of the Salmonella-Containing Vacuole by Type III Effectors
1.4. Type III Effectors with Anti-Inflammatory Effects
1.5. Type III Effectors That Cause the Death of Host Cells
1.6. Type III Effectors That Attenuate Virulence
1.7. Type III Effectors with Other Effects
2. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stanaway, J.D.; Reiner, R.C.; Blacker, B.F.; Goldberg, E.M.; Khalil, I.A.; Troeger, C.E.; Andrews, J.R.; Bhutta, Z.A.; Crump, J.A.; Im, J.; et al. The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Groisman, E.A.; Ochman, H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 1993, 12, 3779–3787. [Google Scholar] [CrossRef] [PubMed]
- Galyov, E.E.; Wood, M.W.; Rosqvist, R.; Mullan, P.B.; Watson, P.R.; Hedges, S.; Wallis, T.S. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 1997, 25, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, S.; Chen, L.M.; Davis, R.J.; Galan, J.E. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 1997, 159, 5550–5559. [Google Scholar] [CrossRef]
- Winter, S.E.; Thiennimitr, P.; Winter, M.G.; Butler, B.P.; Huseby, D.L.; Crawford, R.W.; Russell, J.M.; Bevins, C.L.; Adams, L.G.; Tsolis, R.M.; et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010, 467, 426–429. [Google Scholar] [CrossRef]
- Thiennimitr, P.; Winter, S.E.; Winter, M.G.; Xavier, M.N.; Tolstikov, V.; Huseby, D.L.; Sterzenbach, T.; Tsolis, R.M.; Roth, J.R.; Baumler, A.J. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl. Acad. Sci. USA 2011, 108, 17480–17485. [Google Scholar] [CrossRef]
- Cirillo, D.M.; Valdivia, R.H.; Monack, D.M.; Falkow, S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 1998, 30, 175–188. [Google Scholar] [CrossRef]
- Hensel, M.; Shea, J.E.; Waterman, S.R.; Mundy, R.; Nikolaus, T.; Banks, G.; Vazquez-Torres, A.; Gleeson, C.; Fang, F.C.; Holden, D.W. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 1998, 30, 163–174. [Google Scholar] [CrossRef]
- Ochman, H.; Soncini, F.C.; Solomon, F.; Groisman, E.A. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc. Natl. Acad. Sci. USA 1996, 93, 7800–7804. [Google Scholar] [CrossRef]
- Worley, M.J.; Nieman, G.S.; Geddes, K.; Heffron, F. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc. Natl. Acad. Sci. USA 2006, 103, 17915–17920. [Google Scholar] [CrossRef]
- Thornbrough, J.M.; Worley, M.J. A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 type III effector srfH/sseI controls early extraintestinal dissemination. PLoS ONE 2012, 7, e45245. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, A.; Allen, T.A.; Bridgwater, C.J.; Young, C.M.; Worley, M.J. The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream. PLoS ONE 2019, 14, e0226126. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, L.M.; Govoni, G.R.; Gerke, C.; Gopinath, S.; Peng, K.; Laidlaw, G.; Chien, Y.H.; Jeong, H.W.; Li, Z.; Brown, M.D.; et al. The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog. 2009, 5, e1000671. [Google Scholar] [CrossRef] [PubMed]
- Carden, S.E.; Walker, G.T.; Honeycutt, J.; Lugo, K.; Pham, T.; Jacobson, A.; Bouley, D.; Idoyaga, J.; Tsolis, R.M.; Monack, D. Pseudogenization of the Secreted Effector Gene sseI Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. Cell Host Microbe 2017, 21, 182–194. [Google Scholar] [CrossRef]
- Brown, N.F.; Vallance, B.A.; Coombes, B.K.; Valdez, Y.; Coburn, B.A.; Finlay, B.B. Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog. 2005, 1, e32. [Google Scholar] [CrossRef]
- Worley, M.J.; Ching, K.H.; Heffron, F. Salmonella SsrB activates a global regulon of horizontally acquired genes. Mol. Microbiol. 2000, 36, 749–761. [Google Scholar] [CrossRef]
- Hardt, W.-D.; Chen, L.-M.; Schuebel, K.E.; Bustelo, X.R.; Galán, J.E. S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells. Cell 1998, 93, 815–826. [Google Scholar] [CrossRef]
- Stender, S.; Friebel, A.; Linder, S.; Rohde, M.; Mirold, S.; Hardt, W.D. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 2000, 36, 1206–1221. [Google Scholar] [CrossRef]
- Chen, L.M.; Hobbie, S.; Galan, J.E. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 1996, 274, 2115–2118. [Google Scholar] [CrossRef]
- Ridley, A.J.; Paterson, H.F.; Johnston, C.L.; Diekmann, D.; Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992, 70, 401–410. [Google Scholar] [CrossRef]
- Bakshi, C.S.; Singh, V.P.; Wood, M.W.; Jones, P.W.; Wallis, T.S.; Galyov, E.E. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J. Bacteriol. 2000, 182, 2341–2344. [Google Scholar] [CrossRef] [PubMed]
- Norris, F.A.; Wilson, M.P.; Wallis, T.S.; Galyov, E.E.; Majerus, P.W. SopB, a protein required for virulence ofSalmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA 1998, 95, 14057–14059. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.C.; Galan, J.E. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J. Cell Biol. 2006, 175, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Kamanova, J.; Lara-Tejero, M.; Galán, J.E. Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors. Nat. Microbiol. 2018, 3, 1122–1130. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, Q.; Cui, Y.; Yao, S.; Jin, S.; Zhang, Q.; Wen, Z.; Ruan, H.; Liang, X.; Chao, Y.; et al. Salmonella effector SopB reorganizes cytoskeletal vimentin to maintain replication vacuoles for efficient infection. Nat. Commun. 2023, 14, 478. [Google Scholar] [CrossRef]
- Knodler, L.A.; Finlay, B.B.; Steele-Mortimer, O. The Salmonella Effector Protein SopB Protects Epithelial Cells from Apoptosis by Sustained Activation of Akt. J. Biol. Chem. 2005, 280, 9058–9064. [Google Scholar] [CrossRef]
- Zhou, D.; Mooseker, M.S.; Galan, J.E. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 1999, 283, 2092–2095. [Google Scholar] [CrossRef]
- Zhou, D.; Mooseker, M.S.; Galan, J.E. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl. Acad. Sci. USA 1999, 96, 10176–10181. [Google Scholar] [CrossRef]
- Wall, D.M.; Nadeau, W.J.; Pazos, M.A.; Shi, H.N.; Galyov, E.E.; McCormick, B.A. Identification of the Salmonella enterica serotype typhimurium SipA domain responsible for inducing neutrophil recruitment across the intestinal epithelium. Cell. Microbiol. 2007, 9, 2299–2313. [Google Scholar] [CrossRef]
- Srikanth, C.V.; Wall, D.M.; Maldonado-Contreras, A.; Shi, H.; Zhou, D.; Demma, Z.; Mumy, K.L.; McCormick, B.A. Salmonella pathogenesis and processing of secreted effectors by caspase-3. Science 2010, 330, 390–393. [Google Scholar] [CrossRef]
- McCormick, B.A.; Parkos, C.A.; Colgan, S.P.; Carnes, D.K.; Madara, J.L. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J. Immunol. 1998, 160, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Mrsny, R.J.; Gewirtz, A.T.; Siccardi, D.; Savidge, T.; Hurley, B.P.; Madara, J.L.; McCormick, B.A. Identification of hepoxilin A3 in inflammatory events: A required role in neutrophil migration across intestinal epithelia. Proc. Natl. Acad. Sci. USA 2004, 101, 7421–7426. [Google Scholar] [CrossRef] [PubMed]
- Kamanova, J.; Sun, H.; Lara-Tejero, M.; Galan, J.E. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members. PLoS Pathog. 2016, 12, e1005552. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Rossanese, O.W.; Brown, N.F.; Kujat-Choy, S.; Galan, J.E.; Finlay, B.B.; Brumell, J.H. The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. Mol. Microbiol. 2004, 54, 1186–1198. [Google Scholar] [CrossRef]
- Lian, H.; Jiang, K.; Tong, M.; Chen, Z.; Liu, X.; Galan, J.E.; Gao, X. The Salmonella effector protein SopD targets Rab8 to positively and negatively modulate the inflammatory response. Nat. Microbiol. 2021, 6, 658–671. [Google Scholar] [CrossRef]
- Lei, L.; Wang, W.; Xia, C.; Liu, F. Salmonella Virulence Factor SsrAB Regulated Factor Modulates Inflammatory Responses by Enhancing the Activation of NF-kappaB Signaling Pathway. J. Immunol. 2016, 196, 792–802. [Google Scholar] [CrossRef]
- Yin, J.; Xiong, W.; Yuan, X.; Li, S.; Zhi, L.; Pan, P.; Sun, W.; Yu, T.; He, Q.; Cheng, Z. Salmonella Pullorum lacking srfA is attenuated, immunogenic and protective in chickens. Microb. Pathog. 2021, 161, 105230. [Google Scholar] [CrossRef]
- Delyea, C.J.; Forster, M.D.; Luo, S.; Dubrule, B.E.; Julien, O.; Bhavsar, A.P. The Salmonella Effector SspH2 Facilitates Spatially Selective Ubiquitination of NOD1 to Enhance Inflammatory Signaling. Biochemistry 2024, 63, 2266–2279. [Google Scholar] [CrossRef]
- Bullones-Bolaños, A.; Bernal-Bayard, J.; Ramos-Morales, F. The NEL Family of Bacterial E3 Ubiquitin Ligases. Int. J. Mol. Sci. 2022, 23, 7725. [Google Scholar] [CrossRef]
- Haraga, A.; Miller, S.I. A Salmonella enterica serovar typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infect. Immun. 2003, 71, 4052–4058. [Google Scholar] [CrossRef]
- Quezada, C.M.; Hicks, S.W.; Galan, J.E.; Stebbins, C.E. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl. Acad. Sci. USA 2009, 106, 4864–4869. [Google Scholar] [CrossRef] [PubMed]
- Shappo, M.O.E.; Li, Q.; Lin, Z.; Hu, M.; Ren, J.; Xu, Z.; Pan, Z.; Jiao, X. SspH2 as anti-inflammatory candidate effector and its contribution in Salmonella Enteritidis virulence. Microb. Pathog. 2020, 142, 104041. [Google Scholar] [CrossRef] [PubMed]
- Ao, T.T.; Feasey, N.A.; Gordon, M.A.; Keddy, K.H.; Angulo, F.J.; Crump, J.A. Global burden of invasive nontyphoidal Salmonella disease, 2010(1). Emerg. Infect. Dis. 2015, 21, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Hensel, M.; Shea, J.E.; Raupach, B.; Monack, D.; Falkow, S.; Gleeson, C.; Kubo, T.; Holden, D.W. Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2. Mol. Microbiol. 1997, 24, 155–167. [Google Scholar] [CrossRef]
- Yu, X.J.; Ruiz-Albert, J.; Unsworth, K.E.; Garvis, S.; Liu, M.; Holden, D.W. SpiC is required for secretion of Salmonella Pathogenicity Island 2 type III secretion system proteins. Cell. Microbiol. 2002, 4, 531–540. [Google Scholar] [CrossRef]
- Wigley, P.; Jones, M.A.; Barrow, P.A. Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol. 2002, 31, 501–506. [Google Scholar] [CrossRef]
- Shea, J.E.; Hensel, M.; Gleeson, C.; Holden, D.W. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 1996, 93, 2593–2597. [Google Scholar] [CrossRef]
- Jones, M.A.; Wigley, P.; Page, K.L.; Hulme, S.D.; Barrow, P.A. Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect. Immun. 2001, 69, 5471–5476. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, M.; Liu, X.; Sun, T.; Qi, W.; Ding, W.; Chen, Z.; Zhang, P.; Liu, R.; Chen, H.; et al. Salmonella manipulates macrophage migration via SteC-mediated myosin light chain activation to penetrate the gut-vascular barrier. EMBO J. 2024, 43, 1499–1518. [Google Scholar] [CrossRef]
- Barnes, P.D.; Bergman, M.A.; Mecsas, J.; Isberg, R.R. Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J. Exp. Med. 2006, 203, 1591–1601. [Google Scholar] [CrossRef]
- Barthel, M.; Hapfelmeier, S.; Quintanilla-Martinez, L.; Kremer, M.; Rohde, M.; Hogardt, M.; Pfeffer, K.; Russmann, H.; Hardt, W.D. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 2003, 71, 2839–2858. [Google Scholar] [CrossRef] [PubMed]
- Voedisch, S.; Koenecke, C.; David, S.; Herbrand, H.; Forster, R.; Rhen, M.; Pabst, O. Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect. Immun. 2009, 77, 3170–3180. [Google Scholar] [CrossRef] [PubMed]
- Spadoni, I.; Zagato, E.; Bertocchi, A.; Paolinelli, R.; Hot, E.; Di Sabatino, A.; Caprioli, F.; Bottiglieri, L.; Oldani, A.; Viale, G.; et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015, 350, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Torres, A.; Jones-Carson, J.; Baumler, A.J.; Falkow, S.; Valdivia, R.; Brown, W.; Le, M.; Berggren, R.; Parks, W.T.; Fang, F.C. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 1999, 401, 804–808. [Google Scholar] [CrossRef]
- Rescigno, M.; Rotta, G.; Valzasina, B.; Ricciardi-Castagnoli, P. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 2001, 204, 572–581. [Google Scholar] [CrossRef]
- Rescigno, M.; Urbano, M.; Valzasina, B.; Francolini, M.; Rotta, G.; Bonasio, R.; Granucci, F.; Kraehenbuhl, J.P.; Ricciardi-Castagnoli, P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2001, 2, 361–367. [Google Scholar] [CrossRef]
- Bianchi, G.; D’Amico, G.; Sozzani, S.; Mantovani, A.; Allavena, P. Transendothelial migration and reverse transmigration of in vitro cultured human dendritic cells. Methods Mol. Med. 2001, 64, 325–330. [Google Scholar] [CrossRef]
- Muller, A.J.; Kaiser, P.; Dittmar, K.E.; Weber, T.C.; Haueter, S.; Endt, K.; Songhet, P.; Zellweger, C.; Kremer, M.; Fehling, H.J.; et al. Salmonella gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes. Cell Host Microbe 2012, 11, 19–32. [Google Scholar] [CrossRef]
- Yuan, H.; Zhou, L.; Chen, Y.; You, J.; Hu, H.; Li, Y.; Huang, R.; Wu, S. Salmonella effector SopF regulates PANoptosis of intestinal epithelial cells to aggravate systemic infection. Gut Microbes 2023, 15, 2180315. [Google Scholar] [CrossRef]
- Lau, N.; Haeberle, A.L.; O’Keeffe, B.J.; Latomanski, E.A.; Celli, J.; Newton, H.J.; Knodler, L.A. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog. 2019, 15, e1007959. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, L.; Liu, Q.; Qi, L.; Yu, K.; Wang, Z.; Wu, M.; Liu, Y.; Fu, J.; Hu, M.; et al. Identification of a Novel Salmonella Type III Effector by Quantitative Secretome Profiling. Mol. Cell. Proteom. 2017, 16, 2219–2228. [Google Scholar] [CrossRef] [PubMed]
- Sellin, M.E.; Muller, A.A.; Felmy, B.; Dolowschiak, T.; Diard, M.; Tardivel, A.; Maslowski, K.M.; Hardt, W.D. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 2014, 16, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Broz, P. Getting rid of the bad apple: Inflammasome-induced extrusion of Salmonella-infected enterocytes. Cell Host Microbe 2014, 16, 153–155. [Google Scholar] [CrossRef]
- Rakov, A.V.; Mastriani, E.; Liu, S.-L.; Schifferli, D.M. Association of Salmonella virulence factor alleles with intestinal and invasive serovars. BMC Genom. 2019, 20, 429. [Google Scholar] [CrossRef]
- Worley, M.J. Salmonella Bloodstream Infections. Trop. Med. Infect. Dis. 2023, 8, 487. [Google Scholar] [CrossRef]
- Worley, M.J. Immune evasion and persistence in enteric bacterial pathogens. Gut Microbes 2023, 15, 2163839. [Google Scholar] [CrossRef]
- Brink, T.; Leiss, V.; Siegert, P.; Jehle, D.; Ebner, J.K.; Schwan, C.; Shymanets, A.; Wiese, S.; Nurnberg, B.; Hensel, M.; et al. Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathog. 2018, 14, e1007248. [Google Scholar] [CrossRef]
- Ashton, P.M.; Owen, S.V.; Kaindama, L.; Rowe, W.P.M.; Lane, C.R.; Larkin, L.; Nair, S.; Jenkins, C.; de Pinna, E.M.; Feasey, N.A.; et al. Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella Typhimurium epidemic in Africa. Genome Med. 2017, 9, 92. [Google Scholar] [CrossRef]
- Pulford, C.V.; Perez-Sepulveda, B.M.; Canals, R.; Bevington, J.A.; Bengtsson, R.J.; Wenner, N.; Rodwell, E.V.; Kumwenda, B.; Zhu, X.; Bennett, R.J.; et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat. Microbiol. 2021, 6, 327–338. [Google Scholar] [CrossRef]
- Boyd, E.F.; Hartl, D.L. Salmonella virulence plasmid. Modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates. Genetics 1998, 149, 1183–1190. [Google Scholar] [CrossRef]
- Montenegro, M.A.; Morelli, G.; Helmuth, R. Heteroduplex analysis of Salmonella virulence plasmids and their prevalence in isolates of defined sources. Microb. Pathog. 1991, 11, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Fierer, J.; Krause, M.; Tauxe, R.; Guiney, D. Salmonella typhimurium bacteremia: Association with the virulence plasmid. J. Infect. Dis. 1992, 166, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Mazurkiewicz, P.; Thomas, J.; Thompson, J.A.; Liu, M.; Arbibe, L.; Sansonetti, P.; Holden, D.W. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol. Microbiol. 2008, 67, 1371–1383. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Zhou, Y.; Zhang, J.; Long, C.; Li, S.; Chen, S.; Zhou, J.M.; Shao, F. The phosphothreonine lyase activity of a bacterial type III effector family. Science 2007, 315, 1000–1003. [Google Scholar] [CrossRef]
- Chen, D.; Burford, W.B.; Pham, G.; Zhang, L.; Alto, L.T.; Ertelt, J.M.; Winter, M.G.; Winter, S.E.; Way, S.S.; Alto, N.M. Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host Microbe 2021, 29, 1531–1544. [Google Scholar] [CrossRef]
- Zuo, L.; Zhou, L.; Wu, C.; Wang, Y.; Li, Y.; Huang, R.; Wu, S. Salmonella spvC Gene Inhibits Pyroptosis and Intestinal Inflammation to Aggravate Systemic Infection in Mice. Front. Microbiol. 2020, 11, 562491. [Google Scholar] [CrossRef]
- Bloom, B.R.; Bennett, B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 1966, 153, 80–82. [Google Scholar] [CrossRef]
- Cao, W.G.; Morin, M.; Sengers, V.; Metz, C.; Roger, T.; Maheux, R.; Akoum, A. Tumour necrosis factor-alpha up-regulates macrophage migration inhibitory factor expression in endometrial stromal cells via the nuclear transcription factor NF-kappaB. Hum. Reprod. 2006, 21, 421–428. [Google Scholar] [CrossRef]
- Wijbrandts, C.A.; van Leuven, S.I.; Boom, H.D.; Gerlag, D.M.; Stroes, E.G.; Kastelein, J.J.; Tak, P.P. Sustained changes in lipid profile and macrophage migration inhibitory factor levels after anti-tumour necrosis factor therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2009, 68, 1316–1321. [Google Scholar] [CrossRef]
- Brinkman, B.M.; Telliez, J.B.; Schievella, A.R.; Lin, L.L.; Goldfeld, A.E. Engagement of tumor necrosis factor (TNF) receptor 1 leads to ATF-2- and p38 mitogen-activated protein kinase-dependent TNF-alpha gene expression. J. Biol. Chem. 1999, 274, 30882–30886. [Google Scholar] [CrossRef]
- Hoffmeyer, A.; Grosse-Wilde, A.; Flory, E.; Neufeld, B.; Kunz, M.; Rapp, U.R.; Ludwig, S. Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor alpha gene expression in T lymphocytes. J. Biol. Chem. 1999, 274, 4319–4327. [Google Scholar] [CrossRef] [PubMed]
- Tibbles, L.A.; Woodgett, J.R. The stress-activated protein kinase pathways. Cell. Mol. Life Sci. 1999, 55, 1230–1254. [Google Scholar] [CrossRef] [PubMed]
- Minero, V.G.; Khadjavi, A.; Costelli, P.; Baccino, F.M.; Bonelli, G. JNK activation is required for TNFalpha-induced apoptosis in human hepatocarcinoma cells. Int. Immunopharmacol. 2013, 17, 92–98. [Google Scholar] [CrossRef]
- Dhanasekaran, D.N.; Reddy, E.P. JNK signaling in apoptosis. Oncogene 2008, 27, 6245–6251. [Google Scholar] [CrossRef]
- Yang, S.; Deng, Q.; Sun, L.; Zhu, Y.; Dong, K.; Wu, S.; Huang, R.; Li, Y. Salmonella Effector SpvB Inhibits NF-kappaB Activity via KEAP1-Mediated Downregulation of IKKbeta. Front. Cell. Infect. Microbiol. 2021, 11, 641412. [Google Scholar] [CrossRef]
- Geddes, K.; Worley, M.; Niemann, G.; Heffron, F. Identification of new secreted effectors in Salmonella enterica serovar Typhimurium. Infect. Immun. 2005, 73, 6260–6271. [Google Scholar] [CrossRef]
- Poh, J.; Odendall, C.; Spanos, A.; Boyle, C.; Liu, M.; Freemont, P.; Holden, D.W. SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling. Cell. Microbiol. 2008, 10, 20–30. [Google Scholar] [CrossRef]
- Yu, X.J.; Liu, M.; Holden, D.W. Salmonella Effectors SseF and SseG Interact with Mammalian Protein ACBD3 (GCP60) To Anchor Salmonella-Containing Vacuoles at the Golgi Network. mBio 2016, 7, 10–1128. [Google Scholar] [CrossRef]
- Knuff-Janzen, K.; Tupin, A.; Yurist-Doutsch, S.; Rowland, J.L.; Finlay, B.B. Multiple Salmonella-pathogenicity island 2 effectors are required to facilitate bacterial establishment of its intracellular niche and virulence. PLoS ONE 2020, 15, e0235020. [Google Scholar] [CrossRef]
- Ramsden, A.E.; Mota, L.J.; Munter, S.; Shorte, S.L.; Holden, D.W. The SPI-2 type III secretion system restricts motility of Salmonella-containing vacuoles. Cell. Microbiol. 2007, 9, 2517–2529. [Google Scholar] [CrossRef]
- Feng, Z.Z.; Jiang, A.J.; Mao, A.W.; Feng, Y.; Wang, W.; Li, J.; Zhang, X.; Xing, K.; Peng, X. The Salmonella effectors SseF and SseG inhibit Rab1A-mediated autophagy to facilitate intracellular bacterial survival and replication. J. Biol. Chem. 2018, 293, 9662–9673. [Google Scholar] [CrossRef] [PubMed]
- Knodler, L.A.; Vallance, B.A.; Hensel, M.; Jackel, D.; Finlay, B.B.; Steele-Mortimer, O. Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Mol. Microbiol. 2003, 49, 685–704. [Google Scholar] [CrossRef]
- Alberdi, L.; Vergnes, A.; Manneville, J.B.; Tembo, D.L.; Fang, Z.; Zhao, Y.; Schroeder, N.; Dumont, A.; Lagier, M.; Bassereau, P.; et al. Regulation of kinesin-1 activity by the Salmonella enterica effectors PipB2 and SifA. J. Cell Sci. 2020, 133, jcs239863. [Google Scholar] [CrossRef] [PubMed]
- Beuzon, C.R.; Meresse, S.; Unsworth, K.E.; Ruiz-Albert, J.; Garvis, S.; Waterman, S.R.; Ryder, T.A.; Boucrot, E.; Holden, D.W. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 2000, 19, 3235–3249. [Google Scholar] [CrossRef]
- Liss, V.; Hensel, M. Take the tube: Remodelling of the endosomal system by intracellular Salmonella enterica. Cell. Microbiol. 2015, 17, 639–647. [Google Scholar] [CrossRef]
- Liss, V.; Swart, A.L.; Kehl, A.; Hermanns, N.; Zhang, Y.; Chikkaballi, D.; Bohles, N.; Deiwick, J.; Hensel, M. Salmonella enterica Remodels the Host Cell Endosomal System for Efficient Intravacuolar Nutrition. Cell Host Microbe 2017, 21, 390–402. [Google Scholar] [CrossRef]
- McGourty, K.; Thurston, T.L.; Matthews, S.A.; Pinaud, L.; Mota, L.J.; Holden, D.W. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. Science 2012, 338, 963–967. [Google Scholar] [CrossRef]
- Sindhwani, A.; Arya, S.B.; Kaur, H.; Jagga, D.; Tuli, A.; Sharma, M. Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication. PLoS Pathog. 2017, 13, e1006700. [Google Scholar] [CrossRef]
- Patel, S.; Wall, D.M.; Castillo, A.; McCormick, B.A. Caspase-3 cleavage of Salmonella type III secreted effector protein SifA is required for localization of functional domains and bacterial dissemination. Gut Microbes 2019, 10, 172–187. [Google Scholar] [CrossRef]
- Ohlson, M.B.; Huang, Z.; Alto, N.M.; Blanc, M.P.; Dixon, J.E.; Chai, J.; Miller, S.I. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 2008, 4, 434–446. [Google Scholar] [CrossRef]
- Arbeloa, A.; Garnett, J.; Lillington, J.; Bulgin, R.R.; Berger, C.N.; Lea, S.M.; Matthews, S.; Frankel, G. EspM2 is a RhoA guanine nucleotide exchange factor. Cell. Microbiol. 2010, 12, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Sutton, S.E.; Wallenfang, A.J.; Orchard, R.C.; Wu, X.; Feng, Y.; Chai, J.; Alto, N.M. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat. Struct. Mol. Biol. 2009, 16, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.; Nair, A.V.; Singh, A.; Basu, S.; Sarkar, K.; Sharma, J.; Sharma, S.; Sharma, S.; Rathore, M.; Singh, S.; et al. Salmonella Typhimurium effector SseI regulates host peroxisomal dynamics to acquire lysosomal cholesterol. EMBO Rep. 2024, 26, 656–689. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, V.M.; Braun, V.; Landekic, M.; Shi, R.; Proteau, A.; McDonald, L.; Cygler, M.; Grinstein, S.; Brumell, J.H. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7. Cell Rep. 2015, 12, 1508–1518. [Google Scholar] [CrossRef]
- Brumell, J.H.; Kujat-Choy, S.; Brown, N.F.; Vallance, B.A.; Knodler, L.A.; Finlay, B.B. SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 2003, 4, 36–48. [Google Scholar] [CrossRef]
- Spano, S.; Gao, X.; Hannemann, S.; Lara-Tejero, M.; Galan, J.E. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP. Cell Host Microbe 2016, 19, 216–226. [Google Scholar] [CrossRef]
- Teo, W.X.; Yang, Z.; Kerr, M.C.; Luo, L.; Guo, Z.; Alexandrov, K.; Stow, J.L.; Teasdale, R.D. Salmonella effector SopD2 interferes with Rab34 function. Cell Biol. Int. 2017, 41, 433–446. [Google Scholar] [CrossRef]
- Jennings, E.; Thurston, T.L.M.; Holden, D.W. Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences. Cell Host Microbe 2017, 22, 217–231. [Google Scholar] [CrossRef]
- Kolodziejek, A.M.; Altura, M.A.; Fan, J.; Petersen, E.M.; Cook, M.; Brzovic, P.S.; Miller, S.I. Salmonella Translocated Effectors Recruit OSBP1 to the Phagosome to Promote Vacuolar Membrane Integrity. Cell Rep. 2019, 27, 2147–2156 e2145. [Google Scholar] [CrossRef]
- Kolodziejek, A.M.; Miller, S.I. Salmonella modulation of the phagosome membrane, role of SseJ. Cell. Microbiol. 2015, 17, 333–341. [Google Scholar] [CrossRef]
- Lossi, N.S.; Rolhion, N.; Magee, A.I.; Boyle, C.; Holden, D.W. The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: Cholesterol acyltransferase activity. Microbiology 2008, 154, 2680–2688. [Google Scholar] [CrossRef] [PubMed]
- Haraga, A.; Ohlson, M.B.; Miller, S.I. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 2008, 6, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Albert, J.; Yu, X.J.; Beuzon, C.R.; Blakey, A.N.; Galyov, E.E.; Holden, D.W. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol. Microbiol. 2002, 44, 645–661. [Google Scholar] [CrossRef] [PubMed]
- Brumell, J.H.; Goosney, D.L.; Finlay, B.B. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 2002, 3, 407–415. [Google Scholar] [CrossRef]
- Spano, S.; Galan, J.E. A Rab32-dependent pathway contributes to Salmonella typhi host restriction. Science 2012, 338, 960–963. [Google Scholar] [CrossRef]
- Walch, P.; Selkrig, J.; Knodler, L.A.; Rettel, M.; Stein, F.; Fernandez, K.; Vieitez, C.; Potel, C.M.; Scholzen, K.; Geyer, M.; et al. Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host Microbe 2021, 29, 1316–1332 e1312. [Google Scholar] [CrossRef]
- Wang, M.; Qazi, I.H.; Wang, L.; Zhou, G.; Han, H. Salmonella Virulence and Immune Escape. Microorganisms 2020, 8, 407. [Google Scholar] [CrossRef]
- Gunster, R.A.; Matthews, S.A.; Holden, D.W.; Thurston, T.L.M. SseK1 and SseK3 Type III Secretion System Effectors Inhibit NF-kappaB Signaling and Necroptotic Cell Death in Salmonella-Infected Macrophages. Infect. Immun. 2017, 85, 10-1128. [Google Scholar] [CrossRef]
- Le Negrate, G.; Faustin, B.; Welsh, K.; Loeffler, M.; Krajewska, M.; Hasegawa, P.; Mukherjee, S.; Orth, K.; Krajewski, S.; Godzik, A.; et al. Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-kappaB, suppresses IkappaBalpha ubiquitination and modulates innate immune responses. J. Immunol. 2008, 180, 5045–5056. [Google Scholar] [CrossRef]
- Gibbs, K.D.; Washington, E.J.; Jaslow, S.L.; Bourgeois, J.S.; Foster, M.W.; Guo, R.; Brennan, R.G.; Ko, D.C. The Salmonella Secreted Effector SarA/SteE Mimics Cytokine Receptor Signaling to Activate STAT3. Cell Host Microbe 2020, 27, 129–139 e124. [Google Scholar] [CrossRef]
- Panagi, I.; Jennings, E.; Zeng, J.; Gunster, R.A.; Stones, C.D.; Mak, H.; Jin, E.; Stapels, D.A.C.; Subari, N.Z.; Pham, T.H.M.; et al. Salmonella Effector SteE Converts the Mammalian Serine/Threonine Kinase GSK3 into a Tyrosine Kinase to Direct Macrophage Polarization. Cell Host Microbe 2020, 27, 41–53 e46. [Google Scholar] [CrossRef] [PubMed]
- Coombes, B.K.; Wickham, M.E.; Brown, N.F.; Lemire, S.; Bossi, L.; Hsiao, W.W.; Brinkman, F.S.; Finlay, B.B. Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar typhimurium with autonomous expression from its associated phage. J. Mol. Biol. 2005, 348, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Pilar, A.V.; Reid-Yu, S.A.; Cooper, C.A.; Mulder, D.T.; Coombes, B.K. GogB is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1. PLoS Pathog. 2012, 8, e1002773. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Jones, R.M.; Neish, A.S. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo. Cell. Microbiol. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Jones, R.M.; Wu, H.; Wentworth, C.; Luo, L.; Collier-Hyams, L.; Neish, A.S. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. Cell Host Microbe 2008, 3, 233–244. [Google Scholar] [CrossRef]
- Ye, Z.; Petrof, E.O.; Boone, D.; Claud, E.C.; Sun, J. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am. J. Pathol. 2007, 171, 882–892. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Y.G.; Lin, Z.; Lu, R.; Xia, Y.; Meng, C.; Pan, Z.; Xu, X.; Jiao, X.; Sun, J. Salmonella Enteritidis Effector AvrA Suppresses Autophagy by Reducing Beclin-1 Protein. Front. Immunol. 2020, 11, 686. [Google Scholar] [CrossRef]
- Sun, H.; Kamanova, J.; Lara-Tejero, M.; Galán, J.E. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis. PLoS Pathog. 2016, 12, e1005484. [Google Scholar] [CrossRef]
- Yang, Z.; Soderholm, A.; Lung, T.W.F.; Giogha, C.; Hill, M.M.; Brown, N.F.; Hartland, E.; Teasdale, R.D. SseK3 Is a Salmonella Effector That Binds TRIM32 and Modulates the Host’s NF-κB Signalling Activity. PLoS ONE 2015, 10, e0138529. [Google Scholar] [CrossRef]
- Domingues, L.; Ismail, A.; Charro, N.; Rodriguez-Escudero, I.; Holden, D.W.; Molina, M.; Cid, V.J.; Mota, L.J. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cell. Microbiol. 2016, 18, 949–969. [Google Scholar] [CrossRef]
- Gulati, A.; Shukla, R.; Mukhopadhaya, A. Salmonella Effector SteA Suppresses Proinflammatory Responses of the Host by Interfering With IkappaB Degradation. Front. Immunol. 2019, 10, 2822. [Google Scholar] [CrossRef] [PubMed]
- Domingues, L.; Holden, D.W.; Mota, L.J. The Salmonella effector SteA contributes to the control of membrane dynamics of Salmonella-containing vacuoles. Infect. Immun. 2014, 82, 2923–2934. [Google Scholar] [CrossRef] [PubMed]
- Miao, E.A.; Scherer, C.A.; Tsolis, R.M.; Kingsley, R.A.; Adams, L.G.; Baumler, A.J.; Miller, S.I. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 1999, 34, 850–864. [Google Scholar] [CrossRef]
- Cook, M.; Delbecq, S.P.; Schweppe, T.P.; Guttman, M.; Klevit, R.E.; Brzovic, P.S. The ubiquitin ligase SspH1 from Salmonella uses a modular and dynamic E3 domain to catalyze substrate ubiquitylation. J. Biol. Chem. 2019, 294, 783–793. [Google Scholar] [CrossRef]
- Rohde, J.R.; Breitkreutz, A.; Chenal, A.; Sansonetti, P.J.; Parsot, C. Type III Secretion Effectors of the IpaH Family Are E3 Ubiquitin Ligases. Cell Host Microbe 2007, 1, 77–83. [Google Scholar] [CrossRef]
- Haraga, A.; Miller, S.I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 2006, 8, 837–846. [Google Scholar] [CrossRef]
- Fu, Y.; Galan, J.E. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 1999, 401, 293–297. [Google Scholar] [CrossRef]
- Kubori, T.; Galan, J.E. Temporal regulation of salmonella virulence effector function by proteasome-dependent protein degradation. Cell 2003, 115, 333–342. [Google Scholar] [CrossRef]
- Hersh, D.; Monack, D.M.; Smith, M.R.; Ghori, N.; Falkow, S.; Zychlinsky, A. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 1999, 96, 2396–2401. [Google Scholar] [CrossRef]
- van der Velden, A.W.; Lindgren, S.W.; Worley, M.J.; Heffron, F. Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype typhimurium. Infect. Immun. 2000, 68, 5702–5709. [Google Scholar] [CrossRef]
- Rytkonen, A.; Poh, J.; Garmendia, J.; Boyle, C.; Thompson, A.; Liu, M.; Freemont, P.; Hinton, J.C.; Holden, D.W. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl. Acad. Sci. USA 2007, 104, 3502–3507. [Google Scholar] [CrossRef]
- Mesquita, F.S.; Thomas, M.; Sachse, M.; Santos, A.J.M.; Figueira, R.; Holden, D.W. The Salmonella Deubiquitinase SseL Inhibits Selective Autophagy of Cytosolic Aggregates. PLoS Pathog. 2012, 8, e1002743. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Alba, M.; Ramos-Morales, F. Patterns of expression and translocation of the ubiquitin ligase SlrP in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2014, 196, 3912–3922. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Bayard, J.; Cardenal-Munoz, E.; Ramos-Morales, F. The Salmonella type III secretion effector, salmonella leucine-rich repeat protein (SlrP), targets the human chaperone ERdj3. J. Biol. Chem. 2010, 285, 16360–16368. [Google Scholar] [CrossRef]
- Bullones-Bolaños, A.; Araujo-Garrido, J.L.; Fernández-García, J.; Romero, F.; Bernal-Bayard, J.; Ramos-Morales, F. SNRPD2 Is a Novel Substrate for the Ubiquitin Ligase Activity of the Salmonella Type III Secretion Effector SlrP. Biology 2022, 11, 1517. [Google Scholar] [CrossRef]
- Niemann, G.S.; Brown, R.N.; Gustin, J.K.; Stufkens, A.; Shaikh-Kidwai, A.S.; Li, J.; McDermott, J.E.; Brewer, H.M.; Schepmoes, A.; Smith, R.D.; et al. Discovery of novel secreted virulence factors from Salmonella enterica serovar Typhimurium by proteomic analysis of culture supernatants. Infect. Immun. 2011, 79, 33–43. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Xia, J.; Yuan, Y.; Yin, C.; Xu, L.; Li, Y.; Jiao, X. Salmonella-containing vacuole development in avian cells and characteristic of cigR in Salmonella enterica serovar Pullorum replication within macrophages. Vet. Microbiol. 2018, 223, 65–71. [Google Scholar] [CrossRef]
- Yin, J.; Wang, L.; Shen, R.; He, J.; Li, S.; Wang, H.; Cheng, Z. The influence of cigR gene on the pathogenicity of Salmonella paratyphi A in vitro and in vivo. FEMS Microbiol. Lett. 2024, 371, fnae067. [Google Scholar] [CrossRef]
- Kidwai, A.S.; Mushamiri, I.; Niemann, G.S.; Brown, R.N.; Adkins, J.N.; Heffron, F. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS ONE 2013, 8, e70753. [Google Scholar] [CrossRef]
- Yeom, J.; Pontes, M.H.; Choi, J.; Groisman, E.A. A protein that controls the onset of a Salmonella virulence program. EMBO J. 2018, 37, e96977. [Google Scholar] [CrossRef]
- Yu, X.J.; Xie, H.; Li, Y.; Liu, M.; Hou, R.; Predeus, A.V.; Perez Sepulveda, B.M.; Hinton, J.C.D.; Holden, D.W.; Thurston, T.L.M. Modulation of Salmonella virulence by a novel SPI-2 injectisome effector that interacts with the dystrophin-associated protein complex. mBio 2024, 15, e0112824. [Google Scholar] [CrossRef] [PubMed]
- Bullones-Bolanos, A.; Martin-Munoz, P.; Vallejo-Grijalba, C.; Bernal-Bayard, J.; Ramos-Morales, F. Specificities and redundancies in the NEL family of bacterial E3 ubiquitin ligases of Salmonella enterica serovar Typhimurium. Front. Immunol. 2024, 15, 1328707. [Google Scholar] [CrossRef]
- Kim, Y.G.; Kim, J.H.; Kim, K.J. Crystal structure of the Salmonella enterica serovar typhimurium virulence factor SrfJ, a glycoside hydrolase family enzyme. J. Bacteriol. 2009, 191, 6550–6554. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Herce, J.; Panadero-Medianero, C.; Sánchez-Romero, M.A.; Balbontín, R.; Bernal-Bayard, J.; Ramos-Morales, F. Salmonella Type III Secretion Effector SrfJ: A Glucosylceramidase Affecting the Lipidome and the Transcriptome of Mammalian Host Cells. Int. J. Mol. Sci. 2023, 24, 8403. [Google Scholar] [CrossRef]
- Zierler, M.K.; Galan, J.E. Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect. Immun. 1995, 63, 4024–4028. [Google Scholar] [CrossRef]
- Collazo, C.M.; Galan, J.E. The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol. Microbiol. 1997, 24, 747–756. [Google Scholar] [CrossRef]
- Scherer, C.A.; Cooper, E.; Miller, S.I. The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol. Microbiol. 2000, 37, 1133–1145. [Google Scholar] [CrossRef]
- Myeni, S.K.; Zhou, D. The C Terminus of SipC Binds and Bundles F-actin to Promote Salmonella Invasion. J. Biol. Chem. 2010, 285, 13357–13363. [Google Scholar] [CrossRef]
- Myeni, S.K.; Wang, L.; Zhou, D. SipB-SipC complex is essential for translocon formation. PLoS ONE 2013, 8, e60499. [Google Scholar] [CrossRef]
- Lara-Tejero, M.; Galan, J.E. Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect. Immun. 2009, 77, 2635–2642. [Google Scholar] [CrossRef]
- Kaniga, K.; Trollinger, D.; Galan, J.E. Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J. Bacteriol. 1995, 177, 7078–7085. [Google Scholar] [CrossRef] [PubMed]
- Bayer-Santos, E.; Durkin, C.H.; Rigano, L.A.; Kupz, A.; Alix, E.; Cerny, O.; Jennings, E.; Liu, M.; Ryan, A.S.; Lapaque, N.; et al. The Salmonella Effector SteD Mediates MARCH8-Dependent Ubiquitination of MHC II Molecules and Inhibits T Cell Activation. Cell Host Microbe 2016, 20, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Grabe, G.J.; Zhang, Y.; Przydacz, M.; Rolhion, N.; Yang, Y.; Pruneda, J.N.; Komander, D.; Holden, D.W.; Hare, S.A. The Salmonella Effector SpvD Is a Cysteine Hydrolase with a Serovar-specific Polymorphism Influencing Catalytic Activity, Suppression of Immune Responses, and Bacterial Virulence. J. Biol. Chem. 2016, 291, 25853–25863. [Google Scholar] [CrossRef] [PubMed]
- Galan, J.E. Salmonella Typhimurium and inflammation: A pathogen-centric affair. Nat. Rev. Microbiol. 2021, 19, 716–725. [Google Scholar] [CrossRef]
Effector | SPI-1/SPI-2 | Binding Partner (s) | Function |
---|---|---|---|
Sop | +/− | Cdc42, Rac1, and Rab | Rho GTPase exchange factor, promotes bacterial invasion by triggering membrane ruffling. |
SopE2 | +/− | Cdc42 and Rac | Similar to SopE. |
SopB | +/− | Cdc42 | Inositol phosphatase required for chloride secretion and neutrophil recruitment. Interdicts inositol phosphatase singling pathways and induces Akt activation. |
SipA | +/− | Caspase-3, F-actin, T-plastin, syntaxin8 | Regulates concentration, polymerization, and stability of actin molecules at the site of bacterial entry. |
SopA | +/− | TRIM56, TRIM65, UbcH5a, UbcH5c, UbcH7, HsRMA1, Caspase-3 | Induces fluid secretion and the inflammatory response. Involved in inflammation and inducing PMN migration. |
SopD | +/+ | GAP and a GEF for Rab8. | |
SrfA | +/− | IRAK-1-Toll interacting protein | Activates NFκB signaling. Disassociates IRAK-1-Toll interacting protein from IL-1R-associated kinase-1. |
SrfB | ND | Putative type III effector. | |
SrfC | ND | Putative type III effector. | |
SspH2 | −/+ | UbcH5-ubiquitin, SGT1, NOD1 | Activates NOD1 signaling. |
SopF | +/− | ATP6V0C, ARF1 | Attenuates intestinal epithelial cell inflammation, allowing systemic dissemination, among other things. |
SrfH (SseI) Asp103 | −/+ | IQGAP-1, Gαi2 | Inhibits directional migration of phagocytes. |
SrfH (SseI) Gly103 | −/+ | TRIP6, IQGAP-1, Gαi2 | Promotes deadhesion/motility of phagocytes. |
SpvC | +/+ | Erk1/2, p38, JNK | Inhibits MAPK signaling. |
SpvB | ND/+ | G-actin | Inhibits F-actin polymerization, promotes macrophage apoptosis. |
SpvD | +/+ | PKN1, Ube2D XPO2 | Inhibits NF-κB signaling. |
SseF | ND/+ | SseG, ACBD3 | Tethers SCV to Golgi. |
SseG | ND/+ | SseF, ACBD3 | Tethers SCV to Golgi. |
PipB | ND/+ | PDZD8 | |
PipB2 | +/+ | Kinesin-1, KIF5B, annexin A2 | Recruits kinesin-1 to SCV to reorganize late endosome/lysosome to facilitate bacterial survival. |
SifA | ND/+ | PLEKHM1, PLEKHM2, GDP-RhoA, Rab7, Caspase-3 | Induces SIF formation, detoxifies lysosomes, maintains vacuolar membrane stability. |
SopD2 | ND/+ | Rab7, Rab32+ | Promotes bacterial replication within host cells. Contributes to Salmonella-induced filament formation. |
SseJ | −/+ | GTP-RhoA, cholesterol | Esterification of cholesterol. |
SifB | ND/+ | Co-purifies with Rab10 and Rab13 | ND |
GtgE | +/+ | Rab32, Rab29, Rab38 | Prevents Rabs from accumulating on SCVs. |
SifB | −/+ | Co-purifies with Rab10 and Rab13 | Poorly characterized. |
SteE | +/+ | GSK3α/β, STAT3 | Transcriptional reprogramming to anti-inflammatory phenotype. |
GogB | +/+ | SKP1, FBXO22 | Inhibits NF-κB signaling. |
AvrA | +/+ | ERK2, MK4, MK7, p53 | Inhibits inflammation (NF-κB signaling) and apoptosis. |
GtgA | +/+ | Class II NF-κBs | Inhibits NF-κB signaling. |
PipA | −/+ | NF-κB p65 | hibits NF-κB signaling. |
GogA | +/+ | P65, RelB | Inhibits NF-κB signaling. |
SseK1 | +/+ | FADD, TRADD | Inhibits TNFα-stimulated NF-κB signaling and necroptosis. |
SseK2 | ND/+ | ND | Inhibits TNFα-stimulated NF-κB signaling and necroptosis. |
SseK3 | ND/+ | TRIM32, TRADD | Inhibits TNFα-stimulated NF-κB signaling and necroptosis. |
SteA | +/+ | PI (4) P | SIT formation. |
SteB | +/+ | ND | ND |
SteC | −/+ | MEK1, HSP27, Myl12a | Stimulates the assembly of F-actin network around SCV, enhances migration and invasion of macrophages through the vascular endothelium. |
SspH1 | +/+ | PKN1 | E3 ubiquitin ligase. Inhibits androgen steroid receptor signaling. |
SlrP | +/+ | ERdj3, TRX1 | E3 ubiquitin ligase. Inhibits IL-1β release. Attenuates inflammation. |
SptP | +/− | Cdc42, Rac1, VCP, vimentin, cSrc, NSF, Syk | Downregulates membrane ruffling, ERK and MAPK activation, and secretion of proinflammatory cytokines. |
SipB | Formation of the SPI-1 T3SS needle complex, caspase-1-induced apoptosis, and release of IL-18. | ||
SseL | ND/+ | OSBP, Ubiquitin | Induces late macrophage death |
CigR | Anti-virulence effectors. Inhibits SCV development and replication. | ||
SseM | −/+ | dystrophin-associated protein complex | Attenuates intracellular growth and virulence. |
SrfJ | +/+ | glucosylceramidase | Affects cell communication, the immune response and cell death. |
SipC | +/− | Cytokeratin 8, cytokeratin 18, Exo70, F-actin, syntaxin 6 | Formation of the SPI-1 T3SS needle complex, targets F-actin to allow invasion. |
SipD | +/− | Formation of the SPI-1 T3SS needle complex, promotes the secretion of effectors. | |
SteD | −/+ | MHCII, MARCH8 | Inhibits antigen presentation. |
SseB | −/+ | Part of the SPI-2 translocon. | |
SseC | −/+ | Part of the SPI-2 translocon. | |
SseD | −/+ | Part of the SPI-2 translocon. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worley, M.J. Salmonella Type III Secretion System Effectors. Int. J. Mol. Sci. 2025, 26, 2611. https://doi.org/10.3390/ijms26062611
Worley MJ. Salmonella Type III Secretion System Effectors. International Journal of Molecular Sciences. 2025; 26(6):2611. https://doi.org/10.3390/ijms26062611
Chicago/Turabian StyleWorley, Micah J. 2025. "Salmonella Type III Secretion System Effectors" International Journal of Molecular Sciences 26, no. 6: 2611. https://doi.org/10.3390/ijms26062611
APA StyleWorley, M. J. (2025). Salmonella Type III Secretion System Effectors. International Journal of Molecular Sciences, 26(6), 2611. https://doi.org/10.3390/ijms26062611