Clonal Hematopoiesis of Indeterminate Potential and Atrial Fibrillation: Insights into Pathophysiology and Clinical Implications
Abstract
:1. Introduction
2. Mechanistic Insights
2.1. CHIP, Inflammation and Atrial Remodeling
2.2. CHIP and Altered Calcium Handling
2.3. CHIP and Thrombogenic Potential
3. Clinical Evidence
Evidence from Mendelian Randomization
4. Clinical Implications of CHIP in the Management of AF
5. Therapeutic Targeting of CHIP in AF
6. Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A.; Mensah, G.A.; Abate, Y.H.; Abbasian, M.; Abd-Allah, F.; Abdollahi, A.; Abdollahi, M.; et al. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef] [PubMed]
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.-H.; McAnulty, J.H.J.; Zheng, Z.-J.; et al. Worldwide Epidemiology of Atrial Fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report from the American Heart Association. Circulation 2019, 139, 10. [Google Scholar] [CrossRef] [PubMed]
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef]
- Karakasis, P.; Pamporis, K.; Siontis, K.C.; Theofilis, P.; Samaras, A.; Patoulias, D.; Stachteas, P.; Karagiannidis, E.; Stavropoulos, G.; Tzikas, A.; et al. Major Clinical Outcomes in Symptomatic vs. Asymptomatic Atrial Fibrillation: A Meta-Analysis. Eur. Heart J. 2024, ehae694. [Google Scholar] [CrossRef]
- Tan, S.; Zhou, J.; Veang, T.; Lin, Q.; Liu, Q. Global, Regional, and National Burden of Atrial Fibrillation and Atrial Flutter from 1990 to 2021: Sex Differences and Global Burden Projections to 2046—A Systematic Analysis of the Global Burden of Disease Study 2021. EP Eur. 2025, 27, euaf027. [Google Scholar] [CrossRef]
- Buja, A.; Rebba, V.; Montecchio, L.; Renzo, G.; Baldo, V.; Cocchio, S.; Ferri, N.; Migliore, F.; Zorzi, A.; Collins, B.; et al. The Cost of Atrial Fibrillation: A Systematic Review. Value Health 2024, 27, 527–541. [Google Scholar] [CrossRef]
- Kamel, H.; Longstreth, W.T.J.; Tirschwell, D.L.; Kronmal, R.A.; Broderick, J.P.; Palesch, Y.Y.; Meinzer, C.; Dillon, C.; Ewing, I.; Spilker, J.A.; et al. The AtRial Cardiopathy and Antithrombotic Drugs In Prevention After Cryptogenic Stroke Randomized Trial: Rationale and Methods. Int. J. stroke Off. J. Int. Stroke Soc. 2019, 14, 207–214. [Google Scholar] [CrossRef]
- Goette, A.; Kalman, J.M.; Aguinaga, L.; Akar, J.; Cabrera, J.A.; Chen, S.A.; Chugh, S.S.; Corradi, D.; D’Avila, A.; Dobrev, D.; et al. EHRA/HRS/APHRS/SOLAECE Expert Consensus on Atrial Cardiomyopathies: Definition, Characterization, and Clinical Implication. EP Eur. 2016, 18, 1455–1490. [Google Scholar] [CrossRef]
- Schotten, U.; Verheule, S.; Kirchhof, P.; Goette, A. Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal. Physiol. Rev. 2011, 91, 265–325. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Popovic, D.S.; Pamporis, K.; Theofilis, P.; Nasoufidou, A.; Stachteas, P.; Samaras, A.; Tzikas, A.; Giannakoulas, G.; et al. Effects of Mineralocorticoid Receptor Antagonists on New-Onset or Recurrent Atrial Fibrillation: A Bayesian and Frequentist Network Meta-Analysis of Randomized Trials. Curr. Probl. Cardiol. 2024, 49, 102742. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Theofilis, P.; Vlachakis, P.K.; Korantzopoulos, P.; Patoulias, D.; Antoniadis, A.P.; Fragakis, N. Atrial Fibrosis in Atrial Fibrillation: Mechanistic Insights, Diagnostic Challenges, and Emerging Therapeutic Targets. Int. J. Mol. Sci. 2024, 26, 209. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Nattel, S.; Lip, G.Y.H.; Ren, J. Inflammasome Signaling in Atrial Fibrillation: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 2349–2366. [Google Scholar] [CrossRef]
- Hu, Y.-F.; Chen, Y.-J.; Lin, Y.-J.; Chen, S.-A. Inflammation and the Pathogenesis of Atrial Fibrillation. Nat. Rev. Cardiol. 2015, 12, 230–243. [Google Scholar] [CrossRef]
- Moehrle, B.M.; Geiger, H. Aging of Hematopoietic Stem Cells: DNA Damage and Mutations? Exp. Hematol. 2016, 44, 895–901. [Google Scholar] [CrossRef]
- Shlush, L.I. Age-Related Clonal Hematopoiesis. Blood 2018, 131, 496–504. [Google Scholar] [CrossRef]
- Jaiswal, S.; Libby, P. Clonal Haematopoiesis: Connecting Ageing and Inflammation in Cardiovascular Disease. Nat. Rev. Cardiol. 2020, 17, 137–144. [Google Scholar] [CrossRef]
- Jaiswal, S.; Ebert, B.L. Clonal Hematopoiesis in Human Aging and Disease. Science 2019, 366, eaan4673. [Google Scholar] [CrossRef]
- Xie, M.; Lu, C.; Wang, J.; McLellan, M.D.; Johnson, K.J.; Wendl, M.C.; McMichael, J.F.; Schmidt, H.K.; Yellapantula, V.; Miller, C.A.; et al. Age-Related Mutations Associated with Clonal Hematopoietic Expansion and Malignancies. Nat. Med. 2014, 20, 1472–1478. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Jakubek, Y.A.; Reiner, A.P.; Honigberg, M.C. Risk Factors for Clonal Hematopoiesis of Indeterminate Potential and Mosaic Chromosomal Alterations. Transl. Res. 2023, 255, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.D.M.; Nguyen, N.Q.H.; Yu, B.; Brody, J.A.; Pampana, A.; Nakao, T.; Fornage, M.; Bressler, J.; Sotoodehnia, N.; Weinstock, J.S.; et al. Clonal Hematopoiesis of Indeterminate Potential, DNA Methylation, and Risk for Coronary Artery Disease. Nat. Commun. 2022, 13, 5350. [Google Scholar] [CrossRef] [PubMed]
- Gajagowni, S.; Hopkins, S.; Qadeer, Y.; Virani, S.S.; Verdonschot, J.A.J.; Coombs, C.C.; Amos, C.I.; Nead, K.T.; Jaiswal, S.; Krittanawong, C. Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Disease: Pathogenesis, Clinical Presentation, and Future Directions. Prog. Cardiovasc. Dis. 2024, 86, 79–85. [Google Scholar] [CrossRef]
- Jaiswal, S.; Natarajan, P.; Silver, A.J.; Gibson, C.J.; Bick, A.G.; Shvartz, E.; McConkey, M.; Gupta, N.; Gabriel, S.; Ardissino, D.; et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 111–121. [Google Scholar] [CrossRef]
- Honigberg, M.C.; Zekavat, S.M.; Niroula, A.; Griffin, G.K.; Bick, A.G.; Pirruccello, J.P.; Nakao, T.; Whitsel, E.A.; Farland, L.V.; Laurie, C.; et al. Premature Menopause, Clonal Hematopoiesis, and Coronary Artery Disease in Postmenopausal Women. Circulation 2021, 143, 410–423. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Zekavat, S.M.; Haessler, J.; Fornage, M.; Raffield, L.; Uddin, M.M.; Bick, A.G.; Niroula, A.; Yu, B.; Gibson, C.; et al. Clonal Hematopoiesis Is Associated with Higher Risk of Stroke. Stroke 2022, 53, 788–797. [Google Scholar] [CrossRef]
- Assmus, B.; Cremer, S.; Kirschbaum, K.; Culmann, D.; Kiefer, K.; Dorsheimer, L.; Rasper, T.; Abou-El-Ardat, K.; Herrmann, E.; Berkowitsch, A.; et al. Clonal Haematopoiesis in Chronic Ischaemic Heart Failure: Prognostic Role of Clone Size for DNMT3A- and TET2-Driver Gene Mutations. Eur. Heart J. 2021, 42, 257–265. [Google Scholar] [CrossRef]
- Cochran, J.D.; Yura, Y.; Thel, M.C.; Doviak, H.; Polizio, A.H.; Arai, Y.; Arai, Y.; Horitani, K.; Park, E.; Chavkin, N.W.; et al. Clonal Hematopoiesis in Clinical and Experimental Heart Failure with Preserved Ejection Fraction. Circulation 2023, 148, 1165–1178. [Google Scholar] [CrossRef]
- Yu, B.; Roberts, M.B.; Raffield, L.M.; Zekavat, S.M.; Nguyen, N.Q.H.; Biggs, M.L.; Brown, M.R.; Griffin, G.; Desai, P.; Correa, A.; et al. Association of Clonal Hematopoiesis with Incident Heart Failure. J. Am. Coll. Cardiol. 2021, 78, 42–52. [Google Scholar] [CrossRef]
- Svensson, E.C.; Madar, A.; Campbell, C.D.; He, Y.; Sultan, M.; Healey, M.L.; Xu, H.; D’Aco, K.; Fernandez, A.; Wache-Mainier, C.; et al. TET2-Driven Clonal Hematopoiesis and Response to Canakinumab: An Exploratory Analysis of the CANTOS Randomized Clinical Trial. JAMA Cardiol. 2022, 7, 521–528. [Google Scholar] [CrossRef]
- Reiner, A.P.; Roberts, M.B.; Honigberg, M.C.; Kooperberg, C.; Desai, P.; Bick, A.G.; Natarajan, P.; Manson, J.E.; Whitsel, E.A.; Eaton, C.B. Association of Clonal Hematopoiesis of Indeterminate Potential with Incident Heart Failure with Preserved Ejection Fraction. medRxiv 2023. [Google Scholar] [CrossRef]
- Cremer, S.; Kirschbaum, K.; Berkowitsch, A.; John, D.; Kiefer, K.; Dorsheimer, L.; Wagner, J.; Rasper, T.; Abou-El-Ardat, K.; Assmus, B.; et al. Multiple Somatic Mutations for Clonal Hematopoiesis Are Associated with Increased Mortality in Patients with Chronic Heart Failure. Circ. Genom. Precis. Med. 2020, 13, e003003. [Google Scholar] [CrossRef] [PubMed]
- Dorsheimer, L.; Assmus, B.; Rasper, T.; Ortmann, C.A.; Ecke, A.; Abou-El-Ardat, K.; Schmid, T.; Brüne, B.; Wagner, S.; Serve, H.; et al. Association of Mutations Contributing to Clonal Hematopoiesis with Prognosis in Chronic Ischemic Heart Failure. JAMA Cardiol. 2019, 4, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Figal, D.A.; Bayes-Genis, A.; Díez-Díez, M.; Hernández-Vicente, Á.; Vázquez-Andrés, D.; de la Barrera, J.; Vazquez, E.; Quintas, A.; Zuriaga, M.A.; Asensio-López, M.C.; et al. Clonal Hematopoiesis and Risk of Progression of Heart Failure with Reduced Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2021, 77, 1747–1759. [Google Scholar] [CrossRef]
- Schuermans, A.; Vlasschaert, C.; Nauffal, V.; Cho, S.M.J.; Uddin, M.M.; Nakao, T.; Niroula, A.; Klarqvist, M.D.R.; Weeks, L.D.; Lin, A.E.; et al. Clonal Haematopoiesis of Indeterminate Potential Predicts Incident Cardiac Arrhythmias. Eur. Heart J. 2024, 45, 791–805. [Google Scholar] [CrossRef]
- Scolari, F.L.; Brahmbhatt, D.H.; Abelson, S.; Medeiros, J.J.F.; Anker, M.S.; Fung, N.L.; Otsuki, M.; Calvillo-Argüelles, O.; Lawler, P.R.; Ross, H.J.; et al. Clonal Hematopoiesis Confers an Increased Mortality Risk in Orthotopic Heart Transplant Recipients. Am. J. Transplant. 2022, 22, 3078–3086. [Google Scholar] [CrossRef]
- Shi, C.; Aboumsallem, J.P.; Suthahar, N.; de Graaf, A.O.; Jansen, J.H.; van Zeventer, I.A.; Bracun, V.; de Wit, S.; Screever, E.M.; van den Berg, P.F.; et al. Clonal Haematopoiesis of Indeterminate Potential: Associations with Heart Failure Incidence, Clinical Parameters and Biomarkers. Eur. J. Heart Fail. 2023, 25, 4–13. [Google Scholar] [CrossRef]
- Sikking, M.A.; Stroeks, S.L.V.M.; Henkens, M.T.H.M.; Raafs, A.G.; Cossins, B.; van Deuren, R.C.; Steehouwer, M.; Riksen, N.P.; van den Wijngaard, A.; Brunner, H.G.; et al. Clonal Hematopoiesis Has Prognostic Value in Dilated Cardiomyopathy Independent of Age and Clone Size. JACC Heart Fail. 2024, 12, 905–914. [Google Scholar] [CrossRef]
- Wu, J.M.F.; Bekfani, T.; Hinze, A.; Westphal, J.G.; Steinacker, B.; Zeller, M.; Hartmann, C.; Möbius-Winkler, S.; Hochhaus, A.; Schulze, P.C.; et al. Clonal Haematopoiesis of Indeterminate Potential-Related Mutations and Outcome in Dilated and Ischaemic Cardiomyopathy. ESC Heart Fail. 2022, 9, 3954–3960. [Google Scholar] [CrossRef]
- Ahn, H.-J.; An, H.Y.; Ryu, G.; Lim, J.; Sun, C.; Song, H.; Choi, S.-Y.; Lee, H.; Maurer, T.; Nachun, D.; et al. Clonal Haematopoiesis of Indeterminate Potential and Atrial Fibrillation: An East Asian Cohort Study. Eur. Heart J. 2024, 45, 778–790. [Google Scholar] [CrossRef]
- Lin, A.E.; Bapat, A.C.; Xiao, L.; Niroula, A.; Ye, J.; Wong, W.J.; Agrawal, M.; Farady, C.J.; Boettcher, A.; Hergott, C.B.; et al. Clonal Hematopoiesis of Indeterminate Potential with Loss of Tet2 Enhances Risk for Atrial Fibrillation Through Nlrp3 Inflammasome Activation. Circulation 2024, 149, 1419–1434. [Google Scholar] [CrossRef] [PubMed]
- Abplanalp, W.T.; Cremer, S.; John, D.; Hoffmann, J.; Schuhmacher, B.; Merten, M.; Rieger, M.A.; Vasa-Nicotera, M.; Zeiher, A.M.; Dimmeler, S. Clonal Hematopoiesis-Driver DNMT3A Mutations Alter Immune Cells in Heart Failure. Circ. Res. 2021, 128, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.J.; MacLauchlan, S.; Zuriaga, M.A.; Polackal, M.N.; Ostriker, A.C.; Chakraborty, R.; Wu, C.-L.; Sano, S.; Muralidharan, S.; Rius, C.; et al. Clonal Hematopoiesis Associated with TET2 Deficiency Accelerates Atherosclerosis Development in Mice. Science 2017, 355, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Guillotin, F.; Mercier, É.; Fortier, M.; Bouvier, S.; Jacquet, Q.; Dallo, M.; Chéa, M.; Bourguignon, C.; Cochery-Nouvellon, É.; Perez-Martin, A.; et al. Clonal Haematopoiesis of Indeterminate Potential in Patients with Venous Thromboembolism. J. Thromb. Thrombolysis 2023, 56, 351–354. [Google Scholar] [CrossRef]
- Zon, R.L.; Sekar, A.; Clapham, K.; Oren, O.; Niroula, A.; Bick, A.G.; Gibson, C.J.; Griffin, G.; Uddin, M.M.; Neuberg, D.; et al. JAK2-Mutant Clonal Hematopoiesis Is Associated with Venous Thromboembolism. Blood 2024, 144, 2149–2154. [Google Scholar] [CrossRef]
- Liu, Q.; Smedby, K.E.; Xue, H.; Wästerlid, T.; Li, J.; Fang, F.; Liu, X. Clonal Hematopoiesis of Indeterminate Potential and the Risk of Pulmonary Embolism: An Observational Study. EClinicalMedicine 2024, 74, 102753. [Google Scholar] [CrossRef]
- Libby, P.; Sidlow, R.; Lin, A.E.; Gupta, D.; Jones, L.W.; Moslehi, J.; Zeiher, A.; Jaiswal, S.; Schulz, C.; Blankstein, R.; et al. Clonal Hematopoiesis: Crossroads of Aging, Cardiovascular Disease, and Cancer: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 567–577. [Google Scholar] [CrossRef]
- Sano, S.; Oshima, K.; Wang, Y.; MacLauchlan, S.; Katanasaka, Y.; Sano, M.; Zuriaga, M.A.; Yoshiyama, M.; Goukassian, D.; Cooper, M.A.; et al. Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through a Mechanism Involving the IL-1β/NLRP3 Inflammasome. J. Am. Coll. Cardiol. 2018, 71, 875–886. [Google Scholar] [CrossRef]
- Leoni, C.; Montagner, S.; Rinaldi, A.; Bertoni, F.; Polletti, S.; Balestrieri, C.; Monticelli, S. Dnmt3a Restrains Mast Cell Inflammatory Responses. Proc. Natl. Acad. Sci. USA 2017, 114, E1490–E1499. [Google Scholar] [CrossRef]
- Gaudino, M.; Andreotti, F.; Zamparelli, R.; Di Castelnuovo, A.; Nasso, G.; Burzotta, F.; Iacoviello, L.; Donati, M.B.; Schiavello, R.; Maseri, A.; et al. The −174G/C Interleukin-6 Polymorphism Influences Postoperative Interleukin-6 Levels and Postoperative Atrial Fibrillation. Is Atrial Fibrillation an Inflammatory Complication? Circulation 2003, 108 (Suppl. S1), II-195. [Google Scholar] [CrossRef]
- Boos, C.J.; Anderson, R.A.; Lip, G.Y.H. Is Atrial Fibrillation an Inflammatory Disorder? Eur. Heart J. 2006, 27, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Smit, M.D.; Maass, A.H.; De Jong, A.M.; Muller Kobold, A.C.; Van Veldhuisen, D.J.; Van Gelder, I.C. Role of Inflammation in Early Atrial Fibrillation Recurrence. EP Eur. 2012, 14, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Ninni, S.; Dombrowicz, D.; Kuznetsova, T.; Vicario, R.; Gao, V.; Molendi-Coste, O.; Haas, J.; Woitrain, E.; Coisne, A.; Neele, A.E.; et al. Hematopoietic Somatic Mosaicism Is Associated with an Increased Risk of Postoperative Atrial Fibrillation. J. Am. Coll. Cardiol. 2023, 81, 1263–1278. [Google Scholar] [CrossRef] [PubMed]
- Sano, S.; Oshima, K.; Wang, Y.; Katanasaka, Y.; Sano, M.; Walsh, K. CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. Circ. Res. 2018, 123, 335–341. [Google Scholar] [CrossRef]
- Shumliakivska, M.; Luxán, G.; Hemmerling, I.; Scheller, M.; Li, X.; Müller-Tidow, C.; Schuhmacher, B.; Sun, Z.; Dendorfer, A.; Debes, A.; et al. DNMT3A Clonal Hematopoiesis-Driver Mutations Induce Cardiac Fibrosis by Paracrine Activation of Fibroblasts. Nat. Commun. 2024, 15, 606. [Google Scholar] [CrossRef]
- Min, K.-D.; Polizio, A.H.; Kour, A.; Thel, M.C.; Walsh, K. Experimental ASXL1-Mediated Clonal Hematopoiesis Promotes Inflammation and Accelerates Heart Failure. J. Am. Heart Assoc. 2022, 11, e026154. [Google Scholar] [CrossRef]
- Yura, Y.; Miura-Yura, E.; Katanasaka, Y.; Min, K.-D.; Chavkin, N.; Polizio, A.H.; Ogawa, H.; Horitani, K.; Doviak, H.; Evans, M.A.; et al. The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene Ppm1d Promotes Inflammation and Non-Ischemic Heart Failure in Mice. Circ. Res. 2021, 129, 684–698. [Google Scholar] [CrossRef]
- Kostin, S.; Klein, G.; Szalay, Z.; Hein, S.; Bauer, E.P.; Schaper, J. Structural Correlate of Atrial Fibrillation in Human Patients. Cardiovasc. Res. 2002, 54, 361–379. [Google Scholar] [CrossRef]
- Junttila, M.J.; Holmström, L.; Pylkäs, K.; Mantere, T.; Kaikkonen, K.; Porvari, K.; Kortelainen, M.-L.; Pakanen, L.; Kerkelä, R.; Myerburg, R.J.; et al. Primary Myocardial Fibrosis as an Alternative Phenotype Pathway of Inherited Cardiac Structural Disorders. Circulation 2018, 137, 2716–2726. [Google Scholar] [CrossRef]
- Yao, C.; Veleva, T.; Scott, L., Jr.; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Taha, I.D.; et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2018, 138, 2227–2242. [Google Scholar] [CrossRef]
- Lazzerini, P.E.; Abbate, A.; Boutjdir, M.; Capecchi, P.L. Fir(e)Ing the Rhythm: Inflammatory Cytokines and Cardiac Arrhythmias. JACC Basic Transl. Sci. 2023, 8, 728–750. [Google Scholar] [CrossRef] [PubMed]
- Grune, J.; Yamazoe, M.; Nahrendorf, M. Electroimmunology and Cardiac Arrhythmia. Nat. Rev. Cardiol. 2021, 18, 547–564. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Ismail, W.; Fernandez, J.A.; Binder, M.; Lasho, T.L.; Kim, M.; Geyer, S.M.; Mazzone, A.; Finke, C.M.; Mangaonkar, A.A.; Lee, J.-H.; et al. Single-Cell Multiomics Reveal Divergent Effects of DNMT3A- and TET2-Mutant Clonal Hematopoiesis in Inflammatory Response. Blood Adv. 2025, 9, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Cull, A.H.; Snetsinger, B.; Buckstein, R.; Wells, R.A.; Rauh, M.J. Tet2 Restrains Inflammatory Gene Expression in Macrophages. Exp. Hematol. 2017, 55, 56–70.e13. [Google Scholar] [CrossRef]
- Shumliakivska, M.; Pennoyer, P.; Fleck, F.; Cremer, S.; Kirschbaum, K.; Zanders, L.; Zeiher, A.; Dimmeler, S. Impact of Paracrine Effects of Different Clonal Hematopoiesis-Driver Mutations in Human Macrophages on Cardiac Cells. Eur. Heart J. 2024, 45, ehae666.3649. [Google Scholar] [CrossRef]
- Pallisgaard, J.; Greve, A.M.; Lock-Hansen, M.; Thune, J.J.; Fosboel, E.L.; Devereux, R.B.; Okin, P.M.; Gislason, G.H.; Torp-Pedersen, C.; Bang, C.N. Atrial Fibrillation Onset before Heart Failure or Vice Versa: What Is Worst? A Nationwide Register Study. EP Eur. 2023, 25, 283–290. [Google Scholar] [CrossRef]
- Nattel, S.; Harada, M. Atrial Remodeling and Atrial Fibrillation: Recent Advances and Translational Perspectives. J. Am. Coll. Cardiol. 2014, 63, 2335–2345. [Google Scholar] [CrossRef]
- Ihara, K.; Sugiyama, K.; Takahashi, K.; Yamazoe, M.; Sasano, T.; Furukawa, T. Electrophysiological Assessment of Murine Atria with High-Resolution Optical Mapping. J. Vis. Exp. 2018, e56478. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Dobrev, D.; Wehrens, X.H.T. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017, 120, 1969–1993. [Google Scholar] [CrossRef]
- Hove-Madsen, L.; Llach, A.; Bayes-Genís, A.; Roura, S.; Font, E.R.; Arís, A.; Cinca, J. Atrial Fibrillation Is Associated with Increased Spontaneous Calcium Release from the Sarcoplasmic Reticulum in Human Atrial Myocytes. Circulation 2004, 110, 1358–1363. [Google Scholar] [CrossRef]
- Yang, P.; Chen, Z.; Huang, W.; Zhang, J.; Zou, L.; Wang, H. Communications between Macrophages and Cardiomyocytes. Cell Commun. Signal. 2023, 21, 206. [Google Scholar] [CrossRef] [PubMed]
- Bapat, A.; Li, G.; Xiao, L.; Yeri, A.; Hulsmans, M.; Grune, J.; Yamazoe, M.; Schloss, M.J.; Iwamoto, Y.; Tedeschi, J.; et al. Genetic Inhibition of Serum Glucocorticoid Kinase 1 Prevents Obesity-Related Atrial Fibrillation. JCI Insight 2022, 7, e160885. [Google Scholar] [CrossRef] [PubMed]
- Scott, L., Jr.; Fender, A.C.; Saljic, A.; Li, L.; Chen, X.; Wang, X.; Linz, D.; Lang, J.; Hohl, M.; Twomey, D.; et al. NLRP3 Inflammasome Is a Key Driver of Obesity-Induced Atrial Arrhythmias. Cardiovasc. Res. 2021, 117, 1746–1759. [Google Scholar] [CrossRef]
- Hulsmans, M.; Schloss, M.J.; Lee, I.-H.; Bapat, A.; Iwamoto, Y.; Vinegoni, C.; Paccalet, A.; Yamazoe, M.; Grune, J.; Pabel, S.; et al. Recruited Macrophages Elicit Atrial Fibrillation. Science 2023, 381, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, A.; Bolton, K.L.; Devlin, S.M.; Sanchez-Vega, F.; Gao, J.; Mones, J.V.; Wills, J.; Kelly, D.; Farina, M.; Cordner, K.B.; et al. Genomic Profiling Identifies Somatic Mutations Predicting Thromboembolic Risk in Patients with Solid Tumors. Blood 2021, 137, 2103–2113. [Google Scholar] [CrossRef]
- Hobbs, C.M.; Manning, H.; Bennett, C.; Vasquez, L.; Severin, S.; Brain, L.; Mazharian, A.; Guerrero, J.A.; Li, J.; Soranzo, N.; et al. JAK2V617F Leads to Intrinsic Changes in Platelet Formation and Reactivity in a Knock-in Mouse Model of Essential Thrombocythemia. Blood 2013, 122, 3787–3797. [Google Scholar] [CrossRef]
- Arellano-Rodrigo, E.; Alvarez-Larrán, A.; Reverter, J.C.; Villamor, N.; Colomer, D.; Cervantes, F. Increased Platelet and Leukocyte Activation as Contributing Mechanisms for Thrombosis in Essential Thrombocythemia and Correlation with the JAK2 Mutational Status. Haematologica 2006, 91, 169–175. [Google Scholar]
- Liu, W.; Pircher, J.; Schuermans, A.; Ul Ain, Q.; Zhang, Z.; Honigberg, M.C.; Yalcinkaya, M.; Nakao, T.; Pournamadri, A.; Xiao, T.; et al. Jak2V617F Clonal Hematopoiesis Promotes Arterial Thrombosis via Platelet Activation and Cross Talk. Blood 2024, 143, 1539–1550. [Google Scholar] [CrossRef]
- Veninga, A.; De Simone, I.; Heemskerk, J.W.M.; Ten Cate, H.; van der Meijden, P.E.J. Clonal Hematopoietic Mutations Linked to Platelet Traits and the Risk of Thrombosis or Bleeding. Haematologica 2020, 105, 2020–2031. [Google Scholar] [CrossRef]
- Sozer, S.; Fiel, M.I.; Schiano, T.; Xu, M.; Mascarenhas, J.; Hoffman, R. The Presence of JAK2V617F Mutation in the Liver Endothelial Cells of Patients with Budd-Chiari Syndrome. Blood 2009, 113, 5246–5249. [Google Scholar] [CrossRef]
- Qiu, X.; Weng, J.; Jiang, Y.; Cui, L.; Gu, H.; Jiang, Y.; Dai, Y.; Li, H.; Wang, Y.; Li, Z. Association between Clonal Hematopoiesis-Related Gene Mutations and Unfavorable Functional Outcome in Patients with Large-Artery Atherosclerotic Stroke. Eur. J. Med. Res. 2023, 28, 599. [Google Scholar] [CrossRef] [PubMed]
- Saadatagah, S.; Kim, R.; Sukumar, S.; Uddin, M.M.; Folsom, A.R.; Cushman, M.; Tang, W.; Natarajan, P.; Ballantyne, C.M.; Lutsey, P.; et al. Association of Clonal Hematopoiesis of Indeterminate Potential (CHIP) with Incidence of Venous Thromboembolism Varies By Age: The Atherosclerosis Risk in Communities Study. Blood 2024, 144, 13. [Google Scholar] [CrossRef]
- Akhiyat, N.; Lasho, T.; Ganji, M.; Toya, T.; Shi, C.-X.; Chen, X.; Braggio, E.; Ahmad, A.; Corban, M.T.; Stewart, K.; et al. Clonal Hematopoiesis of Indeterminate Potential Is Associated with Coronary Microvascular Dysfunction In Early Nonobstructive Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 774–783. [Google Scholar] [CrossRef]
- Saadatagah, S.; Naderian, M.; Uddin, M.; Dikilitas, O.; Niroula, A.; Schuermans, A.; Selvin, E.; Hoogeveen, R.C.; Matsushita, K.; Nambi, V.; et al. Atrial Fibrillation and Clonal Hematopoiesis in TET2 and ASXL1. JAMA Cardiol. 2024, 9, 497–506. [Google Scholar] [CrossRef]
- Regan, J.A.; Kwee, L.C.; Nafissi, N.A.; Bick, A.G.; Kraus, W.E.; Natarajan, P.; Jaiswal, S.; Shah, S.H. Clonal Hematopoiesis Associates with Prevalent and Incident Cardiometabolic Disease in High-Risk Individuals. medRxiv 2025. [Google Scholar] [CrossRef]
- Kar, S.P.; Quiros, P.M.; Gu, M.; Jiang, T.; Mitchell, J.; Langdon, R.; Iyer, V.; Barcena, C.; Vijayabaskar, M.S.; Fabre, M.A.; et al. Genome-Wide Analyses of 200,453 Individuals Yield New Insights into the Causes and Consequences of Clonal Hematopoiesis. Nat. Genet. 2022, 54, 1155–1166. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Smith, G.D. Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ 2018, 362, k601. [Google Scholar] [CrossRef]
- Smith, G.D.; Ebrahim, S. Mendelian Randomization: Prospects, Potentials, and Limitations. Int. J. Epidemiol. 2004, 33, 30–42. [Google Scholar] [CrossRef]
- Korantzopoulos, P.; Letsas, K.P.; Tse, G.; Fragakis, N.; Goudis, C.A.; Liu, T. Inflammation and Atrial Fibrillation: A Comprehensive Review. J. arrhythmia 2018, 34, 394–401. [Google Scholar] [CrossRef]
- Watson, T.; Shantsila, E.; Lip, G.Y.H. Mechanisms of Thrombogenesis in Atrial Fibrillation: Virchow’s Triad Revisited. Lancet 2009, 373, 155–166. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, Y.; Cai, L.; Yu, B.; Wang, Y.; Tan, X.; Wan, H.; Xu, D.; Zhang, J.; Qi, L.; et al. Non-Traditional Risk Factors for Atrial Fibrillation: Epidemiology, Mechanisms, and Strategies. Eur. Heart J. 2024, 46, ehae887. [Google Scholar] [CrossRef] [PubMed]
- Nattel, S.; Guasch, E.; Savelieva, I.; Cosio, F.G.; Valverde, I.; Halperin, J.L.; Conroy, J.M.; Al-Khatib, S.M.; Hess, P.L.; Kirchhof, P.; et al. Early Management of Atrial Fibrillation to Prevent Cardiovascular Complications. Eur. Heart J. 2014, 35, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Marwick, T.H.; Popescu, B.A.; Donal, E.; Badano, L.P. Left Atrial Structure and Function, and Left Ventricular Diastolic Dysfunction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1961–1977. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, A.; Lee, V.; Friedman, P.A.; Trusty, J.M.; Hodge, D.O.; Kopecky, S.L.; Packer, D.L.; Hammill, S.C.; Shen, W.-K.; Gersh, B.J. Long-Term Progression and Outcomes with Aging in Patients with Lone Atrial Fibrillation: A 30-Year Follow-up Study. Circulation 2007, 115, 3050–3056. [Google Scholar] [CrossRef]
- Blum, S.; Meyre, P.; Aeschbacher, S.; Berger, S.; Auberson, C.; Briel, M.; Osswald, S.; Conen, D. Incidence and Predictors of Atrial Fibrillation Progression: A Systematic Review and Meta-Analysis. Heart Rhythm 2019, 16, 502–510. [Google Scholar] [CrossRef]
- Andrade, J.G.; Deyell, M.W.; Macle, L.; Wells, G.A.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; et al. Progression of Atrial Fibrillation after Cryoablation or Drug Therapy. N. Engl. J. Med. 2023, 388, 105–116. [Google Scholar] [CrossRef]
- Clinical Trial for Coronary Artery Disease-ForPatients By Roche. Available online: https://forpatients.roche.com/en/trials/cardiovascular-disorder/coronary-artery-disease/a-phase-ic-multicenter--randomized--double-blind--placebo-contro.html (accessed on 18 January 2025).
- Kaminski, J.J.; Schattgen, S.A.; Tzeng, T.-C.; Bode, C.; Klinman, D.M.; Fitzgerald, K.A. Synthetic Oligodeoxynucleotides Containing Suppressive TTAGGG Motifs Inhibit AIM2 Inflammasome Activation. J. Immunol. 2013, 191, 3876–3883. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.-F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al. IL-6 Inhibition with Ziltivekimab in Patients at High Atherosclerotic Risk (RESCUE): A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. Lancet 2021, 397, 2060–2069. [Google Scholar] [CrossRef]
- Adamstein, N.H.; Cornel, J.H.; Davidson, M.; Libby, P.; de Remigis, A.; Jensen, C.; Ekström, K.; Ridker, P.M. Association of Interleukin 6 Inhibition with Ziltivekimab and the Neutrophil-Lymphocyte Ratio: A Secondary Analysis of the RESCUE Clinical Trial. JAMA Cardiol. 2023, 8, 177–181. [Google Scholar] [CrossRef]
- Cimmino, L.; Dolgalev, I.; Wang, Y.; Yoshimi, A.; Martin, G.H.; Wang, J.; Ng, V.; Xia, B.; Witkowski, M.T.; Mitchell-Flack, M.; et al. Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression. Cell 2017, 170, 1079–1095.e20. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraju, D.; Hayati, S.; Wang, J.; Harrison, C.N.; Kiladjian, J.-J.; Hernandez, C.; Brown, P.; De Menezes, D.L.; Gandhi, A.K.; Suragani, R.N. Fedratinib Treatment Reduces the Inflammatory Cytokine Profile and Decreases Exhausted T Cells Correlating with Clinical Response in Patients with Myelofibrosis: Biomarker Analysis from the Phase 3 FREEDOM2 Trial. Blood 2023, 142, 4526. [Google Scholar] [CrossRef]
- Stachteas, P.; Nasoufidou, A.; Karagiannidis, E.; Patoulias, D.; Karakasis, P.; Alexiou, S.; Samaras, A.; Zormpas, G.; Stavropoulos, G.; Tsalikakis, D.; et al. The Role of Sodium Glucose Co-Transporter 2 Inhibitors in Atrial Fibrillation: A Comprehensive Review. J. Clin. Med. 2024, 13, 5408. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Patoulias, D.; Giannakoulas, G.; Fragakis, N. Are We Ready for Expanding the Use of Sodium-Glucose Cotransporter-2 Inhibitors in Patients with Acute Myocardial Infarction? J. Cardiovasc. Pharmacol. 2024, 84, 26–28. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Pamporis, K.; Stachteas, P.; Bougioukas, K.I.; Klisic, A.; Fragakis, N.; Rizzo, M. Safety and Efficacy of the New, Oral, Small-Molecule, GLP-1 Receptor Agonists Orforglipron and Danuglipron for the Treatment of Type 2 Diabetes and Obesity: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Metabolism 2023, 149, 155710. [Google Scholar] [CrossRef]
- Karakasis, P.; Popovic, D.S.; Patoulias, D.; Koufakis, T.; Papanas, N.; Fragakis, N.; Rizzo, M. The Effect of Sodium-Glucose Cotransporter Inhibitors on Renal Function as Adjunctive to Insulin in Adults with Type 1 Diabetes: An Updated Multilevel Meta-Analysis of Randomized Controlled Trials. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2024, 15, 521–532. [Google Scholar] [CrossRef]
- Karakasis, P.; Fragakis, N.; Patoulias, D.; Theofilis, P.; Kassimis, G.; Karamitsos, T.; El-Tanani, M.; Rizzo, M. Effects of Glucagon-Like Peptide 1 Receptor Agonists on Atrial Fibrillation Recurrence After Catheter Ablation: A Systematic Review and Meta-Analysis. Adv. Ther. 2024, 41, 3749–3756. [Google Scholar] [CrossRef]
- Karakasis, P.; Pamporis, K.; Stachteas, P.; Patoulias, D.; Bougioukas, K.I.; Fragakis, N. Efficacy and Safety of Sodium-Glucose Cotransporter-2 Inhibitors in Heart Failure with Mildly Reduced or Preserved Ejection Fraction: An Overview of 36 Systematic Reviews. Heart Fail. Rev. 2023, 28, 1033–1051. [Google Scholar] [CrossRef]
- Stachteas, P.; Karakasis, P.; Patoulias, D.; Clemenza, F.; Fragakis, N.; Rizzo, M. The Effect of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Subclinical Atherosclerosis. Ann. Med. 2023, 55, 2304667. [Google Scholar] [CrossRef]
- Stachteas, P.; Karakasis, P.; Karagiannidis, E.; Patoulias, D.; Athanasiadou, P.; Nasoufidou, A.; Papadopoulos, C.; Kassimis, G.; Fragakis, N. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors in Preventing Atrial Fibrillation Recurrence after Catheter Ablation. Hell. J. Cardiol. 2024, 79, 86–87. [Google Scholar] [CrossRef]
- Karakasis, P.; Fragakis, N.; Patoulias, D.; Theofilis, P.; Sagris, M.; Koufakis, T.; Vlachakis, P.K.; Rangraze, I.R.; El Tanani, M.; Tsioufis, K.; et al. The Emerging Role of Glucagon-like Peptide-1 Receptor Agonists in the Management of Obesity-Related Heart Failure with Preserved Ejection Fraction: Benefits beyond What Scales Can Measure? Biomedicines 2024, 12, 2112. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Patoulias, D.; Kassimis, G.; Koufakis, T.; Klisic, A.; Doumas, M.; Fragakis, N.; Rizzo, M. Therapeutic Potential of Sodium-Glucose Co-Transporter-2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists for Patients with Acute Coronary Syndrome: A Review of Clinical Evidence. Curr. Pharm. Des. 2024, 30, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Patoulias, D.; Giannakoulas, G.; Sagris, M.; Theofilis, P.; Fragakis, N.; Biondi-Zoccai, G. Effect of Glucagon-like Peptide-1 Receptor Agonism on Aortic Valve Stenosis Risk: A Mendelian Randomization Analysis. J. Clin. Med. 2024, 13, 6411. [Google Scholar] [CrossRef]
- Karakasis, P.; Sagris, M.; Patoulias, D.; Koufakis, T.; Theofilis, P.; Klisic, A.; Fragakis, N.; El Tanani, M.; Rizzo, M. Mitigating Increased Cardiovascular Risk in Patients with Obstructive Sleep Apnea Using GLP-1 Receptor Agonists and SGLT2 Inhibitors: Hype or Hope? Biomedicines 2024, 12, 2503. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Fragakis, N.; Kouskouras, K.; Karamitsos, T.; Patoulias, D.; Rizzo, M. Sodium-Glucose Cotransporter-2 Inhibitors in Patients with Acute Coronary Syndrome: A Modern Cinderella? Clin. Ther. 2024, 46, 841–850. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Ruža, I.; Marra, A.M.; Gómez-Huelgas, R. Comparative Safety and Efficacy Analysis of GLP-1 Receptor Agonists and SGLT-2 Inhibitors among Frail Individuals with Type 2 Diabetes in the Era of Continuous Population Ageing. Eur. J. Intern. Med. 2024, 131, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Mylonas, N.; Nikolaou, P.E.; Karakasis, P.; Stachteas, P.; Fragakis, N.; Andreadou, I. Endothelial Protection by Sodium-Glucose Cotransporter 2 Inhibitors: A Literature Review of In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2024, 25, 7274. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Fragakis, N.; Klisic, A.; Rizzo, M. Effect of Tirzepatide on Albuminuria Levels and Renal Function in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Multilevel Meta-Analysis. Diabetes. Obes. Metab. 2024, 26, 1090–1104. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Fragakis, N.; Bernal-López, M.R.; Gómez-Huelgas, R. Glucagon-like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors Combination Therapy versus Monotherapy and Major Adverse Cardiovascular Events: Do the Benefits Add Up? Eur. J. Intern. Med. 2024, 130, 155–159. [Google Scholar] [CrossRef]
- Stachteas, P.; Nasoufidou, A.; Patoulias, D.; Karakasis, P.; Karagiannidis, E.; Mourtzos, M.-A.; Samaras, A.; Apostolidou, X.; Fragakis, N. The Role of Sodium-Glucose Co-Transporter-2 Inhibitors on Diuretic Resistance in Heart Failure. Int. J. Mol. Sci. 2024, 25, 3122. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Giannakoulas, G.; Rosenkranz, S.; Fragakis, N. Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Pulmonary Arterial Wedge Pressure. Eur. J. Intern. Med. 2024, 124, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Patoulias, D.; Tzeis, S.; Fragakis, N. Glucagon-Like Peptide-1 Receptor Agonists and Atrial Fibrillation Recurrence After Ablation: A Fire Without the Smoke? Clin. Electrophysiol. 2024, 10, 1940–1941. [Google Scholar] [CrossRef] [PubMed]
- Uthman, L.; Homayr, A.; Juni, R.P.; Spin, E.L.; Kerindongo, R.; Boomsma, M.; Hollmann, M.W.; Preckel, B.; Koolwijk, P.; van Hinsbergh, V.W.M.; et al. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cell. Physiol. Biochem. 2019, 53, 865–886. [Google Scholar] [CrossRef]
- Koizumi, T.; Watanabe, M.; Yokota, T.; Tsuda, M.; Handa, H.; Koya, J.; Nishino, K.; Tatsuta, D.; Natsui, H.; Kadosaka, T.; et al. Empagliflozin Suppresses Mitochondrial Reactive Oxygen Species Generation and Mitigates the Inducibility of Atrial Fibrillation in Diabetic Rats. Front. Cardiovasc. Med. 2023, 10, 1005408. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, M.; Suo, M.; Liu, D.; Wang, X.; Liu, M.; Pan, J.; Jin, T.; An, F. Dapagliflozin Alleviates Cardiac Fibrosis through Suppressing EndMT and Fibroblast Activation via AMPKα/TGF-β/Smad Signalling in Type 2 Diabetic Rats. J. Cell. Mol. Med. 2021, 25, 7642–7659. [Google Scholar] [CrossRef]
- Sukhanov, S.; Higashi, Y.; Yoshida, T.; Mummidi, S.; Aroor, A.R.; Russell, J.J.; Bender, S.B.; DeMarco, V.G.; Chandrasekar, B. The SGLT2 Inhibitor Empagliflozin Attenuates Interleukin-17A-Induced Human Aortic Smooth Muscle Cell Proliferation and Migration by Targeting TRAF3IP2/ROS/NLRP3/Caspase-1-Dependent IL-1β and IL-18 Secretion. Cell. Signal. 2021, 77, 109825. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, S.-G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; et al. SGLT2 Inhibition Modulates NLRP3 Inflammasome Activity via Ketones and Insulin in Diabetes with Cardiovascular Disease. Nat. Commun. 2020, 11, 2127. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Wang, Q. Effects and Mechanisms of SGLT2 Inhibitors on the NLRP3 Inflammasome, with a Focus on Atherosclerosis. Front. Endocrinol. 2022, 13, 992937. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, G.Y.; Maeng, H.J.; Kim, H.; Bae, J.H.; Kim, K.M.; Lim, S. Effects of Glucagon-Like Peptide-1 Analogue and Fibroblast Growth Factor 21 Combination on the Atherosclerosis-Related Process in a Type 2 Diabetes Mouse Model. Endocrinol. Metab. 2021, 36, 157–170. [Google Scholar] [CrossRef]
- Yadav, P.; Khurana, A.; Bhatti, J.S.; Weiskirchen, R.; Navik, U. Glucagon-like Peptide 1 and Fibroblast Growth Factor-21 in Non-Alcoholic Steatohepatitis: An Experimental to Clinical Perspective. Pharmacol. Res. 2022, 184, 106426. [Google Scholar] [CrossRef]
- Solomon, S.D.; Ostrominski, J.W.; Wang, X.; Shah, S.J.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Kitzman, D.W.; Verma, S.; Abildstrøm, S.Z.; et al. Effect of Semaglutide on Cardiac Structure and Function in Patients with Obesity-Related Heart Failure. J. Am. Coll. Cardiol. 2024, 84, 1587–1602. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.M.; Borlaug, B.A.; Zile, M.M.R.; Ruff, D.; DiMaria, J.M.; Menon, V.; Ou, Y.; Zarante, A.M.; Hurt, K.C.; Murakami, M.; et al. Tirzepatide Reduces LV Mass and Paracardiac Adipose Tissue in Obesity-Related Heart Failure: SUMMIT CMR Substudy. J. Am. Coll. Cardiol. 2024, 85, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, S.H. Anti-Inflammatory Role of Glucagon-like Peptide 1 Receptor Agonists and Its Clinical Implications. Ther. Adv. Endocrinol. Metab. 2024, 15, 20420188231222370. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, S.F.; Pusapati, S.; Anwar, M.S.; Lohana, D.; Kumar, P.; Nandula, S.A.; Nawaz, F.K.; Tracey, K.; Yang, H.; LeRoith, D.; et al. Glucagon-like Peptide-1: A Multi-Faceted Anti-Inflammatory Agent. Front. Immunol. 2023, 14, 1148209. [Google Scholar] [CrossRef]
Study (Year) | Study Type | Population (n) | Main Findings | Implications |
---|---|---|---|---|
Ahn et al. [40] (2024), ‘Clonal hematopoiesis of indeterminate potential and atrial fibrillation: An east Asian cohort study’ | Prospective cohort study | 1004 AF patients, 3341 non-AF controls | CHIP mutations were 1.4-fold more prevalent in AF patients (23.6%) compared to non-AF subjects (10.7%). Mutations in DNMT3A, TET2, and ASXL1 were associated with more severe AF progression and a 32% increased risk of adverse outcomes. | CHIP mutations may contribute to AF development and progression, serving as potential markers for risk stratification and targets for inflammation-focused therapies. |
Schuermans et al. [35] (2024), ‘Clonal hematopoiesis of indeterminate potential predicts incident cardiac arrhythmias’ | Population-based cohort | 410,702 participants | CHIP was associated with a 1.11-fold increased risk of supraventricular arrhythmias (HR: 1.11, 95% CI: 1.04–1.18), 1.09-fold increased risk of bradyarrhythmias (HR: 1.09, 95% CI: 1.01–1.19), and 1.16-fold increased risk of ventricular arrhythmias (HR: 1.16, 95% CI: 1.00–1.34). Large CHIP (VAF ≥ 10%) further increased these risks. TET2 mutations were strongly associated with cardiac arrest (HR: 1.81, 95% CI: 1.17–2.78) and myocardial fibrosis (OR: 1.69, 95% CI: 1.15–2.48). | CHIP is a potential age-related risk factor for arrhythmias and myocardial fibrosis, highlighting the need for further research and its potential role in precision medicine. |
Lin et al. [41] (2024), ‘Clonal hematopoiesis of indeterminate potential with loss of TET2 enhances risk for atrial fibrillation through NLRP3 inflammasome activation’ | Observational study and murine model | 358,097 individuals, murine experiments | CHIP was associated with a 1.11-fold increased risk of AF (HR: 1.113; 95% CI: 1.044–1.187; p = 0.001). TET2 mutations with VAF ≥ 10% showed the strongest association (HR: 1.27; 95% CI: 1.077–1.498). Murine models revealed TET2 loss increased AF susceptibility via NLRP3 activation and calcium dysregulation in atrial cardiomyocytes. | CHIP with TET2 mutations, especially with large clones, is a strong risk factor for AF. NLRP3 inflammasome inhibitors may serve as a therapeutic strategy to mitigate AF risk in individuals with TET2 CHIP. |
Saadatagah et al. [84] (2024), ‘Atrial fibrillation and clonal hematopoiesis in TET2 and ASXL1’ | Population-based prospective cohort (ARIC and UK Biobank) | 199,982 (4131 ARIC; 195,851 UK Biobank) | Large CHIP (HR: 1.12, 95% CI: 1.01–1.25; p = 0.04), large TET2 CHIP (HR: 1.29, 95% CI: 1.05–1.59; p = 0.02), and large ASXL1 CHIP (HR: 1.45, 95% CI: 1.02–2.07; p = 0.04) were associated with increased AF risk. Large TET2 CHIP correlated with elevated IL-6, and large ASXL1 CHIP with increased hs-TnT and LV mass index. | CHIP subtypes (TET2 and ASXL1) with large clone sizes are significant risk factors for AF and are linked to inflammation and cardiac remodeling. These findings support CHIP as a potential biomarker and therapeutic target for AF. |
Regan et al. [85] (2025), ‘Clonal hematopoiesis associates with prevalent and incident cardiometabolic disease in high-risk individuals’ | Observational cohort study (CATHGEN) | 8469 participants referred for cardiac catheterization | CHIP was associated with a 1.25-fold higher odds of prevalent heart failure (HF) (adjusted OR: 1.25, 95% CI: 1.01–1.55; p = 0.04). Large CHIP was associated with increased risk of overall mortality (adjusted HR: 1.17, 95% CI: 1.01–1.36; p = 0.04). Non-DNMT3A CHIP and ASXL1 CHIP were linked to higher incident AF risk (adjusted HR for ASXL1: 2.15, 95% CI: 1.15–4.04; p = 0.02). | Non-DNMT3A and ASXL1 CHIP variants are key drivers of cardiometabolic risk. Findings emphasize the need for further research into specific CHIP mutations and potential interventions targeting inflammatory pathways. |
Kar et al. [86] (2022), ‘Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis’ | Mendelian randomization | 200,453 participants | CHIP was significantly associated with an increased risk of atrial fibrillation (AF) (HR: 1.09, 95% CI: 1.04–1.15, p = 4.9 × 10−4). Larger clone size further elevated AF risk, particularly with TET2 and ASXL1 mutations. Smoking and longer leukocyte telomere length were identified as causal risk factors for CHIP. | Genetic predisposition to CHIP increases AF risk, highlighting the role of clonal expansion and inflammation in arrhythmogenesis. Targeted interventions on CHIP drivers (e.g., TET2/ASXL1) and lifestyle modifications (e.g., smoking cessation) could mitigate AF risk. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakasis, P.; Theofilis, P.; Lefkou, E.; Antoniadis, A.P.; Patoulias, D.; Korantzopoulos, P.; Fragakis, N. Clonal Hematopoiesis of Indeterminate Potential and Atrial Fibrillation: Insights into Pathophysiology and Clinical Implications. Int. J. Mol. Sci. 2025, 26, 2739. https://doi.org/10.3390/ijms26062739
Karakasis P, Theofilis P, Lefkou E, Antoniadis AP, Patoulias D, Korantzopoulos P, Fragakis N. Clonal Hematopoiesis of Indeterminate Potential and Atrial Fibrillation: Insights into Pathophysiology and Clinical Implications. International Journal of Molecular Sciences. 2025; 26(6):2739. https://doi.org/10.3390/ijms26062739
Chicago/Turabian StyleKarakasis, Paschalis, Panagiotis Theofilis, Eleftheria Lefkou, Antonios P. Antoniadis, Dimitrios Patoulias, Panagiotis Korantzopoulos, and Nikolaos Fragakis. 2025. "Clonal Hematopoiesis of Indeterminate Potential and Atrial Fibrillation: Insights into Pathophysiology and Clinical Implications" International Journal of Molecular Sciences 26, no. 6: 2739. https://doi.org/10.3390/ijms26062739
APA StyleKarakasis, P., Theofilis, P., Lefkou, E., Antoniadis, A. P., Patoulias, D., Korantzopoulos, P., & Fragakis, N. (2025). Clonal Hematopoiesis of Indeterminate Potential and Atrial Fibrillation: Insights into Pathophysiology and Clinical Implications. International Journal of Molecular Sciences, 26(6), 2739. https://doi.org/10.3390/ijms26062739