Mosaic Form of von Hippel–Lindau Syndrome: Case Report and Literature Review
Abstract
:1. Introduction
2. Results
2.1. Absence of VHL Gene Alterations in Routine Testing
2.2. VHL Mutation Analysis in Tumor Samples
2.3. Deep High-Throughput Sequencing of the VHL Exon 3 in Blood
3. Discussion
- Analysis of VHL in tumors and subsequent re-analysis of DNA sequencing data from blood or a new NGS test with high coverage of the variant localization to detect the mosaic form of VHLS.
- Validation of VUS by segregation and/or functional analysis, especially for potential splice site mutations.
- Using higher-throughput techniques, including whole-genome sequencing (WGS), which can sometimes give unexpected results. For example, the patient has been developing CNS hemangioblastomas and multiple CCRCs since the age of 20 and has no family history of VHLS; testing for point germline mutations and extended VHL deletions was negative. WGS detected a de novo balanced translocation t(1;3)(p36.3;p25) with a breakpoint in the intron 2 in the VHL, which could be considered as an inactivating event for the altered allele and a confirmation of the VHLS diagnosis [20]. Another patient, also without a family history of VHLS, has been treated for retinal angiomatosis, CNS hemangioblastomas, and multiple CCRCs since the age of 37. Sanger sequencing and MLPA did not obtain any germline VHL mutations. The WGS trio showed that the patient had a de novo germline variant, c.236A>G (p.Tyr79Cys), in a heterozygous state in the ELOC gene. This gene encodes elongin C—the main partner of pVHL in a complex for hypoxia-inducible factor (HIF) degradation. The authors further demonstrated that this variant at the functional level leads to consequences similar to inactivating VHL mutations [21]. It is noteworthy that the identical somatic variant is the most common substitution determining the “associated with the ELOC mutation type of renal carcinoma” according to the new WHO 2022 classification of kidney tumors [22]. In other words, VHLS has acquired a probable second minor candidate gene.
- Physical and dilated eye examination from age 1 year (retinal angiomatosis);
- Blood pressure and pulse measurement from age 2 years, and metanephrine analyses from age 5 years (pheochromocytoma);
- MRI of the brain and spine with/without contrast, and audiogram from age 11 years every 2 years (hemangioblastoma);
- MRI of the internal auditory canal (once) and abdomen from age 15 years every 2 years (CCRC, pheochromocytoma, renal and pancreatic lesions).
4. Materials and Methods
5. Conclusions
- Incidence of VHLS and the mosaic form of this disease may be higher than was previously thought;
- Severity of the clinical symptoms and age of manifestation do not differ among mosaic and “classic” heterozygotes for VHL mutations;
- Timely diagnosis of VHLS (including its mosaic form) is important for monitoring mutation carriers, determining surgical treatment options, and administering targeted therapy with belzutifan;
- Detection of mosaic VHLS by analyzing blood DNA can now be effectively performed using NGS, especially if FFPE tumor samples from patient are available.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VHLS | von Hippel–Lindau Syndrome |
CCRC | Clear Cell Renal Carcinoma |
MLPA | Multiplex Ligation-dependent Probe Amplification |
NCCN | National Comprehensive Cancer Network |
ACMG | American College of Medical Genetics |
ASCO | American Society of Clinical Oncology |
FFPE | Formalin-Fixed Paraffin-Embedded |
HGVS | Human Genome Variation Society |
COSMIC | Catalogue Of Somatic Mutations In Cancer |
MEN2A | Multiple Endocrine Neoplasia type 2A |
DNA | Deoxyribonucleic Acid |
IGV | Integrative Genomic Viewer |
CNS | Central Nervous System |
NGS | Next-Generation Sequencing |
CNV | Copy Number Variation |
MAF | Minor Allele Frequency |
VUS | Variant of Uncertain Significance |
PCR | Polymerase Chain Reaction |
PCR-RFLP | Polymerase Chain Reaction–Restriction Fragment Length Polymorphism |
AMP | Association for Molecular Pathology |
USA | United States of America |
FDA | Food and Drug Administration |
CAP | College of American Pathologists |
HIF | Hypoxia-Inducible Factor |
WGS | Whole-Genome Sequencing |
WHO | World Health Organization |
MRI | Magnetic Resonance Imaging |
References
- Yanus, G.A.; Kuligina, E.S.; Imyanitov, E.N. Hereditary renal cancer syndromes. Med. Sci. 2024, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.R.; Gopal, N.; Ball, M.W. Tumorigenesis mechanisms found in hereditary renal cell carcinoma: A review. Genes 2022, 13, 2122. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, J.; Zheng, S.; Wang, S. Advancements in understanding the molecular mechanisms and clinical implications of Von Hippel-Lindau syndrome: A comprehensive review. Transl. Oncol. 2025, 51, 102193. [Google Scholar] [CrossRef]
- Makino, T.; Kadomoto, S.; Izumi, K.; Mizokami, A. Epidemiology and prevention of renal cell carcinoma. Cancers 2022, 14, 4059. [Google Scholar] [CrossRef] [PubMed]
- Louise, M.; Binderup, M.; Smerdel, M.; Borgwadt, L.; Beck Nielsen, S.S.; Madsen, M.G.; Moller, H.U.; Kiilgaard, J.F.; Friis-Hansen, L.; Harbud, V.; et al. von Hippel-Lindau disease: Updated guideline for diagnosis and surveillance. Eur. J. Med. Genet. 2022, 65, 104538. [Google Scholar] [CrossRef]
- Tamura, K.; Kanazashi, Y.; Kawada, C.; Sekine, Y.; Maejima, K.; Ashida, S.; Karashima, T.; Kojima, S.; Parrish, N.F.; Kosugi, S.; et al. Variant spectrum of von Hippel-Lindau disease and its genomic heterogeneity in Japan. Hum. Mol. Genet. 2023, 32, 2046–2054. [Google Scholar] [CrossRef]
- Kaelin, W.G., Jr. von Hippel-Lindau disease: Insights into oxygen sensing, protein degradation, and cancer. J. Clin. Investig. 2022, 132, e162480. [Google Scholar] [CrossRef]
- Oldfield, L.E.; Grzybowski, J.; Grenier, S.; Chao, E.; Downs, G.S.; Farncombe, K.M.; Stockley, T.L.; Mete, O.; Kim, R.H. VHL mosaicism: The added value of multi-tissue analysis. NPJ Genom. Med. 2022, 7, 21. [Google Scholar] [CrossRef]
- Fallah, J.; Brave, M.H.; Weinstock, C.; Mehta, G.U.; Bradford, D.; Gittleman, H.; Bloomquist, E.W.; Charlab, R.; Hamed, S.S.; Miller, C.P.; et al. FDA Approval summary: Belzutifan for von Hippel-Lindau disease-associated tumors. Clin. Cancer Res. 2022, 28, 4843–4848. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology. Kidney Cancer v3.2025. Available online: https://www.nccn.org/guidelines/ (accessed on 12 January 2025).
- Sgambati, M.T.; Stolle, C.; Choyke, P.L.; Walther, M.M.; Zbar, B.; Linehan, W.M.; Glenn, G.M. Mosaicism in von Hippel-Lindau disease: Lessons from kindreds with germline mutations identified in offspring with mosaic parents. Am. J. Hum. Genet. 2000, 66, 84–91. [Google Scholar] [CrossRef]
- Santarpia, L.; Sarlis, N.J.; Santarpia, M.; Sherman, S.I.; Trimarchi, F.; Benvenga, S. Mosaicism in von Hippel-Lindau disease: An event important to recognize. J. Cell Mol. Med. 2007, 11, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhang, N.; Wang, X.; Li, T.; Ning, X.; Bu, D.; Gong, K. Mosaicism in von Hippel-Lindau disease with severe renal manifestations. Clin. Genet. 2013, 84, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Tsiatis, A.C.; Norris-Kirby, A.; Rich, R.G.; Hafez, M.J.; Gocke, C.D.; Eshleman, J.R.; Murphy, K.M. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: Diagnostic and clinical implications. J. Mol. Diagn. 2010, 12, 425–432. [Google Scholar] [CrossRef]
- Coppin, L.; Plouvier, P.; Crepin, M.; Jourdain, A.S.; Ait Yahya, E.; Richard, S.; Bressac-de Paillerets, B.; Cardot-Bauters, C.; Lejeune, S.; Leclerc, J.; et al. Optimization of next-generation sequencing technologies for von Hippel Lindau (VHL) mosaic mutation detection and development of confirmation methods. J. Mol. Diagn. 2019, 21, 462–470. [Google Scholar] [CrossRef]
- Whitman, A.; Damodharan, S.; Bhatia, A.; Puccetti, D.; Iskandar, B. Hemangioblastoma and mosaic von Hippel Lindau disease: Rare presentation and review of the literature. Childs Nerv. Syst. 2023, 39, 1361–1363. [Google Scholar] [CrossRef]
- Coppin, L.; Grutzmacher, C.; Crepin, M.; Destailleur, E.; Giraud, S.; Cardot-Bauters, C.; Porchet, N.; Pigny, P. VHL mosaicism can be detected by clinical next-generation sequencing and is not restricted to patients with a mild phenotype. Eur. J. Hum. Genet. 2014, 22, 1149–1152. [Google Scholar] [CrossRef]
- Deng, B.; Liu, C. Two tests of peripheral blood by standard methods were negative for von Hippel-Lindau mutations: A case report. Asian J. Surg. 2023, 46, 4101–4102. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.S.; Whitworth, J.; West, H.; Cook, J.; Gardiner, C.; Lim, D.H.K.; Morrison, P.J.; Hislop, R.G.; Murray, E.; NIHR Rare Disease BioResource; et al. Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing. Genes Chromosomes Cancer 2020, 59, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, C.J.; Vocke, C.D.; Lang, M.; Chen, X.; Zhao, Y.; Tran, B.; Tandon, M.; Schmidt, L.S.; Ball, M.W.; Linehan, W.M. A germline 1;3 translocation disrupting the VHL gene: A novel genetic cause for von Hippel-Lindau. J. Med. Genet. 2022, 59, 18–22. [Google Scholar] [CrossRef]
- Andreou, A.; Yngvadottir, B.; Bassaganyas, L.; Clark, G.; Martin, E.; Whitworth, J.; Cornish, A.J.; Genomics England Research Consortium; Houlston, R.S.; Rich, P.; et al. Elongin C (ELOC/TCEB1)-associated von Hippel-Lindau disease. Hum. Mol. Genet. 2022, 31, 2728–2737. [Google Scholar] [CrossRef]
- Moch, H.; Amin, M.B.; Berney, D.M.; Comperat, E.M.; Gill, A.J.; Hartmann, A.; Menon, S.; Raspollini, M.R.; Rubin, M.A.; Srigley, J.R.; et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs-part A: Renal, penile, and testicular tumours. Eur. Urol. 2022, 82, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Miller, D.T.; Schmidt, L.S.; Malkin, D.; Korf, B.R.; Eng, C.; Kwiatkowski, D.J.; Giannikou, K. Mosaicism in tumor suppressor gene syndromes: Prevalence, diagnostic strategies, and transmission risk. Annu. Rev. Genom. Hum. Genet. 2022, 23, 331–361. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Clendenning, M.; Joo, J.E.; Xue, J.; Mahmood, K.; Georgeson, P.; Como, J.; Joseland, S.; Preston, S.G.; Chan, J.M.; et al. A mosaic pathogenic variant in MSH6 causes MSH6-deficient colorectal and endometrial cancer in a patient classified as suspected Lynch syndrome: A case report. Fam. Cancer 2023, 22, 423–428. [Google Scholar] [CrossRef]
- Ye, Z.; Lin, S.; Zhao, X.; Bennett, M.F.; Brown, N.J.; Wallis, M.; Gao, X.; Sun, L.; Wu, J.; Vedururu, R.; et al. Mosaicism in tuberous sclerosis complex: Lowering the threshold for clinical reporting. Hum. Mutat. 2022, 43, 1956–1969. [Google Scholar] [CrossRef] [PubMed]
- Gomella, P.T.; Linehan, W.M.; Ball, M.W. Precision surgery and kidney cancer: Knowledge of genetic alterations influences surgical management. Genes 2021, 12, 261. [Google Scholar] [CrossRef]
- Zhang, H.; Andreou, A.; Bhatt, R.; Whitworth, J.; Yngvadottir, B.; Maher, E.R. Characteristics, aetiology and implications for management of multiple primary renal tumours: A systematic review. Eur. J. Hum. Genet. 2024, 32, 887–894. [Google Scholar] [CrossRef]
- Suarez, C.; Vieito, M.; Valdivia, A.; Gonzalez, M.; Carles, J. Selective HIF2A inhibitors in the management of clear cell renal cancer and von Hippel-Lindau-disease-associated tumors. Med. Sci. 2023, 11, 46. [Google Scholar] [CrossRef]
- Shepherd, S.T.C.; Drake, W.M.; Turajlic, S. The road to systemic therapy in von Hippel-Lindau (VHL) disease: Are we there yet? Eur. J. Cancer 2023, 182, 15–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Nguyen, C.C.; Zhang, N.T.; Fink, N.S.; John, J.D.; Venkatesh, O.G.; Roe, J.D.; Hoffman, S.C.; Lesniak, M.S.; Wolinsky, J.P.; et al. Neurological applications of belzutifan in von Hippel-Lindau disease. Neuro Oncol. 2023, 25, 827–838. [Google Scholar] [CrossRef]
- Serghini, A.; Portelli, S.; Troadec, G.; Song, C.; Pan, Q.; Pires, D.E.V.; Ascher, D.B. Characterizing and predicting ccRCC-causing missense mutations in von Hippel-Lindau disease. Hum. Mol. Genet. 2024, 33, 224–232. [Google Scholar] [CrossRef]
- Guo, S.B.; Meng, Y.; Lin, L.; Zhou, Z.Z.; Li, H.L.; Tian, X.P.; Huang, W.J. Artificial intelligence alphafold model for molecular biology and drug discovery: A machine-learning-driven informatics investigation. Mol. Cancer 2024, 23, 223. [Google Scholar] [CrossRef] [PubMed]
- Rednam, S.P.; Erez, A.; Druker, H.; Janeway, K.A.; Kamihara, J.; Kohlmann, W.K.; Nathanson, K.L.; States, L.J.; Tomlinson, G.E.; Villani, A.; et al. von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: Clinical features, genetics, and surveillance recommendations in childhood. Clin. Cancer Res. 2017, 23, e68–e75. [Google Scholar] [CrossRef]
- VHL Alliance Suggested Active Surveillance Guidelines. Available online: https://www.vhl.org/wp-content/uploads/forms/vhla-active-surveillance-guidelines.pdf (accessed on 7 March 2025).
- Knoblauch, A.L.; Blab, B.I.; Steiert, C.; Neidert, N.; Puzik, A.; Neumann-Haefelin, E.; Ganner, A.; Kotsis, F.; Schafer, T.; Neumann, H.P.H.; et al. Screening and surveillance recommendations for central nervous system hemangioblastomas in pediatric patients with Von Hippel-Lindau disease. J. Neurooncol. 2024, 168, 537–545. [Google Scholar] [CrossRef]
- Mikhailenko, D.S.; Zhinzhilo, T.A.; Kolpakov, A.V.; Kekeeva, T.V.; Strelnikov, V.V.; Nemtsova, M.V.; Kushlinskii, N.E. Specific localization of missense mutations in the VHL gene in clear cell renal cell carcinoma. Bull. Exp. Biol. Med. 2017, 163, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdottir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef]
Patient’s Phenotype | Routine Method–Negative Result | Mosaicism Verification | Reference |
---|---|---|---|
Case #1: HBs, pancreatic and renal cysts; Case #2: CCRC, HBs, pancreatic and renal cysts. | SS | Case #1: FISH; Case #2: SSCP > SS of the abnormal band | [11] |
Renal cyst, epididymal cystadenoma | SS | HPLC | [12] |
Bilateral CCRC, renal and pancreas cysts | SS | PCR-RFLP when point mutation was detected in his daughter | [13] |
HBs | SS (twice) | NGS panel for primary tumors and blood DNA | [16] |
Case #1: HB, pheochromocytoma, pancreatic endocrine tumor; Case #2: bilateral CCRC | SS | NGS panel for the VHL gene only | [17] |
HBs, CCRC, pheochromocytoma | SS and NGS panel with MAF 10% | NGS panel for primary tumors > re-analysis of NGS data with low MAF for blood sample | [8] |
HBs, CCRC, retinal angiomatosis | SS (twice), MLPA | SS of primary tumors DNA > NGS panel for targeted locus | this case report |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhaylenko, D.S.; Kuryakova, N.B.; Efremova, A.V.; Volodin, I.V.; Kutsev, S.I.; Zaletaev, D.V.; Strelnikov, V.V. Mosaic Form of von Hippel–Lindau Syndrome: Case Report and Literature Review. Int. J. Mol. Sci. 2025, 26, 2751. https://doi.org/10.3390/ijms26062751
Mikhaylenko DS, Kuryakova NB, Efremova AV, Volodin IV, Kutsev SI, Zaletaev DV, Strelnikov VV. Mosaic Form of von Hippel–Lindau Syndrome: Case Report and Literature Review. International Journal of Molecular Sciences. 2025; 26(6):2751. https://doi.org/10.3390/ijms26062751
Chicago/Turabian StyleMikhaylenko, Dmitry S., Natalya B. Kuryakova, Anna V. Efremova, Ilya V. Volodin, Sergey I. Kutsev, Dmitry V. Zaletaev, and Vladimir V. Strelnikov. 2025. "Mosaic Form of von Hippel–Lindau Syndrome: Case Report and Literature Review" International Journal of Molecular Sciences 26, no. 6: 2751. https://doi.org/10.3390/ijms26062751
APA StyleMikhaylenko, D. S., Kuryakova, N. B., Efremova, A. V., Volodin, I. V., Kutsev, S. I., Zaletaev, D. V., & Strelnikov, V. V. (2025). Mosaic Form of von Hippel–Lindau Syndrome: Case Report and Literature Review. International Journal of Molecular Sciences, 26(6), 2751. https://doi.org/10.3390/ijms26062751