Rethinking Depression—Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression’s Pathophysiology and Tailored Treatment
Abstract
:1. Introduction
2. Rise and Decline of the Standard Vision of Depression, Based on an Imbalance in Neurotransmitters
3. A New Pathophysiological Framework: The Central Core
3.1. The Depression Sources
3.1.1. Stress: General Concepts, and Relevance to Depression
3.1.2. Stress and Brain: Mechanisms Based on Brain Immunity
3.1.3. Early Life Adversities, Trauma, Loneliness and Depression
3.2. Inflammation, Nutrition, Microbiota, Physical Activity, and Pollution
3.2.1. Inflammation and Depression
3.2.2. Nutrition, Nutraceutical and Gut Microbiota
3.2.3. Nutraceutical
Probiotics
Omega-3
Zinc
N-acetylcysteine
Vitamin D
3.2.4. Physical Activity
3.2.5. Pollution Indoor, and Outdoor
4. Integrated Psychological and Biomedical Assessment and Treatment
4.1. Assessment
4.2. Treatment
5. A Clinical Case as an Example
- Results after two and eight months later
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Substance Abuse and Mental Health Services Administration. Key Substance Use and Mental Health Indicators in the United States: Results from the 2023 National Survey on Drug Use and Health (HHS Publication No. PEP24-07-021, NSDUH Series H-59). Center for Behavioural Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. Available online: https://www.samhsa.gov/data/sites/default/files/NSDUH%202023%20Annual%20Release/2023-nsduh-main-highlights.pdf (accessed on 20 December 2024).
- Arias-de la Torre, J.; Vilagut, G.; Ronaldson, A.; Bakolis, I.; Dregan, A.; Martín, V.; Martinez-Alés, G.; Molina, A.J.; Serrano-Blanco, A.; Valderas, J.M.; et al. Prevalence and variability of depressive symptoms in Europe: Update using representative data from the second and third waves of the European Health Interview Survey (EHIS-2 and EHIS-3). Lancet Public Health 2023, 8, e889–e898. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Jin, Y.; Liu, R.; Zhang, Q.; Su, Z.; Ungvari, G.S.; Tang, Y.L.; Ng, C.H.; Li, X.H.; Xiang, Y.T. Global prevalence of depression in older adults: A systematic review and meta-analysis of epidemiological surveys. Asian J. Psychiatr. 2023, 80, 103417. [Google Scholar] [CrossRef] [PubMed]
- Moitra, M.; Santomauro, D.; Degenhardt, L.; Collins, P.Y.; Whiteford, H.; Vos, T.; Ferrari, A. Estimating the risk of suicide associated with mental disorders: A systematic review and meta-regression analysis. J. Psychiatr. Res. 2021, 137, 242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Jackson, S.L.; Gillespie, C.; Merritt, R.; Yang, Q. Depressive symptoms and mortality among US adults. JAMA Netw. Open 2023, 6, e2337011. [Google Scholar] [CrossRef]
- Greenberg, P.; Chitnis, A.; Louie, D.; Suthoff, E.; Chen, S.Y.; Maitland, J.; Gagnon-Sanschagrin, P.; Fournier, A.A.; Kessler, R.C. The Economic Burden of Adults with Major Depressive Disorder in the United States (2019). Adv. Ther. 2023, 40, 4460–4479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheehan, D.V.; Harnett-Sheehan, K.; Spann, M.E.; Thompson, H.F.; Prakash, A. Assessing remission in major depressive disorder and generalized anxiety disorder clinical trials with the discan metric of the Sheehan disability scale. Int. Clin. Psychopharmacol. 2011, 26, 75–83. [Google Scholar] [CrossRef]
- Minnesota Community Measurement. Minnesota Health Care Disparities by Race, Hispanic Ethnicity, Language, and Country of Origin. 2022. Report Released October 2023. Available online: https://mncmsecure.org/website/Reports/Community%20Reports/Disparities%20by%20RELC/2022MY%20Disparities%20by%20RELC_FINAL.pdf (accessed on 6 January 2025).
- Voderholzer, U.; Barton, B.B.; Favreau, M.; Zisler, E.M.; Rief, W.; Wilhelm, M.; Schramm, E. Enduring effects of psychotherapy, antidepressants and their combination for depression: A systematic review and meta-analysis. Front. Psychiatry 2024, 15, 1415905. [Google Scholar] [CrossRef]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry 2023, 28, 3243–3256. [Google Scholar] [CrossRef]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin hypothesis of depression: Both long discarded and still supported? Mol. Psychiatry 2023, 28, 3160–3163. [Google Scholar] [CrossRef]
- Bottaccioli, A.G.; Bologna, M.; Bottaccioli, F. Psychic Life-Biological Molecule Bidirectional Relationship: Pathways, Mechanisms, and Consequences for Medical and Psychological Sciences-A Narrative Review. Int. J. Mol. Sci. 2022, 23, 3932. [Google Scholar] [CrossRef]
- Harrington, A. Mind Fixers; Norton & Company: New York, NY, USA, 2019. [Google Scholar]
- Panksepp, J. (Ed.) Textbook of Biological Psychiatry; Wiley-Liss: Hoboken, NJ, USA, 2004. [Google Scholar]
- Plomin, R.; DeFries, J.C.; Knopik, V.S. (Eds.) Behavioral Genetics, 6th ed.; Worth Publishers: New York, NY, USA, 2013. [Google Scholar]
- Kirsch, I.; Sapirstein, G. Listening to Prozac but hearing placebo: A meta-analysis of antidepressant medication. Prev. Treat. 1998, 1, Article 2a. [Google Scholar] [CrossRef]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, I.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; et al. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 2003, 301, 386–389. [Google Scholar] [CrossRef]
- Caspi, A.; Hariri, A.R.; Holmes, A.; Uher, R.; Moffitt, T.E. Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am. J. Psychiatry 2010, 167, 509–527. [Google Scholar] [CrossRef] [PubMed]
- Pigott, H.E.; Kim, T.; Xu, C.; Kirsch, I.; Amsterdam, J. What are the treatment remission, response and extent of improvement rates after up to four trials of antidepressant therapies in real-world depressed patients? A reanalysis of the STAR*D study’s patient-level data with fidelity to the original research protocol. BMJ Open 2023, 13, e063095. [Google Scholar] [CrossRef] [PubMed]
- Bartova, L.; Lanzenberger, R.; Rujescu, D.; Kasper, S. Reply to: “The serotonin theory of depression: A systematic umbrella review of the evidence” published by Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA in Molecular Psychiatry (2022 Jul 20. doi: 10.1038/s41380-022-01661-0). Mol. Psychiatry 2023, 28, 3153–3154. [Google Scholar] [CrossRef]
- Lynch, C.J.; Elbau, I.G.; Ng, T.; Ayaz, A.; Zhu, S.; Wolk, D.; Manfredi, N.; Johnson, M.; Chang, M.; Chou, J.; et al. Frontostriatal salience network expansion in individuals in depression. Nature 2024, 633, 624–633. [Google Scholar] [CrossRef]
- McEwen, B.S. Brain on stress: How the social environment gets under the skin. Proc. Natl. Acad. Sci. USA 2012, 109 (Suppl. S2), 17180–17185, Erratum in Proc. Natl. Acad. Sci. USA 2013, 110, 1561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmitz, C.N.; Sammer, G.; Neumann, E.; Blecker, C.; Gründer, G.; Adolphi, H.; Lamadé, E.K.; Pedraz-Petrozzi, B. Functional resting state connectivity is differentially associated with IL-6 and TNF-α in depression and in healthy controls. Sci. Rep. 2025, 15, 1769. [Google Scholar] [CrossRef]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef]
- Vaiserman, A.M.; Koliada, A.K. Early-life adversity and long-term neurobehavioral outcomes: Epigenome as a bridge? Hum. Genom. 2017, 11, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slavich, G.M.; Mengelkoch, S.; Cole, S.W. Human social genomics: Concepts, mechanisms, and implications for health. Lifestyle Med. 2023, 4, e75. [Google Scholar] [CrossRef] [PubMed]
- Freilich, C.D.; Markon, K.E.; Cole, S.W.; Krueger, R.F. Loneliness, epigenetic age acceleration, and chronic health conditions. Psychol. Aging 2024, 39, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Christian, L.M.; Wilson, S.; Madison, A.A.; Kamp Dush, C.M.; McDade, T.W.; Peng, J.; Andridge, R.R.; Morgan, E.; Manning, W.; Cole, S.W. Sexual minority stress and epigenetic aging. Brain Behav. Immun. 2025, 126, 24–29. [Google Scholar] [CrossRef]
- Engel, G.L. The need for a new medical model: A challenge for biomedicine. Science 1977, 196, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Rechardt, A.; Sun, G.; Nejad, K.K.; Yáñez, F.; Yilmaz, B.; Lee, K.; Cohen, A.O.; Borghesani, V.; Pashkov, A.; et al. Large language models surpass human experts in predicting neuroscience results. Nat. Hum. Behav. 2025, 9, 305–315. [Google Scholar] [CrossRef]
- Howells, H. AI beats neuroscientists’ predictions. Nat. Neurosci. 2025, 28, 3. [Google Scholar] [CrossRef]
- Haidt, J. Scrutinizing the effects of digital technology on mental health. Nature 2020, 578, 226–227. [Google Scholar] [CrossRef]
- Haidt, J. The Anxious Generation; Penguin Press: New York, NY, USA, 2024. [Google Scholar]
- Tukur, M.; Schneider, J.; Househ, M.; Dokoro, A.H.; Ismail, U.I.; Dawaki, M.; Agus, M. The metaverse digital environments: A scoping review of the challenges, privacy and security issues. Front. Big Data 2023, 6, 1301812. [Google Scholar] [CrossRef]
- Al-Kfairy, M.; Alomari, A.; Al-Bashayreh, M.; Alfandi, O.; Tubishat, M. Unveiling the Metaverse: A survey of user perceptions and the impact of usability, social influence and interoperability. Heliyon 2024, 10, e31413. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. A syndrome produced by diverse nocuous agents. J. Neuropsychiatry Clin. Neurosci. 1998, 10, 230–231. [Google Scholar] [CrossRef]
- Selye, H. The Stress of Life. 1956. Revised Edition 1976; McGraw-Hill Companies, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Selye, H. Forty years of stress research: Principal remaining problems and misconceptions. Can. Med. Assoc. J. 1976, 115, 53–56. [Google Scholar]
- Sterling, P.; Eyer, J. Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition and Health; Fisher, S., Reason, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1988; pp. 629–649. [Google Scholar]
- McEwen, B.S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 1998, 338, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Guidi, J.; Lucente, M.; Sonino, N.; Fava, G.A. Allostatic Load and Its Impact on Health: A Systematic Review. Psychother. Psychosom. 2021, 90, 11–27. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. A life-course, epigenetic perspective on resilience in brain and body. In Stress Resilience; Chen, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 2–22. [Google Scholar]
- Bottaccioli, F.; Bottaccioli, A.G. Psychoneuroendocrineimmunology and Science of Integrated Care. The Manual; Edra: Milan, Italy, 2020. [Google Scholar]
- Ağaç, D.; Estrada, L.D.; Maples, R.; Hooper, L.V.; Farrar, J.D. The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav. Immun. 2018, 74, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Sugama, S.; Kakinuma, Y. Noradrenaline as a key neurotransmitter in modulating microglial activation in stress response. Neurochem. Int. 2021, 143, 104943. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Weiss, J.M.; Schwartz, L.S. Selective retention of corticosterone by limbic structures in rat brain. Nature 1968, 220, 911–912. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Croese, T.; Castellani, G.; Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nat. Immunol. 2021, 22, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, M.; Ito, M. Immunity in the brain and surrounding tissues. J. Biochem. 2023, 173, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330, 841–845. [Google Scholar] [CrossRef]
- Barry-Carroll, L.; Gomez-Nicola, D. The molecular determinants of microglial developmental dynamics. Nat. Rev. Neurosci. 2024, 25, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.J.; Ragozzino, D.; Bessis, A.; Audinat, E. Microglial Modulation of Synaptic Maturation, Activity, and Plasticity. Adv. Neurobiol. 2024, 37, 209–219. [Google Scholar] [CrossRef]
- Vecchiarelli, H.A.; Lopes, L.T.; Paolicelli, R.C.; Stevens, B.; Wake, H.; Tremblay, M.È. Synapse Regulation. Adv. Neurobiol. 2024, 37, 179–208. [Google Scholar] [CrossRef]
- Du Preez, A.; Onorato, D.; Eiben, I.; Musaelyan, K.; Egeland, M.; Zunszain, P.A.; Fernandes, C.; Thuret, S.; Pariante, C.M. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav. Immun. 2021, 91, 24–47. [Google Scholar] [CrossRef] [PubMed]
- Sarapultsev, A.; Gusev, E.; Chereshnev, V.; Komelkova, M.; Hu, D. Neuroimmune Interactions in Stress and Depression: Exploring the Molecular and Cellular Mechanisms within the Neuroinflammation-depression Nexus. Curr. Med. Chem. 2024; in press. [Google Scholar] [CrossRef]
- Wu, A.; Zhang, J. Neuroinflammation, memory, and depression: New approaches to hippocampal neurogenesis. J. Neuroinflammation 2023, 20, 283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghasemi, M.; Navidhamidi, M.; Rezaei, F.; Azizikia, A.; Mehranfard, N. Anxiety and hippocampal neuronal activity: Relationship and potential mechanisms. Cogn. Affect. Behav. Neurosci. 2022, 22, 431–449. [Google Scholar] [CrossRef]
- Stein, Z.; Susser, M. The Dutch famine, 1944–1945, and the reproductive process. I. Effects on six indices at birth. Pediatr. Res. 1975, 9, 70–76. [Google Scholar]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef]
- Tobi, E.W.; Slieker, R.C.; Stein, A.D.; Suchiman, H.E.D.; Slagboom, P.E.; Van Zwet, E.W.; Heijmans, B.T.; Lumey, L.H. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int. J. Epidemiol. 2015, 44, 1211–1223. [Google Scholar] [CrossRef]
- Weaver, I.C.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Palma-Gudiel, H.; Córdova-Palomera, A.; Eixarch, E.; Deuschle, M.; Fañanás, L. Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: A meta-analysis. Epigenetics 2015, 10, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Szyf, M. Perinatal stress and epigenetics. Handb. Clin. Neurol. 2021, 180, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Gauvrit, T.; Benderradji, H.; Buée, L.; Blum, D.; Vieau, D. Early-Life Environment Influence on Late-Onset Alzheimer’s Disease. Front. Cell Dev. Biol. 2022, 10, 834661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maes, M.; Almulla, A.F. Research and diagnostic algorithmic rules (radar) and radar plots for the first episode of major depressive disorder: Effects of childhood and recent adverse experiences on suicidal behaviors, Neurocognition and phenome features. Brain Sci. 2023, 13, 714. [Google Scholar] [CrossRef]
- Maayan, L.; Maayan, M. Inflammatory mediation of the relationship between early adversity and major depressive disorder: A systematic review. J. Psychiatr. Res. 2024, 169, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, G.; Lambourg, E.; Steele, J.D.; Colvin, L.A. The effect of adverse childhood experiences on chronic pain and major depression in adulthood: A systematic review and meta-analysis. Br. J. Anaesth. 2023, 130, 729–746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nelson, J.; Klumparendt, A.; Doebler, P.; Ehring, T. Childhood maltreatment and characteristics of adult depression: Meta-analysis. Br. J. Psychiatry 2017, 210, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Childhood Trauma Meta-Analysis Study Group. Treatment efficacy and effectiveness in adults with major depressive disorder and childhood trauma history: A systematic review and meta-analysis. Lancet Psychiatry 2022, 9, 860–873, Erratum in Lancet Psychiatry 2023, 10, e27. Https://Doi.Org/10.1016/S2215-0366(23)00023-8. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.W.; Capitanio, J.P.; Chun, K.; Arevalo, J.M.; Ma, J.; Cacioppo, J.T. Myeloid differentiation architecture of leukocyte transcriptome dynamics in perceived social isolation. Proc. Natl. Acad. Sci. USA 2015, 112, 15142–15147. [Google Scholar] [CrossRef]
- Smith, K.J.; Gavey, S.; RIddell, N.E.; Kontari, P.; Victor, C. The association between loneliness, social isolation and inflammation: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 112, 519–541. [Google Scholar] [CrossRef] [PubMed]
- Santini, Z.I.; Koyanagi, A.; Tyrovolas, S.; Haro, J.M. The association of relationship quality and social networks with depression, anxiety, and suicidal ideation among older married adults: Findings from a cross-sectional analysis of the Irish Longitudinal Study on Ageing (TILDA). J. Affect. Disord. 2015, 179, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Cole, S.W.; Choi, I.; Sung, K.; Kim, S.; Youm, Y.; Chey, J. Social network position and the Conserved Transcriptional Response to Adversity in older Koreans. Psychoneuroendocrinology 2023, 155, 106342. [Google Scholar] [CrossRef]
- Lam, J.A.; Murray, E.R.; Yu, K.E.; Ramsey, M.; Nguyen, T.T.; Mishra, J.; Martis, B.; Thomas, M.L.; Lee, E.E. Neurobiology of loneliness: A systematic review. Neuropsychopharmacology 2021, 46, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Oken, B.S.; Kaplan, J.; Klee, D.; Gallegos, A.M. Contributions of loneliness to cognitive impairment and dementia in older adults are independent of other risk factors and Alzheimer’s pathology: A narrative review. Front. Hum. Neurosci. 2024, 18, 1380002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pourriyahi, H.; Yazdanpanah, N.; Saghazadeh, A.; Rezaei, N. Loneliness: An Immunometabolic Syndrome. Int. J. Environ. Res. Public Health 2021, 18, 12162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pariante, C.M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 2017, 27, 554–559. [Google Scholar] [CrossRef]
- Remes, O.; Mendes, J.F.; Templeton, P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci. 2021, 11, 1633. [Google Scholar] [CrossRef]
- Maes, M.; Jirakran, K.; Vasupanrajit, A.; Niu, M.; Zhou, B.; Stoyanov, D.S.; Tunvirachaisakul, C. The recurrence of illness (ROI) index is a key factor in major depression that indicates increasing immune-linked neurotoxicity and vulnerability to suicidal behaviors. Psychiatry Res. 2024, 339, 116085. [Google Scholar] [CrossRef] [PubMed]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 2020, 87, 901–909. [Google Scholar] [CrossRef]
- Lynall, M.E.; Turner, L.; Bhatti, J.; Cavanagh, J.; de Boer, P.; Mondelli, V.; Jones, D.; Drevets, W.C.; Cowen, P.; Harrison, N.A.; et al. Peripheral Blood Cell-Stratified Subgroups of Inflamed Depression. Biol. Psychiatry 2020, 88, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Almulla, A.F.; Abbas Abo Algon, A.; Tunvirachaisakul, C.; Al-Hakeim, H.K.; Maes, M. T helper-1 activation via interleukin-16 is a key phenomenon in the acute phase of severe, first-episode major depressive disorder and suicidal behaviors. J. Adv. Res. 2024, 64, 171–181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Huan, J.; Lin, L.; Hu, Y. Association of systemic inflammatory biomarkers with depression risk: Results from National Health and Nutrition Examination Survey 2005-2018 analyses. Front Psychiatry 2023, 14, 1097196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bottaccioli, A.G.; Bottaccioli, F.; Minelli, A. Stress and the psyche-brain immune network in psychiatric diseases based on psychoneuroendocrineimmunology: A concise review. Ann. N. Y. Acad. Sci. 2019, 1437, 31–42. [Google Scholar] [CrossRef]
- Cheiran Pereira, G.; Piton, E.; Moreira Dos Santos, B.; Ramanzini, L.G.; Muniz Camargo, L.F.; Menezes da Silva, R.; Bochi, G.V. Microglia and HPA axis in depression: An overview of participation and relationship. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2022, 23, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.H.; Cervenka, S.; Kim, M.J.; Kreisl, W.C.; Henter, I.D.; Innis, R.B. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020, 7, 1064–1074. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, M.; Hao, W.; Wang, Y.; Zhang, T.; Liu, C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl. Psychiatry 2023, 13, 5. [Google Scholar] [CrossRef]
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337–341. [Google Scholar] [CrossRef]
- Dantzer, R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol. Rev. 2018, 98, 477–504. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzis, E.; Natalello, G.; Bruno, D.; Tanti, G.; Magurano, M.R.; Lucchetti, D.; Di Mario, C.; Tolusso, B.; Peluso, G.; Gremese, E. Psoriatic arthritis and depressive symptoms: Does systemic inflammation play a role? Clin. Rheumatol. 2021, 40, 1893–1902. [Google Scholar] [CrossRef]
- Sforzini, L.; Nettis, M.A.; Mondelli, V.; Pariante, C.M. Inflammation in cancer and depression: A starring role for the kynurenine pathway. Psychopharmacology 2019, 236, 2997–3011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsuboi, H.; Sakakibara, H.; Minamida-Urata, Y.; Tsujiguchi, H.; Hara, A.; Suzuki, K.; Miyagi, S.; Nakamura, M.; Takazawa, C.; Kannon, T.; et al. Serum TNFα and IL-17A levels may predict increased depressive symptoms: Findings from the Shika Study cohort project in Japan. BioPsychoSocial Med. 2024, 18, 20. [Google Scholar] [CrossRef]
- Firth, J.; Solmi, M.; Wootton, R.E.; Vancampfort, D.; Schuch, F.B.; Hoare, E.; Gilbody, S.; Torous, J.; Teasdale, S.B.; Jackson, S.E.; et al. A meta-review of “lifestyle psychiatry”: The role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry 2020, 19, 360–380. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Zhang, H.; Karin, M.; Bai, H.; Cai, D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008, 135, 61–73. [Google Scholar] [CrossRef]
- Araujo, E.P.; Moraes, J.C.; Cintra, D.E.; Velloso, L.A. MECHANISMS IN ENDOCRINOLOGY: Hypothalamic inflammation and nutrition. Eur. J. Endocrinol. 2016, 175, R97–R105. [Google Scholar] [CrossRef]
- Fong, H.; Zheng, J.; Kurrasch, D. The structural and functional complexity of the integrative hypothalamus. Science 2023, 382, 388–394. [Google Scholar] [CrossRef]
- Fu, Y.; Kaneko, K.; Lin, H.Y.; Mo, Q.; Xu, Y.; Suganami, T.; Ravn, P.; Fukuda, M. Gut Hormone GIP Induces Inflammation and Insulin Resistance in the Hypothalamus. Endocrinology 2020, 161, bqaa102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruck, L.; Wiegand, S.; Kühnen, P. Relevance and consequence of chronic inflammation for obesity development. Mol. Cell Pediatr. 2023, 10, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Long-Smith, C.; O’Riordan, K.J.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 477–502. [Google Scholar] [CrossRef]
- Ojeda, J.; Ávila, A.; Vidal, P.M. Gut Microbiota Interaction with the Central Nervous System throughout Life. J. Clin. Med. 2021, 10, 1299. [Google Scholar] [CrossRef] [PubMed]
- Misera, A.; Liśkiewicz, P.; Łoniewski, I.; Skonieczna-Żydecka, K.; Samochowiec, J. Effect of Psychobiotics on Psychometric Tests and Inflammatory Markers in Major Depressive Disorder: Meta-Analysis of Randomized Controlled Trials with Meta-Regression. Pharmaceuticals 2021, 14, 952. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wang, Y.F.; Lei, L.; Zhang, Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci. 2024, 351, 122815. [Google Scholar] [CrossRef] [PubMed]
- Alpino, G.C.Á.; Pereira-Sol, G.A.; Dias, M.M.E.; Aguiar, A.S.; Peluzio, M.D.C.G. Beneficial effects of butyrate on brain functions: A view of epigenetic. Crit. Rev. Food Sci. Nutr. 2024, 64, 3961–3970. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, M.; Molero, P.; Ortuño Sánchez-Pedreño, F.; Van der Does, W.; Angel Martínez-González, M. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Mamalaki, E.; Ntanasi, E.; Hatzimanolis, A.; Basta, M.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Scarmeas, N.; Yannakoulia, M. The Association of Adherence to the Mediterranean Diet with Depression in Older Adults Longitudinally Taking into Account Cognitive Status: Results from the HELIAD Study. Nutrients 2023, 15, 359. [Google Scholar] [CrossRef]
- Bujtor, M.; Bowe, S.; Gómez-Martínez, S.; Pariante, C.; Borsini, A. Baseline lower Mediterranean diet quality and higher inflammation predict negative well-being in children and adolescents two years later: The UP&DOWN study. Brain Behav. Immun. Health, 2024; in press. [Google Scholar]
- Shafiei, F.; Salari-Moghaddam, A.; Larijani, B.; Esmaillzadeh, A. Mediterranean diet and depression: Reanalysis of a meta-analysis. Nutr. Rev. 2023, 81, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Bizzozero-Peroni, B.; Martínez-Vizcaíno, V.; Fernández-Rodríguez, R.; Jiménez-López, E.; Núñez de Arenas-Arroyo, S.; Saz-Lara, A.; Díaz-Goñi, V.; Mesas, A.E. The impact of the Mediterranean diet on alleviating depressive symptoms in adults: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2025, 83, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Flaherty, S. Gut Feelings: The Microbiome and Our Health; MIT Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Liu, L.; Wang, H.; Chen, X.; Zhang, Y.; Zhang, H.; Xie, P. Gut microbiota and its metabolites in depression: From pathogenesis to treatment. eBioMedicine 2023, 90, 104527. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, M.; Zheng, L.; Cen, Q.; Wang, F.; Zhu, L.; Pang, R.; Zhang, A. Bifidobacterium: A probiotic for the prevention and treatment of depression. Front. Microbiol. 2023, 14, 1174800. [Google Scholar] [CrossRef] [PubMed]
- Musazadeh, V.; Zarezadeh, M.; Faghfouri, A.H.; Keramati, M.; Jamilian, P.; Jamilian, P.; Mohagheghi, A.; Farnam, A. Probiotics as an effective therapeutic approach in alleviating depression symptoms: An umbrella meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 8292–8300. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Huang, S.Y.; Su, K.P. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol. Psychiatry 2010, 68, 140–147. [Google Scholar] [CrossRef]
- Su, K.P.; Matsuoka, Y.; Pae, C.U. Omega-3 Polyunsaturated Fatty Acids in Prevention of Mood and Anxiety Disorders. Clin. Psychopharmacol. Neurosci. 2015, 13, 129–137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Appleton, K.M.; Sallis, H.M.; Perry, R.; Ness, A.R.; Churchill, R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst. Rev. 2015, 11, CD004692, Erratum in Cochrane Database Syst. Rev. 2021, 11, CD004692. https://doi.org/10.1002/14651858.CD004692.pub5. [Google Scholar] [CrossRef]
- Kelaiditis, C.F.; Gibson, E.L.; Dyall, S.C. Effects of long-chain omega-3 polyunsaturated fatty acids on reducing anxiety and/or depression in adults; A systematic review and meta-analysis of randomised controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2023, 192, 102572. [Google Scholar] [CrossRef] [PubMed]
- Guu, T.W.; Mischoulon, D.; Sarris, J.; Hibbeln, J.; McNamara, R.K.; Hamazaki, K.; Freeman, M.P.; Maes, M.; Matsuoka, Y.J.; Belmaker, R.H.; et al. A multi-national, multi-disciplinary Delphi consensus study on using omega-3 polyunsaturated fatty acids (n-3 PUFAs) for the treatment of major depressive disorder. J. Affect. Disord. 2020, 265, 233–238. [Google Scholar] [CrossRef]
- Bozzatello, P.; Novelli, R.; Montemagni, C.; Rocca, P.; Bellino, S. Nutraceuticals in Psychiatric Disorders: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 4824. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chasapis, C.T.; Ntoupa, P.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Tsutsui, T. Infants and elderlies are susceptible to zinc deficiency. Sci. Rep. 2016, 6, 21850. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, M.A.; Kranz, T.M.; Kleinhaus, K.; Joe, P.; Getz, M.; Johnson, P.; Chao, M.V.; Malaspina, D. The Emerging Role for Zinc in Depression and Psychosis. Front. Pharmacol. 2017, 8, 414. [Google Scholar] [CrossRef] [PubMed]
- Hermens, D.F.; Simcock, G.; Dutton, M.; Bouças, A.P.; Can, A.T.; Lilley, C.; Lagopoulos, J. Anorexia nervosa, zinc deficiency and the glutamate system: The ketamine option. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 101, 109921. [Google Scholar] [CrossRef]
- Chrobak, A.A.; Siwek, M. Drugs with glutamate-based mechanisms of action in psychiatry. Pharmacol. Rep. 2024, 76, 1256–1271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, B.; Fang, T.; Chen, H. Zinc and Central Nervous System Disorders. Nutrients 2023, 15, 2140. [Google Scholar] [CrossRef]
- Zalachoras, I.; Hollis, F.; Ramos-Fernández, E.; Trovo, L.; Sonnay, S.; Geiser, E.; Preitner, N.; Steiner, P.; Sandi, C.; Morató, L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci. Biobehav. Rev. 2020, 114, 134–155. [Google Scholar] [CrossRef]
- Girone, N.; Benatti, B.; Molteni, L.; Cassina, N.; Giacovelli, L.; Arici, C.; Dell’Osso, B. Partial Response to Antidepressant Treatment: The Role of Nutraceutical Compounds. Clin. Neuropsychiatry 2023, 20, 183–192. [Google Scholar] [CrossRef]
- Çakici, N.; van Beveren NJ, M.; Judge-Hundal, G.; Koola, M.M.; Sommer IE, C. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: A meta-analysis. Psychol. Med. 2019, 49, 2307–2319. [Google Scholar] [CrossRef]
- Ronaldson, A.; Arias de la Torre, J.; Gaughran, F.; Bakolis, I.; Hatch, S.L.; Hotopf, M.; Dregan, A. Prospective associations between vitamin D and depression in middle-aged adults: Findings from the UK Biobank cohort. Psychol. Med. 2022, 52, 1866–1874. [Google Scholar] [CrossRef]
- Amini, S.; Jafarirad, S.; Amani, R. Postpartum depression and vitamin D: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1514–1520. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, S.; Chen, D. Poor vitamin D status and the risk of maternal depression: A dose-response meta-analysis of observational studies. Public Health Nutr. 2021, 24, 2161–2170. [Google Scholar] [CrossRef]
- Srifuengfung, M.; Srifuengfung, S.; Pummangura, C.; Pattanaseri, K.; Oon-Arom, A.; Srisurapanont, M. Efficacy and acceptability of vitamin D supplements for depressed patients: A systematic review and meta-analysis of randomized controlled trials. Nutrition 2023, 108, 111968. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Z.; Shah, N.; Tahir, U.; Mortaji, N.; Owais, S.; Perreault, M.; Van Lieshout, R.J. Dietary interventions for perinatal depression and anxiety: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2023, 117, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- Barbour, K.A.; Edenfield, T.M.; Blumenthal, J.A. Exercise as a treatment for depression and other psychiatric disorders: A review. J. Cardiopulm. Rehabil. Prev. 2007, 27, 359–367. [Google Scholar] [CrossRef]
- Ko, Y.; Cho, Y.H.; Kim, G.W.; Hong, C.H.; Son, S.J.; Roh, H.W.; Moon, J.; Han, S. Relationships of walking activity with depressed mood and suicidal ideation among the middle-aged Korean population: A nationwide cross-sectional study. Front. Psychiatry 2023, 14, 1202068. [Google Scholar] [CrossRef] [PubMed]
- RCP Royal College of Psychiatrists. No Health Without Public Mental Health: The Case for Action, Position Statement PS4/2010; RCP: London, UK, 2010. [Google Scholar]
- Stubbs, B.; Vancampfort, D.; Hallgren, M.; Firth, J.; Veronese, N.; Solmi, M.; Brand, S.; Cordes, J.; Malchow, B.; Gerber, M.; et al. EPA guidance on physical activity as a treatment for severe mental illness: A meta-review of the evidence and Position Statement from the European Psychiatric Association (EPA), supported by the International Organization of Physical Therapists in Mental Health (IOPTMH). Eur. Psychiatry 2018, 54, 124–144. [Google Scholar] [CrossRef]
- Ashdown-Franks, G.; Firth, J.; Carney, R.; Carvalho, A.F.; Hallgren, M.; Koyanagi, A.; Rosenbaum, S.; Schuch, F.B.; Smith, L.; Solmi, M.; et al. Exercise as Medicine for Mental and Substance Use Disorders: A Meta-review of the Benefits for Neuropsychiatric and Cognitive Outcomes. Sports Med. 2020, 50, 151–170. [Google Scholar] [CrossRef]
- Noetel, M.; Sanders, T.; Gallardo-Gómez, D.; Taylor, P.; Del Pozo Cruz, B.; van den Hoek, D.; Smith, J.J.; Mahoney, J.; Spathis, J.; Moresi, M.; et al. Effect of exercise for depression: Systematic review and network meta-analysis of randomised controlled trials. BMJ (Clin. Res. Ed.) 2024, 384, e075847. [Google Scholar] [CrossRef]
- Alizadeh Pahlavani, H. Possible role of exercise therapy on depression: Effector neurotransmitters as key players. Behav. Brain Res. 2024, 459, 114791. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M. Molecular Mechanisms of Exercise-induced Hippocampal Neurogenesis and Antidepressant Effects. JMA J. 2023, 6, 114–119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belviranlı, M.; Okudan, N.; Sezer, T. Exercise Training Alleviates Symptoms and Cognitive Decline in a Reserpine-induced Fibromyalgia Model by Activating Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuroscience 2024, 549, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.S.; Gerszten, R.E.; Taylor, J.M.; Pedersen, B.K.; van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M.; et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 2022, 18, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.; Borg, B.; Cuttler, C.; Crombie, K.M.; Rabinak, C.A.; Hill, M.N.; Marusak, H.A. A Systematic Review and Meta-Analysis on the Effects of Exercise on the Endocannabinoid System. Cannabis Cannabinoid Res. 2022, 7, 388–408. [Google Scholar] [CrossRef]
- Stensson, N.; Gerdle, B.; Ernberg, M.; Mannerkorpi, K.; Kosek, E.; Ghafouri, B. Increased Anandamide and Decreased Pain and Depression after Exercise in Fibromyalgia. Med. Sci. Sports Exerc. 2020, 52, 1617–1628. [Google Scholar] [CrossRef]
- Arosio, B.; Calvani, R.; Ferri, E.; Coelho-Junior, H.J.; Carandina, A.; Campanelli, F.; Ghiglieri, V.; Marzetti, E.; Picca, A. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle-Brain Axis. Nutrients 2023, 15, 1853. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W. Research progress in Alzheimer’s disease and bone-brain axis. Ageing Res. Rev. 2024, 98, 102341. [Google Scholar] [CrossRef] [PubMed]
- Werder, E.; Lawrence, K.; Deng, X.; Braxton Jackson, W.; 2nd Christenbury, K.; Buller, I.; Engel, L.; Sandler, D. Residential air pollution, greenspace, and adverse mental health outcomes in the U.S. Gulf Long-term Follow-up Study. Sci. Total Environ. 2024, 946, 174434. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Murgia, V.; Petronio, M.G. Inquinamento Ambientale e Salute—Per Una Medicina Responsabile; Aboca: Sansepolcro, Italy, 2019. [Google Scholar]
- Fong, K.C.; Hart, J.E.; James, P. A Review of Epidemiologic Studies on Greenness and Health: Updated Literature Through 2017. Curr. Environ. Health Rep. 2018, 5, 77–87. [Google Scholar] [CrossRef]
- World Health Organization. Mental Disorders. Updated June 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 3 January 2025).
- Zundel, C.G.; Ryan, P.; Brokamp, C.; Heeter, A.; Huang, Y.; Strawn, J.R.; Marusak, H.A. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022, 93, 272–300. [Google Scholar] [CrossRef]
- Berberian, A.G.; Gonzalez DJ, X.; Cushing, L.J. Racial Disparities in Climate Change-Related Health Effects in the United States. Curr. Environ. Health Rep. 2022, 9, 451–464. [Google Scholar] [CrossRef]
- Yang, B.; Han, Y.; Hu, S.; Xie, X.; Zhu, X.; Yuan, L. Polystyrene microplastics induce depression-like behavior in zebrafish via neuroinflammation and circadian rhythm disruption. Sci. Total Environ. 2025, 959, 178085. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xu, D.; Wan, Z.; Wei, Z.; Chen, Z.; Wang, Y.; Han, X.; Chen, Y. Exposure to different surface-modified polystyrene nanoparticles caused anxiety, depression, and social deficit in mice via damaging mitochondria in neurons. Sci. Total Environ. 2024, 919, 170739. [Google Scholar] [CrossRef]
- Nava-Castro, K.E.; Garay-Canales, C.A.; Mendoza, M.S.; del Sol Ríos Avila, M.; De León, V.V.P.; Morales-Montor, J. The Neuroimmune Endocrine Network and Emerging Pollutants During Mental Disorders. In PsychoNeuroImmunology. Integrated Science; Rezaei, N., Yazdanpanah, N., Eds.; Springer: Cham, Switzerland, 2024; Volume 31. [Google Scholar] [CrossRef]
- Insel, T.R.; Cuthbert, B.N. Medicine. Brain disorders? Precisely. Science 2015, 348, 499–500. [Google Scholar] [CrossRef]
- Daniels, T.E.; Olsen, E.M.; Tyrka, A.R. Stress and Psychiatric Disorders: The Role of Mitochondria. Annu. Rev. Clin. Psychol. 2020, 16, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.M.; Choe, J.Y.; Bruce, M.A.; Thorpe, R.J., Jr.; Jones, H.P.; Phillips, N.R. Mitochondrial Functioning: Front and Center in Defining Psychosomatic Mechanisms of Allostasis in Health and Disease. Methods Mol. Biol. 2025, 2868, 91–110. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Chen, Z.; Yin, X.; Li, D.; Ma, J.; Yin, P.; Cao, Y.; Lao, L.; Xu, S. The Efficacy of Acupuncture for Treating Depression-Related Insomnia Compared with a Control Group: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2017, 2017, 9614810. [Google Scholar] [CrossRef]
- Jiang, T.F.; Chen, Z.Y.; Liu, J.; Yin, X.J.; Tan, Z.J.; Wang, G.L.; Li, B.; Guo, J. Acupuncture modulates emotional network resting-state functional connectivity in patients with insomnia disorder: A randomized controlled trial and fMRI study. BMC Complement. Med. Ther. 2024, 24, 311. [Google Scholar] [CrossRef]
- Armour, M.; Smith, C.A.; Wang, L.Q.; Naidoo, D.; Yang, G.Y.; MacPherson, H.; Lee, M.S.; Hay, P. Acupuncture for Depression: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 1140. [Google Scholar] [CrossRef]
- Yang, N.N.; Lin, L.L.; Li, Y.J.; Li, H.P.; Cao, Y.; Tan, C.X.; Hao, X.W.; Ma, S.M.; Wang, L.; Liu, C.Z. Potential Mechanisms and Clinical Effectiveness of Acupuncture in Depression. Curr. Neuropharmacol. 2022, 20, 738–750. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.K.; Xie, M.Z. Exploring the transformative impact of traditional Chinese medicine on depression: Insights from animal models. World J. Psychiatry 2024, 14, 607–623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esposito, M.; Giunta, A.; Nanni, R.C.; Criscuolo, S.; Manfreda, V.; Del Duca, E.; Bianchi, L.; Troisi, A. Depressive symptoms and insecure attachment predict disability and quality of life in psoriasis independently from disease severity. Arch. Dermatol. Res. 2021, 313, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Pistorio, M.L.; Moretta, T.; Musumeci, M.L.; Russo, C.; Lacarrubba, F.; Petralia, A.; Micali, G.; De Pasquale, C. Impact of Attachment Style and Temperament Traits on the Quality of Life of Patients with Psoriasis. Behav. Sci. 2024, 14, 434. [Google Scholar] [CrossRef]
- Pan, H.C.; Yang, C.N.; Lee, W.J.; Sheehan, J.; Wu, S.M.; Chen, H.S.; Lin, M.H.; Shen, L.W.; Lee, S.H.; Shen, C.C.; et al. Melatonin Enhanced Microglia M2 Polarization in Rat Model of Neuro-inflammation Via Regulating ER Stress/PPARδ/SIRT1 Signaling Axis. J. Neuroimmune Pharmacol. 2024, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Bottaccioli, F.; Carosella, A.; Cardone, R.; Mambelli, M.; Cemin, M.; D’Errico, M.M.; Ponzio, E.; Bottaccioli, A.G.; Minelli, A. Brief training of psychoneuroendocrinoimmunology-based meditation (PNEIMED) reduces stress symptom ratings and improves control on salivary cortisol secretion under basal and stimulated conditions. Explore 2014, 10, 170–179. [Google Scholar] [CrossRef]
- Bottaccioli, A.G.; Bottaccioli, F.; Carosella, A.; Cofini, V.; Muzi, P.; Bologna, M. Psychoneuroendocrinoimmunology-based meditation (PNEIMED) training reduces salivary cortisol under basal and stressful conditions in healthy university students: Results of a randomized controlled study. Explore 2020, 16, 189–198. [Google Scholar] [CrossRef]
- Bertollo, A.G.; Santos, C.F.; Bagatini, M.D.; Ignácio, Z.M. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. Front. Neurosci. 2025, 19, 1541075. [Google Scholar] [CrossRef]
- Gardner, C.; Kleinman, A. Medicine and the Mind—The Consequences of Psychiatry’s Identity Crisis. N. Engl. J. Med. 2019, 381, 1697–1699. [Google Scholar] [CrossRef]
- Gülpen, J.; Breedvelt JJ, F.; van Dis EA, M.; Geurtsen, G.J.; Warren, F.C.; van Heeringen, C.; Hitchcock, C.; Holländare, F.; Huijbers, M.J.; Jarrett, R.B.; et al. Psychological interventions for preventing relapse in individuals with partial remission of depression: A systematic review and individual participant data meta-analysis. Psychol. Med. 2025, 55, e50. [Google Scholar] [CrossRef]
- Miller, A.H.; Berk, M.; Bloch, G.; Briquet-Laugier, V.; Brouillon, C.; Cuthbert, B.N.; Dantzer, R.; Davis, M.C.; De Picker, L.J.; Drevets, W.C.; et al. Advancing precision psychiatry and targeted treatments: Insights from immunopsychiatry. Brain Behav. Immun. 2025, 125, 319–329. [Google Scholar] [CrossRef]
- Baune, B.T.; Sampson, E.; Louise, J.; Hori, H.; Schubert, K.O.; Clark, S.R.; Mills, N.T.; Fourrier, C. No evidence for clinical efficacy of adjunctive celecoxib with vortioxetine in the treatment of depression: A 6-week double-blind placebo controlled randomized trial. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2021, 53, 34–46. [Google Scholar] [CrossRef]
- Sampson, E.; Mills, N.T.; Hori, H.; Cearns, M.; Schwarte, K.; Hohoff, C.; Oliver Schubert, K.; Fourrier, C.; Baune, B.T. Long-term characterisation of the relationship between change in depression severity and change in inflammatory markers following inflammation-stratified treatment with vortioxetine augmented with celecoxib or placebo. Brain Behav. Immun. 2025, 123, 43–56. [Google Scholar] [CrossRef]
- Hsu, T.W.; Tsai, C.K.; Kao, Y.C.; Thompson, T.; Carvalho, A.F.; Yang, F.C.; Tseng, P.T.; Hsu, C.W.; Yu, C.L.; Tu, Y.K.; et al. Comparative oral monotherapy of psilocybin, lysergic acid diethylamide, 3,4-methylenedioxymethamphetamine, ayahuasca, and escitalopram for depressive symptoms: Systematic review and Bayesian network meta-analysis. BMJ 2024, 386, e078607. [Google Scholar] [CrossRef] [PubMed]
- Ader, R. (Ed.) Psychoneuroimmunology, 4th ed.; Academic Press: Rochester, NY, USA, 2007. [Google Scholar]
- Rezaei, N.; Yazdanpanah, N. (Eds.) PsychoNeuroImmunology. Integrated Science; Springer: Cham, Switzerland, 2024; Volume 30, ISBN 978-3-031-73060-3. [Google Scholar] [CrossRef]
- Buzsáki, G.; Tingley, D. Cognition from the Body-Brain Partnership: Exaptation of Memory. Annu. Rev. Neurosci. 2023, 46, 191–210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barabási, D.L.; Bianconi, G.; Bullmore, E.; Burgess, M.; Chung, S.; Eliassi-Rad, T.; George, D.; Kovács, I.A.; Makse, H.; Nichols, T.E.; et al. Neuroscience Needs Network Science. J. Neurosci. 2023, 43, 5989–5995. [Google Scholar] [CrossRef]
- Ballesio, A.; Zagaria, A.; Vacca, M.; Pariante, C.M.; Lombardo, C. Comparative efficacy of psychological interventions on immune biomarkers: A systematic review and network meta-analysis (NMA). Brain Behav. Immun. 2023, 111, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Mengelkoch, S.; Gassen, J.; Lev-Ari, S.; Alley, J.C.; Schüssler-Fiorenza Rose, S.M.; Snyder, M.P.; Slavich, G.M. Multi-omics in stress and health research: Study designs that will drive the field forward. Stress 2024, 27, 2321610. [Google Scholar] [CrossRef]
- Menichetti, G.; Barabási, A.L.; Loscalzo, J. Decoding the Foodome: Molecular Networks Connecting Diet and Health. Annu. Rev. Nutr. 2024, 44, 257–288. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Yang, Q.; Lyu, S.; Han, Q.; Fu, M.; Du, Z.; Liu, X.; Zhang, T. Multi-omics analysis reveals the anti-fatigue mechanism of BCAA-enriched egg white peptides: The role of the gut-muscle axis. Food Funct. 2025; in press. [Google Scholar] [CrossRef]
- Bottaccioli, F.; Bottaccioli, A.G. The Philosophical and Scientific Basis for the Integration of Medicine and Psychology. In PsychoNeuroImmunology. Integrated Science; Rezaei, N., Yazdanpanah, N., Eds.; Springer: Cham, Switzerland, 2024; Volume 30. [Google Scholar] [CrossRef]
- Bottaccioli, F.; Bottaccioli, A.G. La Rivoluzione in Psicologia e Psichiatria. Il Tempo del Cambiamento; Edra: Milano, Italy, 2024. [Google Scholar]
Psychological | Biomedical | Lifestyle |
---|---|---|
Loneliness Social isolation Interpersonal conflict Violence, abuse, neglect Adverse childhood experiences Lifetime stressor exposure TEST PHQ-9, GAD-7 in absence of MDD diagnosis PROMIS Depression Short Form-8 to confirm and score MDD | Biological markers Saliva: Cortisol 2 measures; awakening and 10 p.m. Cytokines proinflammatory (IL-1β, IL-6, TNF-α) Blood: complete blood count, insulin, glucose, glycated hemoglobin, CRP, thyroid hormones (TSH included), liver functionality, Vit. D3, Vit. B12, folic, magnesium Anthropometric and physiological measures BMI, WHR, HR, HRV, BP | Physical activity (IPAQ questionnaire) Nutrition (Mediterranean diet, PREDIMED Questionnaire) Sleep (Pittsburgh sleep quality index) Pollution (indoor, outdoor) |
Start | End |
---|---|
Cortisol 19.1 μg/dL (n.r. 4–19.5) 8.00 a.m. | 16.1 μg/dL |
Neutrophils 36% | 46% |
Lymphocytes 49% | 41% |
TSH 7.2 mU/L (n.r. 0.15–3.5) | 4.1 mU/L |
fT3 2.7 pmoli/L (n.r. 3–8) | 3.1 pmoli/L |
Ab anti-TG 1029 UI/mL (n.r. < 116) | 221 |
Triglycerides 160 mg/dL (n.r. 50–150) | 110 mg/dL |
Folic acid 3.7 ng/mL (n.r. 3.9–26.8) | 10 ng/mL |
B12 vitamin 201 pg/mL (n.r. 150–900) | 337 pg/mL |
Insulin 14 μUI/mL (n.r. < 25) | 9 μUI/mL |
Glycemia 98 mg/dL (n.r. < 100) | 84 mg/dL |
Psychological Rebalancing | New Behavior | In |
---|---|---|
1. Overcame the lockdown 2. Improved relations with colleagues 3. New love story 4. Has no outbursts of anger 5. No longer feels internal tension | 1. Meditates regularly 2. Daily exercise 3. Long walks 4. Walks to work | 1. No more headaches 2. Sporadic lower back pain 3. Sustained weight loss |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottaccioli, A.G.; Bologna, M.; Bottaccioli, F. Rethinking Depression—Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression’s Pathophysiology and Tailored Treatment. Int. J. Mol. Sci. 2025, 26, 2759. https://doi.org/10.3390/ijms26062759
Bottaccioli AG, Bologna M, Bottaccioli F. Rethinking Depression—Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression’s Pathophysiology and Tailored Treatment. International Journal of Molecular Sciences. 2025; 26(6):2759. https://doi.org/10.3390/ijms26062759
Chicago/Turabian StyleBottaccioli, Anna Giulia, Mauro Bologna, and Francesco Bottaccioli. 2025. "Rethinking Depression—Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression’s Pathophysiology and Tailored Treatment" International Journal of Molecular Sciences 26, no. 6: 2759. https://doi.org/10.3390/ijms26062759
APA StyleBottaccioli, A. G., Bologna, M., & Bottaccioli, F. (2025). Rethinking Depression—Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression’s Pathophysiology and Tailored Treatment. International Journal of Molecular Sciences, 26(6), 2759. https://doi.org/10.3390/ijms26062759