Lymphangiogenesis in the Deepest Invasive Areas of Human Early-Stage Colorectal Cancer
Abstract
:1. Introduction
2. Results
2.1. High-Density Accumulation Area of TAM in the Deepest Tumor Zone
2.2. Characteristics of TAMs and Tumor Blood Vessels
2.3. Correlation Between TAMs and Tumor Vessel Count
2.4. TAM, VEGF-A, and Tumor Vascular Characteristics
2.5. Characteristics of Tumor Lymphatic Vessels
2.6. Number of Tumor Lymphatic Vessels
2.7. Fluorescent Immunostaining for CD34 and Podoplanin
2.8. Association with Lymph Node Metastasis
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Histological Evaluation
4.3. Assessment of the Distribution, Phenotype, and Number of TAMs
4.4. Immunofluorescence Staining
4.5. IHC Staining
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TAM | Tumor-associated macrophage |
EMT | Epithelial–mesenchymal transition |
SM | Submucosal |
VEGF | Vascular endothelial growth factor |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Dawson, H.; Bokhorst, J.-M.; Studer, L.; Vieth, M.; Erdogan, A.S.O.; Öztürk, S.K.; Kirsch, R.; Brockmoeller, S.; Cathomas, G.; Buslei, R.; et al. Lymph node metastases and recurrence in pT1 colorectal cancer: Prediction with the International Budding Consortium Score-A retrospective, multi-centric study. United Eur. Gastroenterol. J. 2024, 12, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.E.; Saclarides, T.J.; Leurgans, S.; Speziale, N.J.; Drab, E.A.; Rubin, D.B. Tumor angiogenesis as a predictor of recurrence and survival in patients with node-negative colon cancer. Ann. Surg. 1995, 222, 695–699. [Google Scholar] [PubMed]
- Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Kitadai, Y.; Bucana, C.D.; Cleary, K.R.; Ellis, L.M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995, 55, 3964–3968. [Google Scholar] [PubMed]
- Yang, Y.; Cao, Y. The impact of VEGF on cancer metastasis and systemic disease. Semin. Cancer Biol. 2022, 86, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Noy, R.; Pollard, J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61. [Google Scholar] [PubMed]
- Onogawa, S.; Kitadai, Y.; Tanaka, S.; Kuwai, T.; Kuroda, T.; Chayama, K. Regulation of vascular endothelial growth factor (VEGF)-C and VEGF-D expression by the organ microenvironment in human colon carcinoma. Eur. J. Cancer 2004, 40, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Prall, F. Tumour budding in colorectal carcinoma. Histopathology 2007, 50, 151–162. [Google Scholar] [CrossRef] [PubMed]
Antibody | Animal | Company |
---|---|---|
CD31 | Rabbit | BD-B (Franklin, TN, USA) |
CD68 | Rabbit | Cell Signaling Technology (Danvers, MA, USA) |
CD34 | Mouse | Nichirei Bio Science (Tokyo, Japan) |
VEGF-A | Rabbit | Santa Cruz Biotechnology (Dallas, TX, USA) |
Podoplanin | Mouse | Angio Bio Co. (Santiago, MN, USA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Zhou, Q.; Ohnishi, M.; Kandori, M.; Itou, A.; Kitadai, Y.; Takigawa, H.; Oka, S.; Kimoto, A.; Shimamoto, F.; et al. Lymphangiogenesis in the Deepest Invasive Areas of Human Early-Stage Colorectal Cancer. Int. J. Mol. Sci. 2025, 26, 2919. https://doi.org/10.3390/ijms26072919
Tanaka M, Zhou Q, Ohnishi M, Kandori M, Itou A, Kitadai Y, Takigawa H, Oka S, Kimoto A, Shimamoto F, et al. Lymphangiogenesis in the Deepest Invasive Areas of Human Early-Stage Colorectal Cancer. International Journal of Molecular Sciences. 2025; 26(7):2919. https://doi.org/10.3390/ijms26072919
Chicago/Turabian StyleTanaka, Masaharu, Qian Zhou, Minako Ohnishi, Miho Kandori, Ami Itou, Yuki Kitadai, Hidehiko Takigawa, Shiro Oka, Akiko Kimoto, Fumio Shimamoto, and et al. 2025. "Lymphangiogenesis in the Deepest Invasive Areas of Human Early-Stage Colorectal Cancer" International Journal of Molecular Sciences 26, no. 7: 2919. https://doi.org/10.3390/ijms26072919
APA StyleTanaka, M., Zhou, Q., Ohnishi, M., Kandori, M., Itou, A., Kitadai, Y., Takigawa, H., Oka, S., Kimoto, A., Shimamoto, F., & Kitadai, Y. (2025). Lymphangiogenesis in the Deepest Invasive Areas of Human Early-Stage Colorectal Cancer. International Journal of Molecular Sciences, 26(7), 2919. https://doi.org/10.3390/ijms26072919