Understanding Susceptibility to Breast Cancer: From Risk Factors to Prevention Strategies
Abstract
:1. Introduction
2. Breast Cancer Risk Factors
2.1. Non-Modifiable Breast Cancer Risk Factors
2.1.1. Germline Mutations and Single Nucleotide Polymorphisms
2.1.2. Demographic Risk Factors
Sex
Age
Race and Ethnicity
2.1.3. Familial and Personal History Risk Factors
Family History of Breast Cancer
Benign Breast Disease
Breast Density
Previous History of Breast Cancer or Radiotherapy Treatment of Another Cancer
2.1.4. Hormonal Risk Factors: Age at Menopause and Menarche
2.2. Modified Breast Cancer Risk Factors
2.2.1. Oral Contraceptives and Hormonal Replacement Therapy Consumption
2.2.2. Lifestyle Risk Factors
Alcohol Consumption
Overweight and Obesity
Physical Activity
Diet and Nutrition
2.3. Reproductive History and Breast Cancer
2.3.1. Mechanisms of Post-Pregnancy Breast Cancer
2.3.2. Mechanisms of Long-Term Protection of Pregnancy Against Breast Cancer
3. Early Mechanisms of Breast Carcinogenesis
3.1. Estrogen Signaling
3.2. HER2 Signaling
3.3. Canonical WNT/β-Catenin Signaling
3.4. Notch Signaling
3.5. PI3K/AKT/mTOR Signaling
3.6. Additional Pathways
4. Prevention Strategies for Breast Cancer
4.1. Breast Surgery
4.2. Chemoprevention of Breast Cancer
4.3. Selective Estrogen Receptor Modulators
4.4. Aromatase Inhibitors
4.5. Metformin
4.6. RANK/RANKL Inhibition
4.7. Progesterone Antagonists
4.8. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
4.9. PI3K Inhibitors
4.10. Somatostatin Analogs
4.11. Low-Dose Tamoxifen
4.12. Natural Products-Derived Drugs
4.13. MUC1 Vaccines
4.14. DNA Vaccines
5. Conclusions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Ferlay, J.; Laversanne, M.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Tomorrow (Version 1.1); International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://Gco.Iarc.Who.Int/Tomorrow (accessed on 12 November 2024).
- Lima, S.M.; Kehm, R.D.; Terry, M.B. Global Breast Cancer Incidence and Mortality Trends by Region, Age-Groups, and Fertility Patterns. eClinicalMedicine 2021, 38, 100985. [Google Scholar] [CrossRef]
- Porter, P. “Westernizing” Women’s Risks? Breast Cancer in Lower-Income Countries. N. Engl. J. Med. 2008, 358, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Momenimovahed, Z.; Salehiniya, H. Epidemiological Characteristics of and Risk Factors for Breast Cancer in the World. BCTT 2019, 11, 151–164. [Google Scholar] [CrossRef]
- Rojas, K.; Stuckey, A. Breast Cancer Epidemiology and Risk Factors. Clin. Obstet. Gynecol. 2016, 59, 651–672. [Google Scholar] [CrossRef]
- Shiovitz, S.; Korde, L.A. Genetics of Breast Cancer: A Topic in Evolution. Ann. Oncol. 2015, 26, 1291–1299. [Google Scholar] [CrossRef]
- Stratton, M.R.; Rahman, N. The Emerging Landscape of Breast Cancer Susceptibility. Nat. Genet. 2008, 40, 17–22. [Google Scholar] [CrossRef]
- Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W.; et al. A Strong Candidate for the Breast and Ovarian Cancer Susceptibility Gene BRCA1. Science 1994, 266, 66–71. [Google Scholar] [CrossRef]
- Wooster, R.; Bignell, G.; Lancaster, J.; Swift, S.; Seal, S.; Mangion, J.; Collins, N.; Gregory, S.; Gumbs, C.; Micklem, G.; et al. Identification of the Breast Cancer Susceptibility Gene BRCA2. Nature 1995, 378, 789–792. [Google Scholar] [CrossRef]
- Antoniou, A.; Pharoah, P.D.P.; Narod, S.; Risch, H.A.; Eyfjord, J.E.; Hopper, J.L.; Loman, N.; Olsson, H.; Johannsson, O.; Borg, Å.; et al. Average Risks of Breast and Ovarian Cancer Associated with BRCA1 or BRCA2 Mutations Detected in Case Series Unselected for Family History: A Combined Analysis of 22 Studies. Am. J. Human. Genet. 2003, 72, 1117–1130. [Google Scholar] [CrossRef]
- Fackenthal, J.D.; Olopade, O.I. Breast Cancer Risk Associated with BRCA1 and BRCA2 in Diverse Populations. Nat. Rev. Cancer 2007, 7, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; Van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Peock, S.; Frost, D.; Ellis, S.; Platte, R.; Fineberg, E.; Evans, D.G.; Izatt, L.; Eeles, R.A.; Adlard, J.; et al. Cancer Risks for BRCA1 and BRCA2 Mutation Carriers: Results From Prospective Analysis of EMBRACE. JNCI J. Natl. Cancer Inst. 2013, 105, 812–822. [Google Scholar] [CrossRef]
- Mersch, J.; Jackson, M.A.; Park, M.; Nebgen, D.; Peterson, S.K.; Singletary, C.; Arun, B.K.; Litton, J.K. Cancers Associated with BRCA 1 and BRCA 2 Mutations Other than Breast and Ovarian. Cancer 2015, 121, 269–275. [Google Scholar] [CrossRef]
- Hemminki, A.; Markie, D.; Tomlinson, I.; Avizienyte, E.; Roth, S.; Loukola, A.; Bignell, G.; Warren, W.; Aminoff, M.; Höglund, P.; et al. A Serine/Threonine Kinase Gene Defective in Peutz–Jeghers Syndrome. Nature 1998, 391, 184–187. [Google Scholar] [CrossRef]
- Lynch, E.D.; Ostermeyer, E.A.; Lee, M.K.; Arena, J.F.; Ji, H.; Dann, J.; Swisshelm, K.; Suchard, D.; MacLeod, P.M.; Kvinnsland, S.; et al. Inherited Mutations in PTEN That Are Associated with Breast Cancer, Cowden Disease, and Juvenile Polyposis. Am. J. Human. Genet. 1997, 61, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Malkin, D.; Li, F.P.; Strong, L.C.; Fraumeni, J.F.; Nelson, C.E.; Kim, D.H.; Kassel, J.; Gryka, M.A.; Bischoff, F.Z.; Tainsky, M.A.; et al. Germ Line P53 Mutations in a Familial Syndrome of Breast Cancer, Sarcomas, and Other Neoplasms. Science 1990, 250, 1233–1238. [Google Scholar] [CrossRef]
- Pharoah, P.D.P.; Guilford, P.; Caldas, C. Incidence of Gastric Cancer and Breast Cancer in CDH1 (E-Cadherin) Mutation Carriers from Hereditary Diffuse Gastric Cancer Families. Gastroenterology 2001, 121, 1348–1353. [Google Scholar] [CrossRef]
- Masciari, S.; Dillon, D.A.; Rath, M.; Robson, M.; Weitzel, J.N.; Balmana, J.; Gruber, S.B.; Ford, J.M.; Euhus, D.; Lebensohn, A.; et al. Breast Cancer Phenotype in Women with TP53 Germline Mutations: A Li-Fraumeni Syndrome Consortium Effort. Breast Cancer Res. Treat. 2012, 133, 1125–1130. [Google Scholar] [CrossRef]
- Tan, M.-H.; Mester, J.L.; Ngeow, J.; Rybicki, L.A.; Orloff, M.S.; Eng, C. Lifetime Cancer Risks in Individuals with Germline PTEN Mutations. Clin. Cancer Res. 2012, 18, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Hearle, N.; Schumacher, V.; Menko, F.H.; Olschwang, S.; Boardman, L.A.; Gille, J.J.P.; Keller, J.J.; Westerman, A.M.; Scott, R.J.; Lim, W.; et al. Frequency and Spectrum of Cancers in the Peutz-Jeghers Syndrome. Clin. Cancer Res. 2006, 12, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Olschwang, S.; Keller, J.J.; Westerman, A.M.; Menko, F.H.; Boardman, L.A.; Scott, R.J.; Trimbath, J.; Giardiello, F.M.; Gruber, S.B. Relative Frequency and Morphology of Cancers in STK11 Mutation Carriers1. Gastroenterology 2004, 126, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Guilford, P.; Hopkins, J.; Harraway, J.; McLeod, M.; McLeod, N.; Harawira, P.; Taite, H.; Scoular, R.; Miller, A.; Reeve, A.E. E-Cadherin Germline Mutations in Familial Gastric Cancer. Nature 1998, 392, 402–405. [Google Scholar] [CrossRef]
- Kaurah, P.; MacMillan, A.; Boyd, N.; Senz, J.; De Luca, A.; Chun, N.; Suriano, G.; Zaor, S.; Van Manen, L.; Gilpin, C.; et al. Founder and Recurrent CDH1 Mutations in Families with Hereditary Diffuse Gastric Cancer. JAMA 2007, 297, 2360. [Google Scholar] [CrossRef]
- Renwick, A.; Thompson, D.; Seal, S.; Kelly, P.; Chagtai, T.; Ahmed, M.; North, B.; Jayatilake, H.; Barfoot, R.; Spanova, K.; et al. ATM Mutations That Cause Ataxia-Telangiectasia Are Breast Cancer Susceptibility Alleles. Nat. Genet. 2006, 38, 873–875. [Google Scholar] [CrossRef]
- Damiola, F.; Pertesi, M.; Oliver, J.; Le Calvez-Kelm, F.; Voegele, C.; Young, E.L.; Robinot, N.; Forey, N.; Durand, G.; Vallée, M.P.; et al. Rare Key Functional Domain Missense Substitutions in MRE11A, RAD50, and NBNcontribute to Breast Cancer Susceptibility: Results from a Breast Cancer Family Registry Case-Control Mutation-Screening Study. Breast Cancer Res. 2014, 16, R58. [Google Scholar] [CrossRef]
- Rahman, N.; Seal, S.; Thompson, D.; Kelly, P.; Renwick, A.; Elliott, A.; Reid, S.; Spanova, K.; Barfoot, R.; Chagtai, T.; et al. PALB2, Which Encodes a BRCA2-Interacting Protein, Is a Breast Cancer Susceptibility Gene. Nat. Genet. 2007, 39, 165–167. [Google Scholar] [CrossRef]
- Solyom, S.; Aressy, B.; Pylkäs, K.; Patterson-Fortin, J.; Hartikainen, J.M.; Kallioniemi, A.; Kauppila, S.; Nikkilä, J.; Kosma, V.-M.; Mannermaa, A.; et al. Breast Cancer-Associated Abraxas Mutation Disrupts Nuclear Localization and DNA Damage Response Functions. Sci. Transl. Med. 2012, 4, 122ra23. [Google Scholar] [CrossRef]
- Seal, S.; Thompson, D.; Renwick, A.; Elliott, A.; Kelly, P.; Barfoot, R.; Chagtai, T.; Jayatilake, H.; Ahmed, M.; Spanova, K.; et al. Truncating Mutations in the Fanconi Anemia J Gene BRIP1 Are Low-Penetrance Breast Cancer Susceptibility Alleles. Nat. Genet. 2006, 38, 1239–1241. [Google Scholar] [CrossRef]
- CHEK2 Breast Cancer Case-Control Consortium. CHEK2*1100delC and Susceptibility to Breast Cancer: A Collaborative Analysis Involving 10,860 Breast Cancer Cases and 9,065 Controls from 10 Studies. Am. J. Hum. Genet. 2004, 74, 1175–1182. [Google Scholar] [CrossRef]
- Zhang, H.; Ahearn, T.U.; Lecarpentier, J.; Barnes, D.; Beesley, J.; Qi, G.; Jiang, X.; O’Mara, T.A.; Zhao, N.; Bolla, M.K.; et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat. Genet. 2020, 52, 572–581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Michailidou, K.; Lindström, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemaçon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; et al. Association Analysis Identifies 65 New Breast Cancer Risk Loci. Nature 2017, 551, 92–94. [Google Scholar] [CrossRef]
- Breast Cancer Association Consortium. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [PubMed]
- Buys, S.S.; Sandbach, J.F.; Gammon, A.; Patel, G.; Kidd, J.; Brown, K.; Kloza, K.; Strom, S.; Dejournett, J.; Sargen, M.; et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 2017, 123, 172–180. [Google Scholar] [PubMed]
- McGuire, K.P.; Mamounas, E.P. Management of Hereditary Breast Cancer: ASCO, ASTRO, and SSO Guideline. Ann. Surg. Oncol. 2020, 27, 1721–1723. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.H. Breast Cancer in Men. N. Engl. J. Med. 2018, 378, 2311–2320. [Google Scholar] [CrossRef]
- Hendrick, R.E.; Monticciolo, D.L.; Biggs, K.W.; Malak, S.F. Age distributions of breast cancer diagnosis and mortality by race and ethnicity in US women. Cancer 2021, 127, 4384–4392. [Google Scholar] [CrossRef] [PubMed]
- Qing, T.; Mohsen, H.; Marczyk, M.; Ye, Y.; O’Meara, T.; Zhao, H.; Townsend, J.P.; Gerstein, M.; Hatzis, C.; Kluger, Y.; et al. Germline variant burden in cancer genes correlates with age at diagnosis and somatic mutation burden. Nat. Commun. 2020, 11, 2438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef]
- Key, T.J.; Verkasalo, P.K.; Banks, E. Epidemiology of Breast Cancer. Lancet Oncol. 2001, 2, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Eguiagaray, I.; Wild, S.H.; Rosenberg, P.S.; Bird, S.M.; Brewster, D.H.; Hall, P.S.; Cameron, D.A.; Morrison, D.; Figueroa, J.D. Distinct Temporal Trends in Breast Cancer Incidence from 1997 to 2016 by Molecular Subtypes: A Population-Based Study of Scottish Cancer Registry Data. Br. J. Cancer 2020, 123, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Gomez, S.L.; Quach, T.; Horn-Ross, P.L.; Pham, J.T.; Cockburn, M.; Chang, E.T.; Keegan, T.H.M.; Glaser, S.L.; Clarke, C.A. Hidden Breast Cancer Disparities in Asian Women: Disaggregating Incidence Rates by Ethnicity and Migrant Status. Am. J. Public. Health 2010, 100 (Suppl. 1), S125–S131. [Google Scholar] [CrossRef]
- DeSantis, C.E.; Fedewa, S.A.; Goding Sauer, A.; Kramer, J.L.; Smith, R.A.; Jemal, A. Breast Cancer Statistics, 2015: Convergence of Incidence Rates between Black and White Women. CA Cancer J. Clin. 2016, 66, 31–42. [Google Scholar] [CrossRef]
- DeSantis, C.E.; Ma, J.; Goding Sauer, A.; Newman, L.A.; Jemal, A. Breast Cancer Statistics, 2017, Racial Disparity in Mortality by State. CA Cancer J. Clin. 2017, 67, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Chen, Z.; Anderson, G.L.; Rohan, T.; Aragaki, A.; Lane, D.; Dolan, N.C.; Paskett, E.D.; McTiernan, A.; Hubbell, F.A.; et al. Ethnicity and Breast Cancer: Factors Influencing Differences in Incidence and Outcome. JNCI J. Natl. Cancer Inst. 2005, 97, 439–448. [Google Scholar] [CrossRef]
- Huo, D.; Ikpatt, F.; Khramtsov, A.; Dangou, J.-M.; Nanda, R.; Dignam, J.; Zhang, B.; Grushko, T.; Zhang, C.; Oluwasola, O.; et al. Population Differences in Breast Cancer: Survey in Indigenous African Women Reveals over-Representation of Triple-Negative Breast Cancer. J. Clin. Oncol. 2009, 27, 4515–4521. [Google Scholar] [CrossRef]
- Kurian, A.W.; Fish, K.; Shema, S.J.; Clarke, C.A. Lifetime Risks of Specific Breast Cancer Subtypes among Women in Four Racial/Ethnic Groups. Breast Cancer Res. 2010, 12, R99. [Google Scholar] [CrossRef]
- Shoemaker, M.L.; White, M.C.; Wu, M.; Weir, H.K.; Romieu, I. Differences in Breast Cancer Incidence among Young Women Aged 20-49 Years by Stage and Tumor Characteristics, Age, Race, and Ethnicity, 2004-2013. Breast Cancer Res Treat 2018, 169, 595–606. [Google Scholar] [CrossRef]
- Pinheiro, S.P.; Holmes, M.D.; Pollak, M.N.; Barbieri, R.L.; Hankinson, S.E. Racial Differences in Premenopausal Endogenous Hormones. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2147–2153. [Google Scholar] [CrossRef]
- Haiman, C.A.; Chen, G.K.; Vachon, C.M.; Canzian, F.; Dunning, A.; Millikan, R.C.; Wang, X.; Ademuyiwa, F.; Ahmed, S.; Ambrosone, C.B.; et al. A Common Variant at the TERT-CLPTM1L Locus Is Associated with Estrogen Receptor-Negative Breast Cancer. Nat. Genet. 2011, 43, 1210–1214. [Google Scholar] [CrossRef]
- Kato, I.; Cichon, M.; Yee, C.L.; Land, S.; Korczak, J.F. African American-Preponderant Single Nucleotide Polymorphisms (SNPs) and Risk of Breast Cancer. Cancer Epidemiol. 2009, 33, 24–30. [Google Scholar] [CrossRef]
- Porter, P.L.; Lund, M.J.; Lin, M.G.; Yuan, X.; Liff, J.M.; Flagg, E.W.; Coates, R.J.; Eley, J.W. Racial Differences in the Expression of Cell Cycle-Regulatory Proteins in Breast Carcinoma. Cancer 2004, 100, 2533–2542. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.; Moy, B.; Mroz, E.A.; Ross, K.; Niemierko, A.; Rocco, J.W.; Isakoff, S.; Ellisen, L.W.; Bardia, A. Comparison of the Genomic Landscape Between Primary Breast Cancer in African American Versus White Women and the Association of Racial Differences With Tumor Recurrence. JCO 2015, 33, 3621–3627. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.; Hu, H.; Rhie, S.K.; Gamazon, E.R.; Cherniack, A.D.; Liu, J.; Yoshimatsu, T.F.; Pitt, J.J.; Hoadley, K.A.; Troester, M.; et al. Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. JAMA Oncol. 2017, 3, 1654. [Google Scholar] [CrossRef]
- Pitt, J.J.; Riester, M.; Zheng, Y.; Yoshimatsu, T.F.; Sanni, A.; Oluwasola, O.; Veloso, A.; Labrot, E.; Wang, S.; Odetunde, A.; et al. Characterization of Nigerian Breast Cancer Reveals Prevalent Homologous Recombination Deficiency and Aggressive Molecular Features. Nat. Commun. 2018, 9, 4181. [Google Scholar] [CrossRef] [PubMed]
- Yedjou, C.G.; Sims, J.N.; Miele, L.; Noubissi, F.; Lowe, L.; Fonseca, D.D.; Alo, R.A.; Payton, M.; Tchounwou, P.B. Health and Racial Disparity in Breast Cancer. Adv. Exp. Med. Biol. 2019, 1152, 31–49. [Google Scholar] [CrossRef]
- Brewer, H.R.; Jones, M.E.; Schoemaker, M.J.; Ashworth, A.; Swerdlow, A.J. Family History and Risk of Breast Cancer: An Analysis Accounting for Family Structure. Breast Cancer Res. Treat. 2017, 165, 193–200. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Familial Breast Cancer: Collaborative Reanalysis of Individual Data from 52 Epidemiological Studies Including 58,209 Women with Breast Cancer and 101,986 Women without the Disease. Lancet 2001, 358, 1389–1399. [Google Scholar] [CrossRef]
- Metcalfe, K.A.; Finch, A.; Poll, A.; Horsman, D.; Kim-Sing, C.; Scott, J.; Royer, R.; Sun, P.; Narod, S.A. Breast Cancer Risks in Women with a Family History of Breast or Ovarian Cancer Who Have Tested Negative for a BRCA1 or BRCA2 Mutation. Br. J. Cancer 2009, 100, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.L.; Corle, D.K.; Micozzi, M.S.; Schatzkin, A.; Taylor, P.R. A prospective study of the development of breast cancer in 16,692 women with benign breast disease. Am. J. Epidemiol. 1988, 128, 467–477. [Google Scholar] [CrossRef]
- Dupont, W.D.; Page, D.L.; Parl, F.F.; Vnencak-Jones, C.L.; Plummer, W.D.; Rados, M.S.; Schuyler, P.A. Long-Term Risk of Breast Cancer in Women with Fibroadenoma. N. Engl. J. Med. 1994, 331, 10–15. [Google Scholar] [CrossRef]
- Page, D.L.; Schuyler, P.A.; Dupont, W.D.; Jensen, R.A.; Plummer, W.D.; Simpson, J.F. Atypical Lobular Hyperplasia as a Unilateral Predictor of Breast Cancer Risk: A Retrospective Cohort Study. Lancet 2003, 361, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, L.C.; Sellers, T.A.; Frost, M.H.; Lingle, W.L.; Degnim, A.C.; Ghosh, K.; Vierkant, R.A.; Maloney, S.D.; Pankratz, V.S.; Hillman, D.W.; et al. Benign Breast Disease and the Risk of Breast Cancer. N. Engl. J. Med. 2005, 353, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Tice, J.A.; Miglioretti, D.L.; Li, C.-S.; Vachon, C.M.; Gard, C.C.; Kerlikowske, K. Breast Density and Benign Breast Disease: Risk Assessment to Identify Women at High Risk of Breast Cancer. JCO 2015, 33, 3137–3143. [Google Scholar] [CrossRef]
- Guray, M.; Sahin, A.A. Benign Breast Diseases: Classification, Diagnosis, and Management. Oncologist 2006, 11, 435–449. [Google Scholar] [CrossRef]
- Burke, A.; O’Driscoll, J.; Abubakar, M.; Bennett, K.E.; Carmody, E.; Flanagan, F.; Gierach, G.L.; Mullooly, M. A systematic review of determinants of breast cancer risk among women with benign breast disease. NPJ Breast Cancer 2025, 11, 16. [Google Scholar] [CrossRef]
- Boyd, N.F.; Byng, J.W.; Jong, R.A.; Fishell, E.K.; Little, L.E.; Miller, A.B.; Lockwood, G.A.; Tritchler, D.L.; Yaffe, M.J. Quantitative Classification of Mammographic Densities and Breast Cancer Risk: Results from the Canadian National Breast Screening Study. JNCI J. Natl. Cancer Inst. 1995, 87, 670–675. [Google Scholar] [CrossRef]
- Carney, P.A.; Miglioretti, D.L.; Yankaskas, B.C.; Kerlikowske, K.; Rosenberg, R.; Rutter, C.M.; Geller, B.M.; Abraham, L.A.; Taplin, S.H.; Dignan, M.; et al. Individual and Combined Effects of Age, Breast Density, and Hormone Replacement Therapy Use on the Accuracy of Screening Mammography. Ann. Intern. Med. 2003, 138, 168. [Google Scholar] [CrossRef]
- Boyd, N.F.; Rommens, J.M.; Vogt, K.; Lee, V.; Hopper, J.L.; Yaffe, M.J.; Paterson, A.D. Mammographic Breast Density as an Intermediate Phenotype for Breast Cancer. Lancet Oncol. 2005, 6, 798–808. [Google Scholar] [CrossRef] [PubMed]
- McCormack, V.A.; dos Santos Silva, I. Breast Density and Parenchymal Patterns as Markers of Breast Cancer Risk: A Meta-Analysis. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic Density and the Risk and Detection of Breast Cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef]
- Boyd, N.; Martin, L.; Gunasekara, A.; Melnichouk, O.; Maudsley, G.; Peressotti, C.; Yaffe, M.; Minkin, S. Mammographic Density and Breast Cancer Risk: Evaluation of a Novel Method of Measuring Breast Tissue Volumes. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1754–1762. [Google Scholar] [CrossRef]
- Boyd, N.F.; Martin, L.J.; Bronskill, M.; Yaffe, M.J.; Duric, N.; Minkin, S. Breast Tissue Composition and Susceptibility to Breast Cancer. JNCI J. Natl. Cancer Inst. 2010, 102, 1224–1237. [Google Scholar] [CrossRef]
- Boyd, N.F.; Martin, L.J.; Yaffe, M.J.; Minkin, S. Mammographic Density and Breast Cancer Risk: Current Understanding and Future Prospects. Breast Cancer Res. 2011, 13, 223. [Google Scholar] [CrossRef]
- Moran, O.; Eisen, A.; Demsky, R.; Blackmore, K.; Knight, J.A.; Panchal, S.; Ginsburg, O.; Zbuk, K.; Yaffe, M.; Metcalfe, K.A.; et al. Predictors of mammographic density among women with a strong family history of breast cancer. BMC Cancer 2019, 19, 631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mai Tran, T.X.; Kim, S.; Song, H.; Park, B. Family history of breast cancer, mammographic breast density and breast cancer risk: Findings from a cohort study of Korean women. Breast 2022, 65, 180–186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balleyguier, C.; Ayadi, S.; Van Nguyen, K.; Vanel, D.; Dromain, C.; Sigal, R. BIRADSTM Classification in Mammography. Eur. J. Radiol. 2007, 61, 192–194. [Google Scholar] [CrossRef]
- Magny, S.J.; Shikhman, R.; Keppke, A.L. Breast Imaging Reporting and Data System. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Boyd, N.F.; Dite, G.S.; Stone, J.; Gunasekara, A.; English, D.R.; McCredie, M.R.E.; Giles, G.G.; Tritchler, D.; Chiarelli, A.; Yaffe, M.J.; et al. Heritability of Mammographic Density, a Risk Factor for Breast Cancer. N. Engl. J. Med. 2002, 347, 886–894. [Google Scholar] [CrossRef]
- Huo, C.W.; Chew, G.L.; Britt, K.L.; Ingman, W.V.; Henderson, M.A.; Hopper, J.L.; Thompson, E.W. Mammographic Density-a Review on the Current Understanding of Its Association with Breast Cancer. Breast Cancer Res. Treat. 2014, 144, 479–502. [Google Scholar] [CrossRef] [PubMed]
- Nazari, S.S.; Mukherjee, P. An Overview of Mammographic Density and Its Association with Breast Cancer. Breast Cancer 2018, 25, 259–267. [Google Scholar] [CrossRef]
- Ramin, C.; Withrow, D.R.; Davis Lynn, B.C.; Gierach, G.L.; Berrington de González, A. Risk of Contralateral Breast Cancer According to First Breast Cancer Characteristics among Women in the USA, 1992–2016. Breast Cancer Res. 2021, 23, 24. [Google Scholar] [CrossRef]
- Ramin, C.; Veiga, L.H.S.; Vo, J.B.; Curtis, R.E.; Bodelon, C.; Aiello Bowles, E.J.; Buist, D.S.M.; Weinmann, S.; Feigelson, H.S.; Gierach, G.L.; et al. Risk of Second Primary Cancer among Women in the Kaiser Permanente Breast Cancer Survivors Cohort. Breast Cancer Res. 2023, 25, 50. [Google Scholar] [CrossRef]
- Bhatia, S.; Yasui, Y.; Robison, L.L.; Birch, J.M.; Bogue, M.K.; Diller, L.; DeLaat, C.; Fossati-Bellani, F.; Morgan, E.; Oberlin, O.; et al. High Risk of Subsequent Neoplasms Continues with Extended Follow-Up of Childhood Hodgkin’s Disease: Report From the Late Effects Study Group. JCO 2003, 21, 4386–4394. [Google Scholar] [CrossRef]
- Travis, L.B.; Hill, D.A.; Dores, G.M.; Gospodarowicz, M.; Van Leeuwen, F.E.; Holowaty, E.; Glimelius, B.; Andersson, M.; Wiklund, T.; Lynch, C.F.; et al. Breast Cancer Following Radiotherapy and Chemotherapy Among Young Women with Hodgkin Disease. JAMA 2003, 290, 465. [Google Scholar] [CrossRef]
- Tokunaga, M.; Land, C.E.; Tokuoka, S.; Nishimori, I.; Soda, M.; Akiba, S. Incidence of Female Breast Cancer among Atomic Bomb Survivors, 1950–1985. Radiat. Res. 1994, 138, 209–223. [Google Scholar] [PubMed]
- Land, C.E.; Tokunaga, M.; Koyama, K.; Soda, M.; Preston, D.L.; Nishimori, I.; Tokuoka, S. Incidence of Female Breast Cancer among Atomic Bomb Survivors, Hiroshima and Nagasaki, 1950–1990. Radiat. Res. 2003, 160, 707–717. [Google Scholar] [CrossRef]
- Brenner, A.V.; Preston, D.L.; Sakata, R.; Sugiyama, H.; De Gonzalez, A.B.; French, B.; Utada, M.; Cahoon, E.K.; Sadakane, A.; Ozasa, K.; et al. Incidence of Breast Cancer in the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiat. Res. 2018, 190, 433. [Google Scholar] [CrossRef]
- Zeng, Z.; Vo, A.; Li, X.; Shidfar, A.; Saldana, P.; Blanco, L.; Xuei, X.; Luo, Y.; Khan, S.A.; Clare, S.E. Somatic genetic aberrations in benign breast disease and the risk of subsequent breast cancer. NPJ Breast Cancer. 2020, 6, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bazire, L.; De Rycke, Y.; Asselain, B.; Fourquet, A.; Kirova, Y.M. Risks of second malignancies after breast cancer treatment: Long-term results. Cancer Radiother. 2017, 21, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, Menopause, and Breast Cancer Risk: Individual Participant Meta-Analysis, Including 118 964 Women with Breast Cancer from 117 Epidemiological Studies. Lancet Oncol. 2012, 13, 1141–1151. [Google Scholar] [CrossRef]
- Key, T.; Appleby, P.; Barnes, I.; Reeves, G.; Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous Sex Hormones and Breast Cancer in Postmenopausal Women: Reanalysis of Nine Prospective Studies. J. Natl. Cancer Inst. 2002, 94, 606–616. [Google Scholar] [CrossRef]
- Wyshak, G.; Frisch, R.E. Evidence for a Secular Trend in Age of Menarche. N. Engl. J. Med. 1982, 306, 1033–1035. [Google Scholar] [CrossRef] [PubMed]
- Parent, A.-S.; Teilmann, G.; Juul, A.; Skakkebaek, N.E.; Toppari, J.; Bourguignon, J.-P. The Timing of Normal Puberty and the Age Limits of Sexual Precocity: Variations around the World, Secular Trends, and Changes after Migration. Endocr. Rev. 2003, 24, 668–693. [Google Scholar] [CrossRef]
- Nichols, H.B.; Trentham-Dietz, A.; Hampton, J.M.; Titus-Ernstoff, L.; Egan, K.M.; Willett, W.C.; Newcomb, P.A. From Menarche to Menopause: Trends among US Women Born from 1912 to 1969. Am. J. Epidemiol. 2006, 164, 1003–1011. [Google Scholar] [CrossRef]
- Morris, D.H.; Jones, M.E.; Schoemaker, M.J.; Ashworth, A.; Swerdlow, A.J. Secular Trends in Age at Menarche in Women in the UK Born 1908–93: Results from the Breakthrough Generations Study. Paediatric Perinatal Epid 2011, 25, 394–400. [Google Scholar] [CrossRef]
- Karapanou, O.; Papadimitriou, A. Determinants of Menarche. Reprod. Biol. Endocrinol. 2010, 8, 115. [Google Scholar] [CrossRef]
- Yermachenko, A.; Dvornyk, V. Nongenetic Determinants of Age at Menarche: A Systematic Review. BioMed Res. Int. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Brix, N.; Ernst, A.; Lauridsen, L.L.B.; Parner, E.T.; Olsen, J.; Henriksen, T.B.; Ramlau-Hansen, C.H. Maternal Smoking During Pregnancy and Timing of Puberty in Sons and Daughters: A Population-Based Cohort Study. Am. J. Epidemiol. 2019, 188, 47–56. [Google Scholar] [CrossRef]
- Gottschalk, M.S.; Eskild, A.; Hofvind, S.; Gran, J.M.; Bjelland, E.K. Temporal Trends in Age at Menarche and Age at Menopause: A Population Study of 312 656 Women in Norway. Human. Reprod. 2020, 35, 464–471. [Google Scholar] [CrossRef]
- Gold, E.B.; Bromberger, J.; Crawford, S.; Samuels, S.; Greendale, G.A.; Harlow, S.D.; Skurnick, J. Factors Associated with Age at Natural Menopause in a Multiethnic Sample of Midlife Women. Am. J. Epidemiol. 2001, 153, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Gold, E.B. The Timing of the Age at Which Natural Menopause Occurs. Obstet. Gynecol. Clin. North. Am. 2011, 38, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Okyere, J.; Ayebeng, C.; Adjedu, S.A.; Dickson, K.S. Age at first menstruation and clinical breast cancer screening utilization: Insights from the 2021 Côte d’Ivoire demographic and health survey. Reprod. Health 2024, 21, 176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoang, T.; Lee, J.; Jung, S.Y.; Kim, J. Determining risk-adapted starting age and interval for breast cancer screening based on reproductive and hormonal factors. Int. J. Cancer 2025, 156, 1692–1702. [Google Scholar] [CrossRef] [PubMed]
- Cogliano, V.; Grosse, Y.; Baan, R.; Straif, K.; Secretan, B.; El Ghissassi, F. Carcinogenicity of Combined Oestrogen-Progestagen Contraceptives and Menopausal Treatment. Lancet Oncol. 2005, 6, 552–553. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Volume 91—Combined Estrogen–Progestogen Contraceptives and Combined Estrogen–Progestogen Menopausal Therapy. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2007. [Google Scholar]
- Collaborative Group on Hormonal Factors in Breast Cancer. Breast Cancer and Hormonal Contraceptives: Collaborative Reanalysis of Individual Data on 53 297 Women with Breast Cancer and 100 239 Women without Breast Cancer from 54 Epidemiological Studies. Lancet 1996, 347, 1713–1727. [Google Scholar] [CrossRef]
- Mørch, L.S.; Skovlund, C.W.; Hannaford, P.C.; Iversen, L.; Fielding, S.; Lidegaard, Ø. Contemporary Hormonal Contraception and the Risk of Breast Cancer. N. Engl. J. Med. 2017, 377, 2228–2239. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Breast Cancer and Hormone Replacement Therapy: Collaborative Reanalysis of Data from 51 Epidemiological Studies of 52,705 Women with Breast Cancer and 108,411 Women without Breast Cancer. Lancet 1997, 350, 1047–1059. [Google Scholar]
- Ross, R.K. Effect of Hormone Replacement Therapy on Breast Cancer Risk: Estrogen Versus Estrogen Plus Progestin. J. Natl. Cancer Inst. 2000, 92, 328–332. [Google Scholar] [CrossRef]
- Beral, V.; Banks, E.; Reeves, G. Evidence from Randomised Trials on the Long-Term Effects of Hormone Replacement Therapy. Lancet 2002, 360, 942–944. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Group on Hormonal Factors in Breast Cancer. Type and Timing of Menopausal Hormone Therapy and Breast Cancer Risk: Individual Participant Meta-Analysis of the Worldwide Epidemiological Evidence. Lancet 2019, 394, 1159–1168. [Google Scholar] [CrossRef]
- Rumgay, H.; Shield, K.; Charvat, H.; Ferrari, P.; Sornpaisarn, B.; Obot, I.; Islami, F.; Lemmens, V.E.P.P.; Rehm, J.; Soerjomataram, I. Global Burden of Cancer in 2020 Attributable to Alcohol Consumption: A Population-Based Study. Lancet Oncol. 2021, 22, 1071–1080. [Google Scholar] [CrossRef]
- Zhang, S.M.; Lee, I.-M.; Manson, J.E.; Cook, N.R.; Willett, W.C.; Buring, J.E. Alcohol Consumption and Breast Cancer Risk in the Women’s Health Study. Am. J. Epidemiol. 2007, 165, 667–676. [Google Scholar] [CrossRef]
- Chen, W.Y.; Rosner, B.; Hankinson, S.E.; Colditz, G.A.; Willett, W.C. Moderate Alcohol Consumption During Adult Life, Drinking Patterns, and Breast Cancer Risk. JAMA 2011, 306, 1884. [Google Scholar] [CrossRef]
- Liu, Y.; Colditz, G.A.; Rosner, B.; Berkey, C.S.; Collins, L.C.; Schnitt, S.J.; Connolly, J.L.; Chen, W.Y.; Willett, W.C.; Tamimi, R.M. Alcohol Intake Between Menarche and First Pregnancy: A Prospective Study of Breast Cancer Risk. JNCI J. Natl. Cancer Inst. 2013, 105, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Pelucchi, C.; Bagnardi, V.; Vecchia, C.L. Epidemiology and Pathophysiology of Alcohol and Breast Cancer: Update 2012. Alcohol and Alcoholism 2012, 47, 204–212. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, N.; Colditz, G.A. Links between Alcohol Consumption and Breast Cancer: A Look at the Evidence. Womens Health 2015, 11, 65–77. [Google Scholar] [CrossRef]
- Singletary, K.W.; Gapstur, S.M. Alcohol and Breast Cancer: Review of Epidemiologic and Experimental Evidence and Potential Mechanisms. JAMA 2001, 286, 2143. [Google Scholar] [CrossRef]
- Massey, Z.B.; Anbari, A.B.; Wang, N.; Adediran, A.; Lawrie, L.L.; Martinez, P.; McCarthy, D. Developing and testing health warnings about alcohol and risk for breast cancer: Results from a national experiment with young adult women in the United States. Alcohol. Clin. Exp. Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Van Den Brandt, P.A. Pooled Analysis of Prospective Cohort Studies on Height, Weight, and Breast Cancer Risk. Am. J. Epidemiol. 2000, 152, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.; Dorgan, J.F.; Longcope, C.; Stanczyk, F.Z.; Stephenson, H.E.; Falk, R.T.; Miller, R.; et al. Body Mass Index, Serum Sex Hormones, and Breast Cancer Risk in Postmenopausal Women. J. Natl. Cancer Inst. 2003, 95, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Reeves, G.K.; Pirie, K.; Beral, V.; Green, J.; Spencer, E.; Bull, D. Million Women Study Collaboration Cancer Incidence and Mortality in Relation to Body Mass Index in the Million Women Study: Cohort Study. BMJ 2007, 335, 1134. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-Mass Index and Incidence of Cancer: A Systematic Review and Meta-Analysis of Prospective Observational Studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Harris, H.R.; Willett, W.C.; Terry, K.L.; Michels, K.B. Body Fat Distribution and Risk of Premenopausal Breast Cancer in the Nurses’ Health Study II. JNCI J. Natl. Cancer Inst. 2011, 103, 273–278. [Google Scholar] [CrossRef] [PubMed]
- The Premenopausal Breast Cancer Collaborative Group; Schoemaker, M.J.; Nichols, H.B.; Wright, L.B.; Brook, M.N.; Jones, M.E.; O’Brien, K.M.; Adami, H.-O.; Baglietto, L.; Bernstein, L.; et al. Association of Body Mass Index and Age with Subsequent Breast Cancer Risk in Premenopausal Women. JAMA Oncol. 2018, 4, e181771. [Google Scholar] [CrossRef]
- García-Estévez, L.; Cortés, J.; Pérez, S.; Calvo, I.; Gallegos, I.; Moreno-Bueno, G. Obesity and Breast Cancer: A Paradoxical and Controversial Relationship Influenced by Menopausal Status. Front. Oncol. 2021, 11, 705911. [Google Scholar] [CrossRef]
- Monninkhof, E.M.; Elias, S.G.; Vlems, F.A.; Van Der Tweel, I.; Schuit, A.J.; Voskuil, D.W.; Van Leeuwen, F.E. Physical Activity and Breast Cancer: A Systematic Review. Epidemiology 2007, 18, 137–157. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Cust, A.E. Physical Activity and Breast Cancer Risk: Impact of Timing, Type and Dose of Activity and Population Subgroup Effects. Br. J. Sports Med. 2008, 42, 636–647. [Google Scholar] [CrossRef]
- Lynch, B.M.; Neilson, H.K.; Friedenreich, C.M. Physical Activity and Breast Cancer Prevention. Recent. Results Cancer Res. 2011, 186, 13–42. [Google Scholar] [CrossRef]
- Guo, W.; Fensom, G.K.; Reeves, G.K.; Key, T.J. Physical Activity and Breast Cancer Risk: Results from the UK Biobank Prospective Cohort. Br. J. Cancer 2020, 122, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Lynch, B.M.; Bassett, J.K.; Milne, R.L.; Patel, A.V.; Rees-Punia, E.; Lee, I.M.; Moore, S.C.; Matthews, C.E. Estimating cancer incidence attributable to physical inactivity in the United States. Cancer 2025, 131, e35725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neilson, H.K.; Friedenreich, C.M.; Brockton, N.T.; Millikan, R.C. Physical Activity and Postmenopausal Breast Cancer: Proposed Biologic Mechanisms and Areas for Future Research. Cancer Epidemiol. Biomark. Prev. 2009, 18, 11–27. [Google Scholar] [CrossRef]
- Friedenreich, C.M. Physical Activity and Breast Cancer: Review of the Epidemiologic Evidence and Biologic Mechanisms. In Clinical Cancer Prevention; Senn, H.-J., Otto, F., Eds.; Recent Results in Cancer Research; Springer: Berlin, Heidelberg, 2010; Volume 188, pp. 125–139. ISBN 978-3-642-10856-3. [Google Scholar]
- Brown, R.B.; Bigelow, P.; Dubin, J.A.; Mielke, J.G. High Dietary Phosphorus Is Associated with Increased Breast Cancer Risk in a U.S. Cohort of Middle-Aged Women. Nutrients 2023, 15, 3735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papadimitriou, N.; Dimou, N.; Gill, D.; Tzoulaki, I.; Murphy, N.; Riboli, E.; Lewis, S.J.; Martin, R.M.; Gunter, M.J.; Tsilidis, K.K. Genetically predicted circulating concentrations of micronutrients and risk of breast cancer: A Mendelian randomization study. Int. J. Cancer 2021, 148, 646–653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bingham, S.A.; Day, N.E.; Luben, R.; Ferrari, P.; Slimani, N.; Norat, T.; Clavel-Chapelon, F.; Kesse, E.; Nieters, A.; Boeing, H.; et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study. Lancet 2003, 361, 1496–1501. [Google Scholar] [CrossRef]
- Elio, R.; Teresa, N. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 2003, 78, 559S–569S. [Google Scholar] [CrossRef] [PubMed]
- Kabat, G.C.; Miller, A.B.; Jain, M.; Rohan, T.E. Dietary iron and heme iron intake and risk of breast cancer: A prospective cohort study. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1306–1308. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Vogt, S.; Olson, N.; Glass, A.G.; Rohan, T.E. Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1682–1685, Erratum in Cancer Epidemiol. Biomarkers Prev. 2007, 16, 2173. [Google Scholar] [CrossRef] [PubMed]
- Franco, G. Ramazzini and Workers’ Health. Lancet 1999, 354, 858–861. [Google Scholar] [CrossRef]
- Lane-Claypon, J. A Further Report on Cancer of the Breast, With Special Reference to Its Associated Antecedent Conditions; Reports on Public Health and Medical Subjects No. 32. Ministry of Health; His Majesty’s Stationary Office: London, UK, 1926. [Google Scholar]
- MacMahon, B.; Cole, P.; Lin, T.M.; Lowe, C.R.; Mirra, A.P.; Ravnihar, B.; Salber, E.J.; Valaoras, V.G.; Yuasa, S. Age at First Birth and Breast Cancer Risk. Bull. World Health Organ. 1970, 43, 209–221. [Google Scholar]
- Meier-Abt, F.; Bentires-Alj, M. How Pregnancy at Early Age Protects against Breast Cancer. Trends Mol. Med. 2014, 20, 143–153. [Google Scholar] [CrossRef]
- Albrektsen, G.; Heuch, I.; Hansen, S.; Kvåle, G. Breast Cancer Risk by Age at Birth, Time since Birth and Time Intervals between Births: Exploring Interaction Effects. Br. J. Cancer 2005, 92, 167–175. [Google Scholar] [CrossRef]
- Andrieu, N.; Goldgar, D.E.; Easton, D.F.; Rookus, M.; Brohet, R.; Antoniou, A.C.; Peock, S.; Evans, G.; Eccles, D.; Douglas, F.; et al. Pregnancies, Breast-Feeding, and Breast Cancer Risk in the International BRCA1/2 Carrier Cohort Study (IBCCS). J. Natl. Cancer Inst. 2006, 98, 535–544. [Google Scholar] [CrossRef]
- Marchant, J. Influence of Pregnancy and Lactation on the Incidence of Mammary Carcinoma Induced with Methylcholanthrene in Female Mice of the “ IF ” Strain. J. Pathol. 1955, 70, 415–418. [Google Scholar] [CrossRef]
- Sinha, D.; Pazik, J.; Dao, T. Prevention of Mammary Carcinogenesis in Rats by Pregnancy: Effect of Full-Term and Interrupted Pregnancy. Br. J. Cancer 1988, 57, 390–394. [Google Scholar] [CrossRef]
- Thordarson, G.; Jin, E.; Guzman, R.C.; Swanson, S.M.; Nandi, S.; Talamantes, F. Refractoriness to Mammary Tumorigenesis in Parous Rats: Is It Caused by Persistent Changes in the Hormonal Environment or Permanent Biochemical Alterations in the Mammary Epithelia? Carcinogenesis 1995, 16, 2847–2853. [Google Scholar] [CrossRef]
- Medina, D.; Smith, G.H. Chemical Carcinogen-Induced Tumorigenesis in Parous, Involuted Mouse Mammary Glands. JNCI J. Natl. Cancer Inst. 1999, 91, 967–969. [Google Scholar] [CrossRef]
- Sivaraman, L.; Medina, D. Hormone-Induced Protection against Breast Cancer. J. Mammary Gland. Biol. Neoplasia 2002, 7, 77–92. [Google Scholar] [CrossRef]
- Blakely, C.M.; Stoddard, A.J.; Belka, G.K.; Dugan, K.D.; Notarfrancesco, K.L.; Moody, S.E.; D’Cruz, C.M.; Chodosh, L.A. Hormone-Induced Protection against Mammary Tumorigenesis Is Conserved in Multiple Rat Strains and Identifies a Core Gene Expression Signature Induced by Pregnancy. Cancer Res. 2006, 66, 6421–6431. [Google Scholar] [CrossRef]
- Rajkumar, L.; Kittrell, F.S.; Guzman, R.C.; Brown, P.H.; Nandi, S.; Medina, D. Hormone-Induced Protection of Mammary Tumorigenesis in Genetically Engineered Mouse Models. Breast Cancer Res. 2007, 9, R12. [Google Scholar] [CrossRef]
- Lambe, M.; Hsieh, C.; Trichopoulos, D.; Ekbom, A.; Pavia, M.; Adami, H.-O. Transient Increase in the Risk of Breast Cancer after Giving Birth. N. Engl. J. Med. 1994, 331, 5–9. [Google Scholar] [CrossRef]
- Liu, Q.; Wuu, J.; Lambe, M.; Hsieh, S.-F.; Ekbom, A.; Hsieh, C.-C. Transient Increase in Breast Cancer Risk after Giving Birth: Postpartum Period with the Highest Risk (Sweden). Cancer Causes Control. 2002, 13, 299–305. [Google Scholar] [CrossRef]
- Nichols, H.B.; Schoemaker, M.J.; Cai, J.; Xu, J.; Wright, L.B.; Brook, M.N.; Jones, M.E.; Adami, H.-O.; Baglietto, L.; Bertrand, K.A.; et al. Breast Cancer Risk After Recent Childbirth: A Pooled Analysis of 15 Prospective Studies. Ann. Intern. Med. 2019, 170, 22. [Google Scholar] [CrossRef]
- Janerich, D.T.; Hoff, M.B. Evidence for a crossover in breast cancer risk factors1. Am. J. Epidemiol. 1982, 116, 737–742. [Google Scholar] [CrossRef]
- Callihan, E.B.; Gao, D.; Jindal, S.; Lyons, T.R.; Manthey, E.; Edgerton, S.; Urquhart, A.; Schedin, P.; Borges, V.F. Postpartum Diagnosis Demonstrates a High Risk for Metastasis and Merits an Expanded Definition of Pregnancy-Associated Breast Cancer. Breast Cancer Res. Treat. 2013, 138, 549–559. [Google Scholar] [CrossRef]
- Hartman, E.K.; Eslick, G.D. The Prognosis of Women Diagnosed with Breast Cancer before, during and after Pregnancy: A Meta-Analysis. Breast Cancer Res. Treat. 2016, 160, 347–360. [Google Scholar] [CrossRef]
- Goddard, E.T.; Bassale, S.; Schedin, T.; Jindal, S.; Johnston, J.; Cabral, E.; Latour, E.; Lyons, T.R.; Mori, M.; Schedin, P.J.; et al. Association Between Postpartum Breast Cancer Diagnosis and Metastasis and the Clinical Features Underlying Risk. JAMA Netw. Open 2019, 2, e186997. [Google Scholar] [CrossRef]
- Shagisultanova, E.; Gao, D.; Callihan, E.; Parris, H.J.; Risendal, B.; Hines, L.M.; Slattery, M.L.; Baumgartner, K.; Schedin, P.; John, E.M.; et al. Overall Survival Is the Lowest among Young Women with Postpartum Breast Cancer. Eur. J. Cancer 2022, 168, 119–127. [Google Scholar] [CrossRef]
- Amant, F.; Von Minckwitz, G.; Han, S.N.; Bontenbal, M.; Ring, A.E.; Giermek, J.; Wildiers, H.; Fehm, T.; Linn, S.C.; Schlehe, B.; et al. Prognosis of Women with Primary Breast Cancer Diagnosed During Pregnancy: Results From an International Collaborative Study. JCO 2013, 31, 2532–2539. [Google Scholar] [CrossRef]
- Thomas, A.; Rhoads, A.; Pinkerton, E.; Schroeder, M.C.; Conway, K.M.; Hundley, W.G.; McNally, L.R.; Oleson, J.; Lynch, C.F.; Romitti, P.A. Incidence and Survival Among Young Women with Stage I–III Breast Cancer: SEER 2000–2015. JNCI Cancer Spectr. 2019, 3, pkz040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bassale, S.; Jindal, S.; Fraser, A.; Guinto, E.; Anderson, W.; Mori, M.; Smith, K.R.; Schedin, P. Young-Onset Breast Cancer Outcomes by Time Since Recent Childbirth in Utah. JAMA Netw. Open 2022, 5, e2236763. [Google Scholar] [CrossRef]
- Lefrère, H.; Lenaerts, L.; Borges, V.F.; Schedin, P.; Neven, P.; Amant, F. Postpartum Breast Cancer: Mechanisms Underlying Its Worse Prognosis, Treatment Implications, and Fertility Preservation. Int. J. Gynecol. Cancer 2021, 31, 412–422. [Google Scholar] [CrossRef]
- Watson, C.J. Key Stages in Mammary Gland Development—Involution: Apoptosis and Tissue Remodelling That Convert the Mammary Gland from Milk Factory to a Quiescent Organ. Breast Cancer Res. 2006, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Melenhorst, J.J.; Hennighausen, L. Loss of Interleukin 6 Results in Delayed Mammary Gland Involution: A Possible Role for Mitogen-Activated Protein Kinase and Not Signal Transducer and Activator of Transcription 3. Mol. Endocrinol. 2002, 16, 2902–2912. [Google Scholar] [CrossRef]
- Schere-Levy, C. Leukemia Inhibitory Factor Induces Apoptosis of the Mammary Epithelial Cells and Participates in Mouse Mammary Gland Involution. Exp. Cell Res. 2003, 282, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Creamer, B.A.; Sakamoto, K.; Schmidt, J.W.; Triplett, A.A.; Moriggl, R.; Wagner, K.-U. Stat5 Promotes Survival of Mammary Epithelial Cells through Transcriptional Activation of a Distinct Promoter in Akt1. Mol. Cell. Biol. 2010, 30, 2957–2970. [Google Scholar] [CrossRef]
- Sargeant, T.J.; Lloyd-Lewis, B.; Resemann, H.K.; Ramos-Montoya, A.; Skepper, J.; Watson, C.J. Stat3 Controls Cell Death during Mammary Gland Involution by Regulating Uptake of Milk Fat Globules and Lysosomal Membrane Permeabilization. Nat. Cell Biol. 2014, 16, 1057–1068. [Google Scholar] [CrossRef]
- Jena, M.K.; Jaswal, S.; Kumar, S.; Mohanty, A.K. Molecular Mechanism of Mammary Gland Involution: An Update. Dev. Biol. 2019, 445, 145–155. [Google Scholar] [CrossRef]
- Monks, J.; Rosner, D.; Jon Geske, F.; Lehman, L.; Hanson, L.; Neville, M.C.; Fadok, V.A. Epithelial Cells as Phagocytes: Apoptotic Epithelial Cells Are Engulfed by Mammary Alveolar Epithelial Cells and Repress Inflammatory Mediator Release. Cell Death Differ. 2005, 12, 107–114. [Google Scholar] [CrossRef]
- Atabai, K.; Sheppard, D.; Werb, Z. Roles of the Innate Immune System in Mammary Gland Remodeling During Involution. J. Mammary Gland. Biol. Neoplasia 2007, 12, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Stein, T.; Salomonis, N.; Gusterson, B.A. Mammary Gland Involution as a Multi-Step Process. J. Mammary Gland. Biol. Neoplasia 2007, 12, 25–35. [Google Scholar] [CrossRef]
- Lilla, J.N.; Joshi, R.V.; Craik, C.S.; Werb, Z. Active Plasma Kallikrein Localizes to Mast Cells and Regulates Epithelial Cell Apoptosis, Adipocyte Differentiation, and Stromal Remodeling during Mammary Gland Involution. J. Biol. Chem. 2009, 284, 13792–13803. [Google Scholar] [CrossRef]
- Green, K.A.; Lund, L.R. ECM Degrading Proteases and Tissue Remodelling in the Mammary Gland. BioEssays 2005, 27, 894–903. [Google Scholar] [CrossRef]
- Watson, C.J.; Kreuzaler, P.A. Remodeling Mechanisms of the Mammary Gland during Involution. Int. J. Dev. Biol. 2011, 55, 757–762. [Google Scholar] [CrossRef]
- Alexander, C.M.; Selvarajan, S.; Mudgett, J.; Werb, Z. Stromelysin-1 Regulates Adipogenesis during Mammary Gland Involution. J. Cell Biol. 2001, 152, 693–703. [Google Scholar] [CrossRef]
- Selvarajan, S.; Lund, L.R.; Takeuchi, T.; Craik, C.S.; Werb, Z. A Plasma Kallikrein-Dependent Plasminogen Cascade Required for Adipocyte Differentiation. Nat. Cell Biol. 2001, 3, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.A.; Song, A.; Chen, W.; Schwalie, P.C.; Zhang, F.; Vishvanath, L.; Jiang, L.; Ye, R.; Shao, M.; Tao, C.; et al. Reversible De-Differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation. Cell Metab. 2018, 28, 282–288.e3. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.A.; Scherer, P.E. Remodeling of Murine Mammary Adipose Tissue during Pregnancy, Lactation, and Involution. J. Mammary Gland. Biol. Neoplasia 2019, 24, 207–212. [Google Scholar] [CrossRef]
- McDaniel, S.M.; Rumer, K.K.; Biroc, S.L.; Metz, R.P.; Singh, M.; Porter, W.; Schedin, P. Remodeling of the Mammary Microenvironment after Lactation Promotes Breast Tumor Cell Metastasis. Am. J. Pathol. 2006, 168, 608–620. [Google Scholar] [CrossRef]
- Schedin, P.; O’Brien, J.; Rudolph, M.; Stein, T.; Borges, V. Microenvironment of the Involuting Mammary Gland Mediates Mammary Cancer Progression. J. Mammary Gland. Biol. Neoplasia 2007, 12, 71–82. [Google Scholar] [CrossRef]
- García-Sancha, N.; Corchado-Cobos, R.; Gómez-Vecino, A.; Jiménez-Navas, A.; Pérez-Baena, M.J.; Blanco-Gómez, A.; Holgado-Madruga, M.; Mao, J.-H.; Cañueto, J.; Castillo-Lluva, S.; et al. Evolutionary Origins of Metabolic Reprogramming in Cancer. Int. J. Mol. Sci. 2022, 23, 12063. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Schedin, P. Macrophages in Breast Cancer: Do Involution Macrophages Account for the Poor Prognosis of Pregnancy-Associated Breast Cancer? J. Mammary Gland. Biol. Neoplasia 2009, 14, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.R.; O’Brien, J.; Borges, V.F.; Conklin, M.W.; Keely, P.J.; Eliceiri, K.W.; Marusyk, A.; Tan, A.-C.; Schedin, P. Postpartum Mammary Gland Involution Drives Progression of Ductal Carcinoma in Situ through Collagen and COX-2. Nat. Med. 2011, 17, 1109–1115. [Google Scholar] [CrossRef]
- Martinson, H.A.; Jindal, S.; Durand-Rougely, C.; Borges, V.F.; Schedin, P. Wound Healing-like Immune Program Facilitates Postpartum Mammary Gland Involution and Tumor Progression. Int. J. Cancer 2015, 136, 1803–1813. [Google Scholar] [CrossRef]
- Borges, V.F.; Elder, A.M.; Lyons, T.R. Deciphering Pro-Lymphangiogenic Programs during Mammary Involution and Postpartum Breast Cancer. Front. Oncol. 2016, 6, 227. [Google Scholar] [CrossRef]
- Guo, Q.; Minnier, J.; Burchard, J.; Chiotti, K.; Spellman, P.; Schedin, P. Physiologically Activated Mammary Fibroblasts Promote Postpartum Mammary Cancer. JCI Insight 2017, 2, e89206. [Google Scholar] [CrossRef]
- Husby, A.; Wohlfahrt, J.; Øyen, N.; Melbye, M. Pregnancy Duration and Breast Cancer Risk. Nat. Commun. 2018, 9, 4255. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Collaborative Group on Hormonal Factors in Breast Cancer Breast Cancer and Breastfeeding: Collaborative Reanalysis of Individual Data from 47 Epidemiological Studies in 30 Countries, Including 50302 Women with Breast Cancer and 96973 Women without the Disease. Lancet 2002, 360, 187–195. [Google Scholar] [CrossRef]
- González-Jiménez, E.; García, P.A.; Aguilar, M.J.; Padilla, C.A.; Álvarez, J. Breastfeeding and the Prevention of Breast Cancer: A Retrospective Review of Clinical Histories. J. Clin. Nurs. 2014, 23, 2397–2403. [Google Scholar] [CrossRef]
- Jernstrom, H.; Lubinski, J.; Lynch, H.T.; Ghadirian, P.; Neuhausen, S.; Isaacs, C.; Weber, B.L.; Horsman, D.; Rosen, B.; Foulkes, W.D.; et al. Breast-Feeding and the Risk of Breast Cancer in BRCA1 and BRCA2 Mutation Carriers. JNCI J. Natl. Cancer Inst. 2004, 96, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Ursin, G.; Bernstein, L.; Lord, S.J.; Karim, R.; Deapen, D.; Press, M.F.; Daling, J.R.; Norman, S.A.; Liff, J.M.; Marchbanks, P.A.; et al. Reproductive Factors and Subtypes of Breast Cancer Defined by Hormone Receptor and Histology. Br. J. Cancer 2005, 93, 364–371. [Google Scholar] [CrossRef]
- Evans, D.; Harkness, E.; Howel, S.; Woodward, E.; Howell, A.; Lalloo, F. Young Age at First Pregnancy Does Protect against Early Onset Breast Cancer in BRCA1 and BRCA2 Mutation Carriers. Breast Cancer Res. Treat. 2018, 167, 779–785. [Google Scholar] [CrossRef]
- Russo, J.; Rivera, R.; Russo, I.H. Influence of Age and Parity on the Development of the Human Breast. Breast Cancer Res. Tr. 1992, 23, 211–218. [Google Scholar] [CrossRef]
- Russo, J.; Romero, A.L.; Russo, I.H. Architectural Pattern of the Normal and Cancerous Breast under the Influence of Parity. Cancer Epidemiol. Biomarkers Prev. 1994, 3, 219–224. [Google Scholar]
- Russo, J.; Reina, D.; Frederick, J.; Russo, I.H. Expression of Phenotypical Changes by Human Breast Epithelial Cells Treated with Carcinogens in Vitro. Cancer Res. 1988, 48, 2837–2857. [Google Scholar] [PubMed]
- Jindal, S.; Gao, D.; Bell, P.; Albrektsen, G.; Edgerton, S.M.; Ambrosone, C.B.; Thor, A.D.; Borges, V.F.; Schedin, P. Postpartum Breast Involution Reveals Regression of Secretory Lobules Mediated by Tissue-Remodeling. Breast Cancer Res. 2014, 16, R31. [Google Scholar] [CrossRef]
- Russo, I.H.; Russo, J. Pregnancy-Induced Changes in Breast Cancer Risk. J. Mammary Gland. Biol. Neoplasia 2011, 16, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Meier-Abt, F.; Bentires-Alj, M.; Rochlitz, C. Breast Cancer Prevention: Lessons to Be Learned from Mechanisms of Early Pregnancy–Mediated Breast Cancer Protection. Cancer Res. 2015, 75, 803–807. [Google Scholar] [CrossRef]
- Meier-Abt, F.; Milani, E.; Roloff, T.; Brinkhaus, H.; Duss, S.; Meyer, D.S.; Klebba, I.; Balwierz, P.J.; Van Nimwegen, E.; Bentires-Alj, M. Parity Induces Differentiation and Reduces Wnt/Notch Signaling Ratio and Proliferation Potential of Basal Stem/Progenitor Cells Isolated from Mouse Mammary Epithelium. Breast Cancer Res. 2013, 15, R36. [Google Scholar] [CrossRef]
- Choudhury, S.; Almendro, V.; Merino, V.F.; Wu, Z.; Maruyama, R.; Su, Y.; Martins, F.C.; Fackler, M.J.; Bessarabova, M.; Kowalczyk, A.; et al. Molecular Profiling of Human Mammary Gland Links Breast Cancer Risk to a P27+ Cell Population with Progenitor Characteristics. Cell Stem Cell 2013, 13, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Maller, O.; Hansen, K.C.; Lyons, T.R.; Acerbi, I.; Weaver, V.M.; Prekeris, R.; Tan, A.-C.; Schedin, P. Collagen Architecture in Pregnancy-Induced Protection from Breast Cancer. J. Cell Sci. 2013, 126, 4108–4110. [Google Scholar] [CrossRef]
- Loehberg, C.R.; Heusinger, K.; Jud, S.M.; Haeberle, L.; Hein, A.; Rauh, C.; Bani, M.R.; Lux, M.P.; Schrauder, M.G.; Bayer, C.M.; et al. Assessment of Mammographic Density before and after First Full-Term Pregnancy. Eur. J. Cancer Prev. 2010, 19, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Ochi, T.; Tsunoda, H.; Yamauchi, H.; Takahashi, O. Impact of Childbirth History on Dense Breast in Mammographic Screening: A Cross-Sectional Study. BMC Women’s Health 2022, 22, 194. [Google Scholar] [CrossRef] [PubMed]
- Belitskaya-Lévy, I.; Zeleniuch-Jacquotte, A.; Russo, J.; Russo, I.H.; Bordás, P.; Åhman, J.; Afanasyeva, Y.; Johansson, R.; Lenner, P.; Li, X.; et al. Characterization of a Genomic Signature of Pregnancy Identified in the Breast. Cancer Prev. Res. 2011, 4, 1457–1464. [Google Scholar] [CrossRef]
- Peri, S.; De Cicco, R.L.; Santucci-Pereira, J.; Slifker, M.; Ross, E.A.; Russo, I.H.; Russo, P.A.; Arslan, A.A.; Belitskaya-Lévy, I.; Zeleniuch-Jacquotte, A.; et al. Defining the Genomic Signature of the Parous Breast. BMC Med. Genomics 2012, 5, 46. [Google Scholar] [CrossRef]
- Santucci-Pereira, J.; Zeleniuch-Jacquotte, A.; Afanasyeva, Y.; Zhong, H.; Slifker, M.; Peri, S.; Ross, E.A.; López De Cicco, R.; Zhai, Y.; Nguyen, T.; et al. Genomic Signature of Parity in the Breast of Premenopausal Women. Breast Cancer Res. 2019, 21, 46. [Google Scholar] [CrossRef]
- Holmes, M.D.; Pollak, M.N.; Hankinson, S.E. Lifestyle Correlates of Plasma Insulin-like Growth Factor I and Insulin-like Growth Factor Binding Protein 3 Concentrations. Cancer Epidemiol. Biomarkers Prev. 2002, 11, 862–867. [Google Scholar]
- Katz, T.A. Potential Mechanisms Underlying the Protective Effect of Pregnancy against Breast Cancer: A Focus on the IGF Pathway. Front. Oncol. 2016, 6, 228. [Google Scholar] [CrossRef]
- Hankinson, S.E.; Willett, W.C.; Colditz, G.A.; Hunter, D.J.; Michaud, D.S.; Deroo, B.; Rosner, B.; Speizer, F.E.; Pollak, M. Circulating Concentrations of Insulin-like Growth Factor I and Risk of Breast Cancer. Lancet 1998, 351, 1393–1396. [Google Scholar] [CrossRef]
- Feigman, M.J.; Moss, M.A.; Chen, C.; Cyrill, S.L.; Ciccone, M.F.; Trousdell, M.C.; Yang, S.-T.; Frey, W.D.; Wilkinson, J.E.; Dos Santos, C.O. Pregnancy Reprograms the Epigenome of Mammary Epithelial Cells and Blocks the Development of Premalignant Lesions. Nat. Commun. 2020, 11, 2649. [Google Scholar] [CrossRef]
- Russo, J.; Santucci-Pereira, J.; De Cicco, R.L.; Sheriff, F.; Russo, P.A.; Peri, S.; Slifker, M.; Ross, E.; Mello, M.L.S.; Vidal, B.C.; et al. Pregnancy-induced Chromatin Remodeling in the Breast of Postmenopausal Women. Int. J. Cancer 2012, 131, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Gu, F.; Wang, C.-M.; Lin, C.-L.; Liu, J.; Wang, H.; Ravdin, P.; Hu, Y.; Huang, T.H.M.; Li, R. Genome-Wide DNA Methylation Profiling Reveals Parity-Associated Hypermethylation of FOXA1. Breast Cancer Res. Treat. 2014, 147, 653–659. [Google Scholar] [CrossRef]
- Katz, T.A.; Liao, S.G.; Palmieri, V.J.; Dearth, R.K.; Pathiraja, T.N.; Huo, Z.; Shaw, P.; Small, S.; Davidson, N.E.; Peters, D.G.; et al. Targeted DNA Methylation Screen in the Mouse Mammary Genome Reveals a Parity-Induced Hypermethylation of Igf1r That Persists Long after Parturition. Cancer Prev. Res. 2015, 8, 1000–1009. [Google Scholar] [CrossRef]
- Huh, S.J.; Clement, K.; Jee, D.; Merlini, A.; Choudhury, S.; Maruyama, R.; Yoo, R.; Chytil, A.; Boyle, P.; Ran, F.A.; et al. Age- and Pregnancy-Associated DNA Methylation Changes in Mammary Epithelial Cells. Stem Cell Rep. 2015, 4, 297–311. [Google Scholar] [CrossRef]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast Cancer Development and Progression: Risk Factors, Cancer Stem Cells, Signaling Pathways, Genomics, and Molecular Pathogenesis. Genes. Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Björnström, L.; Sjöberg, M. Mechanisms of Estrogen Receptor Signaling: Convergence of Genomic and Nongenomic Actions on Target Genes. Mol. Endocrinol. 2005, 19, 833–842. [Google Scholar] [CrossRef]
- Fuentes, N.; Silveyra, P. Estrogen Receptor Signaling Mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [CrossRef]
- Vrtačnik, P.; Ostanek, B.; Mencej-Bedrač, S.; Marc, J. The Many Faces of Estrogen Signaling. Biochem. Med. 2014, 24, 329–342. [Google Scholar] [CrossRef]
- Pike, M.C.; Spicer, D.V.; Dahmoush, L.; Press, M.F. Estrogens, Progestogens, Normal Breast Cell Proliferation, and Breast Cancer Risk. Epidemiol. Rev. 1993, 15, 17–30. [Google Scholar] [CrossRef]
- Travis, R.C.; Key, T.J. Oestrogen Exposure and Breast Cancer Risk. Breast Cancer Res. 2003, 5, 239. [Google Scholar] [CrossRef]
- Rebbeck, T.R.; Levin, A.M.; Eisen, A.; Snyder, C.; Watson, P.; Cannon-Albright, L.; Isaacs, C.; Olopade, O.; Garber, J.E.; Godwin, A.K.; et al. Breast Cancer Risk After Bilateral Prophylactic Oophorectomy in BRCA1 Mutation Carriers. JNCI J. Natl. Cancer Inst. 1999, 91, 1475–1479. [Google Scholar] [CrossRef]
- Cuzick, J.; Sestak, I.; Cawthorn, S.; Hamed, H.; Holli, K.; Howell, A.; Forbes, J.F. IBIS-I Investigators Tamoxifen for Prevention of Breast Cancer: Extended Long-Term Follow-up of the IBIS-I Breast Cancer Prevention Trial. Lancet Oncol. 2015, 16, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Wieduwilt, M.J.; Moasser, M.M. The Epidermal Growth Factor Receptor Family: Biology Driving Targeted Therapeutics. Cell. Mol. Life Sci. 2008, 65, 1566–1584. [Google Scholar] [CrossRef]
- Arteaga, C.L.; Engelman, J.A. ERBB Receptors: From Oncogene Discovery to Basic Science to Mechanism-Based Cancer Therapeutics. Cancer Cell 2014, 25, 282–303. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, P.P.; Pierce, J.H.; Kraus, M.H.; Segatto, O.; King, C.R.; Aaronson, S.A. Erb B-2 Is a Potent Oncogene When Overexpressed in NIH/3T3 Cells. Science 1987, 237, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Muller, W.J.; Sinn, E.; Pattengale, P.K.; Wallace, R.; Leder, P. Single-Step Induction of Mammary Adenocarcinoma in Transgenic Mice Bearing the Activated c-Neu Oncogene. Cell 1988, 54, 105–115. [Google Scholar] [CrossRef]
- Pupa, S.M.; Ligorio, F.; Cancila, V.; Franceschini, A.; Tripodo, C.; Vernieri, C.; Castagnoli, L. HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers 2021, 13, 4778. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Sig Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Xu, F.; Jiang, S. Wnt Signaling in Breast Cancer: Biological Mechanisms, Challenges and Opportunities. Mol. Cancer 2020, 19, 165. [Google Scholar] [CrossRef]
- Edwards, A.; Brennan, K. Notch Signalling in Breast Development and Cancer. Front. Cell Dev. Biol. 2021, 9, 692173. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Diévart, A.; Lupien, M.; Calvo, E.; Tremblay, G.; Jolicoeur, P. Overexpression of Activated Murine Notch1 and Notch3 in Transgenic Mice Blocks Mammary Gland Development and Induces Mammary Tumors. Am. J. Pathol. 2006, 168, 973–990. [Google Scholar] [CrossRef] [PubMed]
- Imatani, A.; Callahan, R. Identification of a Novel NOTCH-4/INT-3 RNA Species Encoding an Activated Gene Product in Certain Human Tumor Cell Lines. Oncogene 2000, 19, 223–231. [Google Scholar] [CrossRef]
- Ayyanan, A.; Civenni, G.; Ciarloni, L.; Morel, C.; Mueller, N.; Lefort, K.; Mandinova, A.; Raffoul, W.; Fiche, M.; Dotto, G.P.; et al. Increased Wnt Signaling Triggers Oncogenic Conversion of Human Breast Epithelial Cells by a Notch-Dependent Mechanism. Proc. Natl. Acad. Sci. USA 2006, 103, 3799–3804. [Google Scholar] [CrossRef]
- Zardawi, S.J.; Zardawi, I.; McNeil, C.M.; Millar, E.K.A.; McLeod, D.; Morey, A.L.; Crea, P.; Murphy, N.C.; Pinese, M.; Lopez-Knowles, E.; et al. High Notch1 Protein Expression Is an Early Event in Breast Cancer Development and Is Associated with the HER-2 Molecular Subtype. Histopathology 2010, 56, 286–296. [Google Scholar] [CrossRef]
- Stylianou, S.; Clarke, R.B.; Brennan, K. Aberrant Activation of Notch Signaling in Human Breast Cancer. Cancer Res. 2006, 66, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Paplomata, E.; O’Regan, R. The PI3K/AKT/mTOR Pathway in Breast Cancer: Targets, Trials and Biomarkers. Ther. Adv. Med. Oncol. 2014, 6, 154–166. [Google Scholar] [CrossRef]
- Ang, D.C.; Warrick, A.L.; Shilling, A.; Beadling, C.; Corless, C.L.; Troxell, M.L. Frequent Phosphatidylinositol-3-Kinase Mutations in Proliferative Breast Lesions. Mod. Pathol. 2014, 27, 740–750. [Google Scholar] [CrossRef]
- Miller, T.W.; Rexer, B.N.; Garrett, J.T.; Arteaga, C.L. Mutations in the Phosphatidylinositol 3-Kinase Pathway: Role in Tumor Progression and Therapeutic Implications in Breast Cancer. Breast Cancer Res. 2011, 13, 224. [Google Scholar] [CrossRef]
- Mukohara, T. PI3K Mutations in Breast Cancer: Prognostic and Therapeutic Implications. Breast Cancer 2015, 7, 111–123. [Google Scholar] [CrossRef]
- Sigl, V.; Owusu-Boaitey, K.; Joshi, P.A.; Kavirayani, A.; Wirnsberger, G.; Novatchkova, M.; Kozieradzki, I.; Schramek, D.; Edokobi, N.; Hersl, J.; et al. RANKL/RANK Control Brca1 Mutation-. Cell Res. 2016, 26, 761–774. [Google Scholar] [CrossRef]
- Widschwendter, M.; Burnell, M.; Fraser, L.; Rosenthal, A.N.; Philpott, S.; Reisel, D.; Dubeau, L.; Cline, M.; Pan, Y.; Yi, P.-C.; et al. Osteoprotegerin (OPG), The Endogenous Inhibitor of Receptor Activator of NF-κB Ligand (RANKL), Is Dysregulated in BRCA Mutation Carriers. EBioMedicine 2015, 2, 1331–1339. [Google Scholar] [CrossRef]
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.K.; Driscoll, A.K. Births: Final Data for 2019. Natl. Vital Stat. Rep. 2021, 70, 1–51. [Google Scholar] [PubMed]
- Hartmann, L.C.; Schaid, D.J.; Woods, J.E.; Crotty, T.P.; Myers, J.L.; Arnold, P.G.; Petty, P.M.; Sellers, T.A.; Johnson, J.L.; McDonnell, S.K.; et al. Efficacy of Bilateral Prophylactic Mastectomy in Women with a Family History of Breast Cancer. N. Engl. J. Med. 1999, 340, 77–84. [Google Scholar] [CrossRef]
- Meijers-Heijboer, H.; van Geel, B.; van Putten, W.L.; Henzen-Logmans, S.C.; Seynaeve, C.; Menke-Pluymers, M.B.; Bartels, C.C.; Verhoog, L.C.; van den Ouweland, A.M.; Niermeijer, M.F.; et al. Breast Cancer after Prophylactic Bilateral Mastectomy in Women with a BRCA1 or BRCA2 Mutation. N. Engl. J. Med. 2001, 345, 159–164. [Google Scholar] [CrossRef]
- Rebbeck, T.R.; Friebel, T.; Lynch, H.T.; Neuhausen, S.L.; van ’t Veer, L.; Garber, J.E.; Evans, G.R.; Narod, S.A.; Isaacs, C.; Matloff, E.; et al. Bilateral Prophylactic Mastectomy Reduces Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers: The PROSE Study Group. J. Clin. Oncol. 2004, 22, 1055–1062. [Google Scholar] [CrossRef]
- Li, X.; You, R.; Wang, X.; Liu, C.; Xu, Z.; Zhou, J.; Yu, B.; Xu, T.; Cai, H.; Zou, Q. Effectiveness of Prophylactic Surgeries in BRCA1 or BRCA2 Mutation Carriers: A Meta-Analysis and Systematic Review. Clin. Cancer Res. 2016, 22, 3971–3981. [Google Scholar] [CrossRef] [PubMed]
- Carbine, N.E.; Lostumbo, L.; Wallace, J.; Ko, H. Risk-Reducing Mastectomy for the Prevention of Primary Breast Cancer. Cochrane Database Syst. Rev. 2018, 4, CD002748. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J.; et al. Tamoxifen for Prevention of Breast Cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl. Cancer Inst. 1998, 90, 1371–1388. [Google Scholar] [CrossRef]
- Cummings, S.R.; Eckert, S.; Krueger, K.A.; Grady, D.; Powles, T.J.; Cauley, J.A.; Norton, L.; Nickelsen, T.; Bjarnason, N.H.; Morrow, M.; et al. The Effect of Raloxifene on Risk of Breast Cancer in Postmenopausal Women: Results from the MORE Randomized Trial. Multiple Outcomes of Raloxifene Evaluation. JAMA 1999, 281, 2189–2197. [Google Scholar] [CrossRef]
- Martino, S.; Cauley, J.A.; Barrett-Connor, E.; Powles, T.J.; Mershon, J.; Disch, D.; Secrest, R.J.; Cummings, S.R. CORE Investigators Continuing Outcomes Relevant to Evista: Breast Cancer Incidence in Postmenopausal Osteoporotic Women in a Randomized Trial of Raloxifene. J. Natl. Cancer Inst. 2004, 96, 1751–1761. [Google Scholar] [CrossRef] [PubMed]
- LaCroix, A.Z.; Powles, T.; Osborne, C.K.; Wolter, K.; Thompson, J.R.; Thompson, D.D.; Allred, D.C.; Armstrong, R.; Cummings, S.R.; Eastell, R.; et al. Breast Cancer Incidence in the Randomized PEARL Trial of Lasofoxifene in Postmenopausal Osteoporotic Women. J. Natl. Cancer Inst. 2010, 102, 1706–1715. [Google Scholar] [CrossRef]
- Smith, S.G.; Sestak, I.; Forster, A.; Partridge, A.; Side, L.; Wolf, M.S.; Horne, R.; Wardle, J.; Cuzick, J. Factors Affecting Uptake and Adherence to Breast Cancer Chemoprevention: A Systematic Review and Meta-Analysis. Ann. Oncol. 2016, 27, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Land, S.R.; Wickerham, D.L.; Costantino, J.P.; Ritter, M.W.; Vogel, V.G.; Lee, M.; Pajon, E.R.; Wade, J.L.; Dakhil, S.; Lockhart, J.B.; et al. Patient-Reported Symptoms and Quality of Life During Treatment with Tamoxifen or Raloxifene for Breast Cancer Prevention: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 Trial. JAMA 2006, 295, 2742–2751. [Google Scholar] [CrossRef] [PubMed]
- Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R.; Wade, J.L.; et al. Effects of Tamoxifen vs Raloxifene on the Risk of Developing Invasive Breast Cancer and Other Disease Outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 Trial. JAMA 2006, 295, 2727–2741. [Google Scholar] [CrossRef]
- Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R.; Wade, J.L.; et al. Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: Preventing Breast Cancer. Cancer Prev. Res. 2010, 3, 696–706. [Google Scholar] [CrossRef]
- Goss, P.E.; Ingle, J.N.; Alés-Martínez, J.E.; Cheung, A.M.; Chlebowski, R.T.; Wactawski-Wende, J.; McTiernan, A.; Robbins, J.; Johnson, K.C.; Martin, L.W.; et al. Exemestane for Breast-Cancer Prevention in Postmenopausal Women. N. Engl. J. Med. 2011, 364, 2381–2391. [Google Scholar] [CrossRef]
- Cuzick, J.; Sestak, I.; Forbes, J.F.; Dowsett, M.; Knox, J.; Cawthorn, S.; Saunders, C.; Roche, N.; Mansel, R.E.; von Minckwitz, G.; et al. Anastrozole for Prevention of Breast Cancer in High-Risk Postmenopausal Women (IBIS-II): An International, Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2014, 383, 1041–1048. [Google Scholar] [CrossRef]
- Cuzick, J.; Sestak, I.; Forbes, J.F.; Dowsett, M.; Cawthorn, S.; Mansel, R.E.; Loibl, S.; Bonanni, B.; Evans, D.G.; Howell, A.; et al. Use of Anastrozole for Breast Cancer Prevention (IBIS-II): Long-Term Results of a Randomised Controlled Trial. Lancet 2020, 395, 117–122. [Google Scholar] [CrossRef]
- Dowling, R.J.; Goodwin, P.J.; Stambolic, V. Understanding the Benefit of Metformin Use in Cancer Treatment. BMC Med. 2011, 9, 33. [Google Scholar] [CrossRef]
- Pollak, M.N. Investigating Metformin for Cancer Prevention and Treatment: The End of the Beginning. Cancer Discov. 2012, 2, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, M.; Meier, C.; Krähenbühl, S.; Jick, S.S.; Meier, C.R. Long-Term Metformin Use Is Associated with Decreased Risk of Breast Cancer. Diabetes Care 2010, 33, 1304–1308. [Google Scholar] [CrossRef]
- Nolan, E.; Vaillant, F.; Branstetter, D.; Pal, B.; Giner, G.; Whitehead, L.; Lok, S.W.; Mann, G.B.; Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab); Rohrbach, K.; et al. RANK Ligand as a Potential Target for Breast Cancer Prevention in BRCA1-Mutation Carriers. Nat. Med. 2016, 22, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Poole, A.J.; Li, Y.; Kim, Y.; Lin, S.-C.J.; Lee, W.-H.; Lee, E.Y.-H.P. Prevention of Brca1 -Mediated Mammary Tumorigenesis in Mice by a Progesterone Antagonist. Science 2006, 314, 1467–1470. [Google Scholar] [CrossRef]
- Lu, L.; Shi, L.; Zeng, J.; Wen, Z. Aspirin as a Potential Modality for the Chemoprevention of Breast Cancer: A Dose-Response Meta-Analysis of Cohort Studies from 857,831 Participants. Oncotarget 2017, 8, 40389–40401. [Google Scholar] [CrossRef]
- Harris, R.E.; Beebe-Donk, J.; Alshafie, G.A. Reduction in the Risk of Human Breast Cancer by Selective Cyclooxygenase-2 (COX-2) Inhibitors. BMC Cancer 2006, 6, 27. [Google Scholar] [CrossRef]
- Ashok, V.; Dash, C.; Rohan, T.E.; Sprafka, J.M.; Terry, P.D. Selective Cyclooxygenase-2 (COX-2) Inhibitors and Breast Cancer Risk. Breast 2011, 20, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Kehm, R.D.; Hopper, J.L.; John, E.M.; Phillips, K.-A.; MacInnis, R.J.; Dite, G.S.; Milne, R.L.; Liao, Y.; Zeinomar, N.; Knight, J.A.; et al. Regular Use of Aspirin and Other Non-Steroidal Anti-Inflammatory Drugs and Breast Cancer Risk for Women at Familial or Genetic Risk: A Cohort Study. Breast Cancer Res. 2019, 21, 52. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.; Hao, Z.; Yiu, K.; Chan, S.; Chan, F.; Sung, J.; Tsoi, K. Long-term use of low-dose aspirin for cancer prevention: A 20-year longitudinal cohort study of 1,506,525 Hong Kong residents. Int. J. Cancer 2025. [Google Scholar] [CrossRef] [PubMed]
- Ku, A.T.; Young, A.I.J.; Ibrahim, A.A.; Bu, W.; Jiang, W.; Lin, M.; Williams, L.C.; McCue, B.L.; Miles, G.; Nagi, C.; et al. Short-Term PI3K Inhibition Prevents Breast Cancer in Preclinical Models. Cancer Prev. Res. 2023, 16, 65–73. [Google Scholar] [CrossRef]
- Kleinberg, D.L.; Wood, T.L.; Furth, P.A.; Lee, A.V. Growth Hormone and Insulin-Like Growth Factor-I in the Transition from Normal Mammary Development to Preneoplastic Mammary Lesions. Endocr. Rev. 2009, 30, 51–74. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.; Knuppel, A.; Papadimitriou, N.; Martin, R.M.; Tsilidis, K.K.; Smith-Byrne, K.; Fensom, G.; Perez-Cornago, A.; Travis, R.C.; Key, T.J.; et al. Insulin-like Growth Factor-1, Insulin-like Growth Factor-Binding Protein-3, and Breast Cancer Risk: Observational and Mendelian Randomization Analyses with ∼430 000 Women. Ann. Oncol. 2020, 31, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Kleinberg, D.L.; Ameri, P.; Singh, B. Pasireotide, an IGF-I Action Inhibitor, Prevents Growth Hormone and Estradiol-Induced Mammary Hyperplasia. Pituitary 2011, 14, 44–52. [Google Scholar] [CrossRef]
- Singh, B.; Smith, J.A.; Axelrod, D.M.; Ameri, P.; Levitt, H.; Danoff, A.; Lesser, M.; De Angelis, C.; Illa-Bochaca, I.; Lubitz, S.; et al. Insulin-like Growth Factor-I Inhibition with Pasireotide Decreases Cell Proliferation and Increases Apoptosis in Pre-Malignant Lesions of the Breast: A Phase 1 Proof of Principle Trial. Breast Cancer Res. 2014, 16, 463. [Google Scholar] [CrossRef] [PubMed]
- Lazzeroni, M.; Puntoni, M.; Guerrieri-Gonzaga, A.; Serrano, D.; Boni, L.; Buttiron Webber, T.; Fava, M.; Briata, I.M.; Giordano, L.; Digennaro, M.; et al. Randomized Placebo Controlled Trial of Low-Dose Tamoxifen to Prevent Recurrence in Breast Noninvasive Neoplasia: A 10-Year Follow-Up of TAM-01 Study. J. Clin. Oncol. 2023, 41, 3116–3121. [Google Scholar] [CrossRef]
- Bhatia, S.; Palomares, M.R.; Hageman, L.; Chen, Y.; Landier, W.; Smith, K.; Umphrey, H.; Reich, C.A.; Zamora, K.W.; Armenian, S.H.; et al. A Randomized Phase IIb Study of Low-Dose Tamoxifen in Chest-Irradiated Cancer Survivors at Risk for Breast Cancer. Clin. Cancer Res. 2021, 27, 967–974. [Google Scholar] [CrossRef]
- Patel, R.; Jin, C.; Jaber, D.; Casasanta, N.; Jain, M.; Fu, W.; Wu, C.; Moshier, E.; Tiersten, A. Low Dose Tamoxifen for Breast Cancer Prevention: A Real-World Experience. Clin. Breast Cancer 2024, 25, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Spertini, L.; Parpinel, M.; Gnagnarella, P.; Lagiou, P.; Negri, E.; Franceschi, S.; Montella, M.; Peterson, J.; Dwyer, J.; et al. Flavonoids and breast cancer risk in Italy. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Romagnolo, D.F.; Selmin, O.I. Flavonoids and cancer prevention: A review of the evidence. J. Nutr. Gerontol. Geriatr. 2012, 31, 206–238. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferraresi, A.; Thongchot, S.; Isidoro, C. Resveratrol Promotes Self-digestion to Put Cancer to Sleep. J. Cancer Prev. 2024, 29, 1–5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kimura, T.; McKolanis, J.R.; Dzubinski, L.A.; Islam, K.; Potter, D.M.; Salazar, A.M.; Schoen, R.E.; Finn, O.J. MUC1 Vaccine for Individuals with Advanced Adenoma of the Colon: A Cancer Immunoprevention Feasibility Study. Cancer Prev. Res. 2013, 6, 18–26. [Google Scholar] [CrossRef]
- Schoen, R.E.; Boardman, L.A.; Cruz-Correa, M.; Bansal, A.; Kastenberg, D.; Hur, C.; Dzubinski, L.; Kaufman, S.F.; Rodriguez, L.M.; Richmond, E.; et al. Randomized, Double-Blind, Placebo-Controlled Trial of MUC1 Peptide Vaccine for Prevention of Recurrent Colorectal Adenoma. Clin. Cancer Res. 2023, 29, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Disis, M.L.N.; Guthrie, K.A.; Liu, Y.; Coveler, A.L.; Higgins, D.M.; Childs, J.S.; Dang, Y.; Salazar, L.G. Safety and Outcomes of a Plasmid DNA Vaccine Encoding the ERBB2 Intracellular Domain in Patients With Advanced-Stage ERBB2-Positive Breast Cancer: A Phase 1 Nonrandomized Clinical Trial. JAMA Oncol. 2023, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- González-Bosch, C.; Zunszain, P.A.; Mann, G.E. Control of Redox Homeostasis by Short-Chain Fatty Acids: Implications for the Prevention and Treatment of Breast Cancer. Pathogens 2023, 12, 486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ávila-Gálvez, M.Á.; Giménez-Bastida, J.A.; Espín, J.C.; González-Sarrías, A. Dietary Phenolics against Breast Cancer. A Critical Evidence-Based Review and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 5718. [Google Scholar] [CrossRef]
Prevention Strategy | Mechanism of Action | Key Findings | References |
---|---|---|---|
Bilateral Prophylactic Mastectomy | Surgical removal of breast tissue in high-risk women | Reduces breast cancer risk by up to 95% in BRCA1/2 mutation carriers and by up to 90% in women with a strong family history | [249,250,251,252,253] |
Selective Estrogen Receptor Modulators (SERMs) | Blocks estrogen receptor signaling in breast tissue | Tamoxifen reduces invasive breast cancer incidence by 49% and ER+ breast cancer by 69%; raloxifene reduces breast cancer incidence by 72% in postmenopausal women | [254,255,256,257,258,259,260,261] |
Aromatase Inhibitors (AIs) | Lowers estrogen production by inhibiting aromatase enzyme | Exemestane reduces breast cancer risk by 65%; anastrozole reduces risk by 49% | [262,263,264] |
Metformin | AMPK activation and IGF-1 regulation reduce tumor cell proliferation | Observational studies suggest reduced breast cancer incidence in diabetic patients on long-term therapy; clinical trials ongoing | [265,266,267] |
RANK/RANKL Inhibition (Denosumab) | Blocks RANKL signaling, reducing proliferation of BRCA1-mutant cells | Preclinical models show inhibition of preneoplastic lesion formation and tumor progression; clinical trials evaluating chemopreventive effects in BRCA1 carriers | [268] |
Progesterone Antagonists (Mifepristone, Ulipristal Acetate) | Blocks progesterone-driven proliferation in mammary epithelial cells | Preclinical studies suggest inhibition of BRCA1-related tumorigenesis; clinical trials evaluating feasibility | [269] |
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) | COX-2 inhibition reduces prostaglandin-mediated tumor growth | Aspirin use for ≥10 years associated with 26% reduced breast cancer risk; celecoxib shows promise in high-risk women | [270,271,272,273,274] |
PI3K Inhibitors (Alpelisib) | Inhibits PI3K pathway involved in early tumor development | Preclinical models show reduced progression of atypical hyperplasia; clinical trials needed | [275] |
Somatostatin Analogs (Octreotide, Pasireotide) | Reduces IGF-1 signaling associated with mammary proliferation | Preclinical models indicate suppression of epithelial proliferation and delayed tumor initiation | [276,277,278,279] |
Low-Dose Tamoxifen | Maintains chemopreventive effects while reducing side effects | 5 mg/day significantly lowers biomarkers associated with breast cancer risk; trials ongoing | [280,281,282] |
Natural Product-Derived Compounds (Flavonoids, Resveratrol) | Antioxidant and anti-inflammatory properties modulate tumorigenic pathways | Epidemiological studies suggest flavonoids may reduce breast cancer risk; resveratrol shows apoptosis-inducing effects in preclinical models | [283,284,285,286] |
MUC1 Vaccines | Induces immune response against tumor-associated MUC1 epitopes | Phase II trial in colorectal adenoma shows 38% reduction in recurrence; ongoing trial in DCIS | [287,288] |
DNA Vaccines | Stimulates targeted immune response against breast cancer antigens | Ongoing trials in BRCA mutation carriers; prior HER2-targeted vaccine showed long-term efficacy | [289] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sancha, N.; Corchado-Cobos, R.; Pérez-Losada, J. Understanding Susceptibility to Breast Cancer: From Risk Factors to Prevention Strategies. Int. J. Mol. Sci. 2025, 26, 2993. https://doi.org/10.3390/ijms26072993
García-Sancha N, Corchado-Cobos R, Pérez-Losada J. Understanding Susceptibility to Breast Cancer: From Risk Factors to Prevention Strategies. International Journal of Molecular Sciences. 2025; 26(7):2993. https://doi.org/10.3390/ijms26072993
Chicago/Turabian StyleGarcía-Sancha, Natalia, Roberto Corchado-Cobos, and Jesús Pérez-Losada. 2025. "Understanding Susceptibility to Breast Cancer: From Risk Factors to Prevention Strategies" International Journal of Molecular Sciences 26, no. 7: 2993. https://doi.org/10.3390/ijms26072993
APA StyleGarcía-Sancha, N., Corchado-Cobos, R., & Pérez-Losada, J. (2025). Understanding Susceptibility to Breast Cancer: From Risk Factors to Prevention Strategies. International Journal of Molecular Sciences, 26(7), 2993. https://doi.org/10.3390/ijms26072993