Glutamate as a Therapeutic Substrate in Migraine
Abstract
:1. Introduction
2. Glutamate Receptors
2.1. iGluRs: NMDA, AMPA and Kainate Receptors
2.2. mGluRs: Group I (mGlu1 and 5), Group II (mGlu2 and 3) and Group III (mGlu4, 6, 7 and 8)
3. Glutamate in Migraine
3.1. Glutamate Levels in Migraine
3.2. Imaging Suggestion of Altered Glutamate Levels in Some Brain Regions in Migraine
3.3. Oral Ingestion of Glutamate Can Provoke Headache
3.4. Neuro-Anatomical Localisation of Glutamate Receptors
3.5. Migraine Drugs Acting on Glutamatergic Neurotransmission
3.6. Migraine Genetics
3.7. Kynurenines
3.8. Cortical Spreading Depression (CSD)
3.9. Glutamate in Nociception and Central Sensitisation
3.10. Glutamate and Nitric Oxide Mechanisms of Vasodilatation
4. Current Evidence for Glutamate-Targeted Therapies in Migraine
4.1. Ionotropic Receptor-Targeted Therapies
4.1.1. NMDA Receptor Antagonists
4.1.2. AMPA Receptor Antagonists
4.1.3. Kainate Receptor Antagonists
4.2. Metabotropic Receptor-Targeted Therapies
4.2.1. Group I mGluR Antagonists
4.2.2. Group II and III mGluR Agonists
5. Other Therapies
6. Conclusions
Receptor Mechanism | Preclinical Evidence in Migraine | Clinical Evidence in Migraine | Effect on Clinical Practice |
---|---|---|---|
Ionotropic glutamate receptors | |||
NMDA receptor antagonism | MK-801 attenuates neuronal activation in the TNC in response to chemical activation of corneal nociceptors in rodents [110] MK-801 inhibits neuronal traffic in the TCC in response to painful electrical stimulation of the superior sagittal sinus in cats [13] MK-801 may also have effects on pain modulation via other brainstem areas [111] MK-801 or another antagonist, AP7, both inhibit peripheral inflammation and electrical stimulation-induced sensitization in rodents [112,113] Magnesium and memantine have effects on an animal model of trigeminovascular nociception [81] Ketamine has an effect in a CSD model in animals [116] | Magnesium [162,163,164,165] and memantine [98,100] have some randomized clinical trial evidence for efficacy in migraine treatment Ketamine has uncontrolled and open label evidence for an effect in aura [100,101,116,117,118,119,120,121,122] | Magnesium, ketamine, and memantine are used clinically in migraine management The authors do not use ketamine in their practice |
AMPA receptor antagonism | AMPA receptor antagonist, GYKI53466 inhibits nociceptive TCC neuronal activity [13] AMPA/kainate antagonism reduces neuronal activation in the TCC in response to capsaicin in an animal model [128] and selective kainate receptor antagonism failed to produce the same result [128], suggesting this is an AMPA receptor-mediated effect | IV AMPA/kainate receptor antagonist, LY293558, has demonstrated efficacy and tolerability in the acute treatment of migraine compared to subcutaneous sumatriptan or placebo in a randomised triple-blind, parallel group, double dummy multicentre trial [129] AMPA receptor antagonist, BGG492, has randomised controlled evidence for safety, efficacy, and tolerability after a single dose when trialed for acute migraine treatment and compared to both sumatriptan 100mg orally, and placebo [130], with 2-hour pain freedom rates similar to sumatriptan | None of these therapies have reached clinical practice |
Kainate receptor antagonism | Kainate receptor antagonist LY466195 [134] inhibits nociceptive TCC neuronal activity in an animal model [12] Activation of iGluR5 kainate receptors with the selective agonist iodowillardiine inhibits neurogenic dural vasodilatation in an animal model, likely by reducing CGRP release from trigeminal afferents [47]. | Topiramate has GABAergic effects, and concomitant AMPA and kainate receptor inhibitory effects in the trigeminovascular system, where it decreases neuronal hyperexcitability [142] | Topiramate is used clinically in the treatment of migraine [135,136,137,138,139,140,141]. Caution must be exerted, especially in pre-menopausal females), due to teratogenicity risks, and effects on reducing contraceptive efficacy |
Metabotropic glutamate receptors | |||
Group I receptor antagonism | |||
mGlu5 | Fenobam, an mGlu5 antagonist, has an analgesic in rodents, and reduces sensitization in humans [152,153]. Undesired side effects such as cognitive impairment and sedation [152] limit its use NAM mGlu5 antagonist ADX10059, attenuates vasodilator responses to meningeal stimulation in a rodent model in the same way as naratriptan, and reduces TCC neuronal firing in response to dural stimulation [154] | Double-blind placebo-controlled parallel group clinical trial of ADX10059 superiority to placebo in pain freedom at 2 hours. Dizziness as a side effect was not uncommon [14] A subsequent study identified hepatotoxicity as a concern with prolonged use of ADX10059 [155], so all further trials and drug development were stopped | This therapy has not reached clinical practice due to safety concerns |
Group II receptor agonism | |||
Some evidence for an agonist to Group II mGluRs, LY379268, in chronic pain models and sensitization in rodents [158], but no specific migraine studies have been conducted | mGluR2 potentiator and cysreinyl leukotriene 1 antagonist, LY2300559, has proof of concept evidence for efficacy as migraine prevention in a randomised double-blind placebo-controlled trial (abstract only published) [159]. | This therapy has not reached clinical practice as yet |
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stovner, L.J.; Hagen, K.; Linde, M.; Steiner, T.J. The global prevalence of headache: An update, with analysis of the influences of methodological factors on prevalence estimates. J. Headache Pain 2022, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 954–976. [Google Scholar]
- Goadsby, P.J.; Holland, P.R.; Martins-Oliveira, M.; Hoffmann, J.; Schankin, C.; Akerman, S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol. Rev. 2017, 97, 553–622. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Nicholson, R.A.; Reed, M.L.; Araujo, A.B.; Jaffe, D.H.; Faries, D.E.; Buse, D.C.; Shapiro, R.E.; Ashina, S.; Cambron-Mellott, M.J.; et al. Diagnosis, consultation, treatment, and impact of migraine in the US: Results of the OVERCOME (US) study. Headache J. Head Face Pain 2022, 62, 122–140. [Google Scholar] [CrossRef]
- Charles, A.C.; Digre, K.B.; Goadsby, P.J.; Robbins, M.S.; Hershey, A. Calcitonin gene-related peptide-targeting therapies are a first-line option for the prevention of migraine: An American Headache Society position statement update. Headache J. Head Face Pain 2024, 64, 333–341. [Google Scholar]
- Gosalia, H.; Karsan, N.; Goadsby, P.J. Genetic Mechanisms of Migraine: Insights from Monogenic Migraine Mutations. Int. J. Mol. Sci. 2023, 24, 12697. [Google Scholar] [CrossRef]
- Fundytus, M.E. Glutamate receptors and nociception: Implications for the drug treatment of pain. CNS Drugs 2001, 15, 29–58. [Google Scholar]
- Guerrero-Toro, C.; Koroleva, K.; Ermakova, E.; Gafurov, O.; Abushik, P.; Tavi, P.; Sitdikova, G.; Giniatullin, R. Testing the Role of Glutamate NMDA Receptors in Peripheral Trigeminal Nociception Implicated in Migraine Pain. Int. J. Mol. Sci. 2022, 23, 1529. [Google Scholar] [CrossRef]
- Storer, R.J.; Goadsby, P.J. Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain A J. Neurol. 1997, 120 Pt 12, 2171–2177. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Classey, J.D. Glutamatergic transmission in the trigeminal nucleus assessed with local blood flow. Brain Res. 2000, 875, 119–124. [Google Scholar]
- Classey, J.D.; Knight, Y.E.; Goadsby, P.J. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat. Brain Res. 2001, 907, 117–124. [Google Scholar] [PubMed]
- Andreou, A.P.; Holland, P.R.; Lasalandra, M.P.; Goadsby, P.J. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain 2015, 156, 439–450. [Google Scholar] [PubMed]
- Storer, R.J.; Goadsby, P.J. Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience 1999, 90, 1371–1376. [Google Scholar] [PubMed]
- Waung, M.W.; Akerman, S.; Wakefield, M.; Keywood, C.; Goadsby, P.J. Metabotropic glutamate receptor 5: A target for migraine therapy. Ann. Clin. Transl. Neurol. 2016, 3, 560–571. [Google Scholar]
- Lauritzen, M.; Hansen, A.J. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J. Cereb. Blood Flow Metab. 1992, 12, 223–229. [Google Scholar]
- Holland, P.R.; Akerman, S.; Goadsby, P.J. Cortical spreading depression-associated cerebral blood flow changes induced by mechanical stimulation are modulated by AMPA and GABA receptors. Cephalalgia 2010, 30, 519–527. [Google Scholar]
- Sarchielli, P.; Di Filippo, M.; Nardi, K.; Calabresi, P. Sensitization, glutamate, and the link between migraine and fibromyalgia. Curr. Pain. Headache Rep. 2007, 11, 343–351. [Google Scholar]
- Reiner, A.; Levitz, J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2018, 98, 1080–1098. [Google Scholar]
- Hansen, K.B.; Wollmuth, L.P.; Bowie, D.; Furukawa, H.; Menniti, F.S.; Sobolevsky, A.I.; Swanson, G.T.; Swanger, S.A.; Greger, I.H.; Nakagawa, T.; et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 2021, 73, 298–487. [Google Scholar]
- Zhuo, M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain. Neuropharmacology 2017, 112 Pt A, 228–234. [Google Scholar]
- Cachope, R.; Pereda, A.E. Regulatory Roles of Metabotropic Glutamate Receptors on Synaptic Communication Mediated by Gap Junctions. Neuroscience 2021, 456, 85–94. [Google Scholar] [PubMed]
- Bruno, V.; Battaglia, G.; Copani, A.; D’Onofrio, M.; Di Iorio, P.; De Blasi, A.; Melchiorri, D.; Flor, P.J.; Nicoletti, F. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J. Cereb. Blood Flow Metab. 2001, 21, 1013–1033. [Google Scholar] [PubMed]
- Golubeva, A.V.; Moloney, R.D.; O’Connor, R.M.; Dinan, T.G.; Cryan, J.F. Metabotropic Glutamate Receptors in Central Nervous System Diseases. Curr. Drug Targets 2016, 17, 538–616. [Google Scholar]
- Nicoletti, F.; Bockaert, J.; Collingridge, G.; Conn, P.; Ferraguti, F.; Schoepp, D.; Wroblewski, J.; Pin, J. Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology 2011, 60, 1017–1041. [Google Scholar] [PubMed]
- Su, L.D.; Wang, N.; Han, J.; Shen, Y. Group 1 Metabotropic Glutamate Receptors in Neurological and Psychiatric Diseases: Mechanisms and Prospective. Neuroscientist 2022, 28, 453–468. [Google Scholar]
- Herrero, I.; Miras-Portugal, M.T.; Sánchez-Prieto, J. Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature 1992, 360, 163–166. [Google Scholar]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar]
- Pereira, V.; Goudet, C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front. Mol. Neurosci. 2018, 11, 464. [Google Scholar]
- Neves, D.; Salazar, I.L.; Almeida, R.D.; Silva, R.M. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci. 2023, 328, 121814. [Google Scholar]
- Hoffmann, J.; Charles, A. Glutamate and Its Receptors as Therapeutic Targets for Migraine. Neurother. J. Am. Soc. Exp. Neurother. 2018, 15, 361–370. [Google Scholar]
- Ribeiro, F.M.; Vieira, L.B.; Pires, R.G.; Olmo, R.P.; Ferguson, S.S. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol. Res. 2017, 115, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Kew, J.N.; Kemp, J.A. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 2005, 179, 4–29. [Google Scholar] [CrossRef] [PubMed]
- Wisden, W.; Seeburg, P.H. Mammalian ionotropic glutamate receptors. Curr. Opin. Neurobiol. 1993, 3, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Malenka, R.C.; Nicoll, R.A. NMDA-receptor-dependent synaptic plasticity: Multiple forms and mechanisms. Trends Neurosci. 1993, 16, 521–527. [Google Scholar] [CrossRef]
- Ji, R.R.; Kohno, T.; Moore, K.A.; Woolf, C.J. Central sensitization and LTP: Do pain and memory share similar mechanisms? Trends Neurosci. 2003, 26, 696–705. [Google Scholar] [CrossRef]
- Lau, C.G.; Takeuchi, K.; Rodenas-Ruano, A.; Takayasu, Y.; Murphy, J.; Bennett, M.V.; Zukin, R.S. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem. Soc. Trans. 2009, 37 Pt 6, 1369–1374. [Google Scholar] [CrossRef]
- Tottene, A.; Conti, R.; Fabbro, A.; Vecchia, D.; Shapovalova, M.; Santello, M.; van den Maagdenberg, A.M.; Ferrari, M.D.; Pietrobon, D. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 2009, 61, 762–773. [Google Scholar] [CrossRef]
- Woolf, C.J.; Thompson, S.W.N. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991, 44, 293–299. [Google Scholar] [CrossRef]
- Haley, J.E.; Dickenson, A.H. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res. 2016, 1645, 58–60. [Google Scholar] [CrossRef]
- de León-López, C.A.M.; Carretero-Rey, M.; Khan, Z.U. AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases. Cell. Mol. Neurobiol. 2025, 45, 14. [Google Scholar] [CrossRef]
- Addae, J.I.; Ali, N.; Stone, T.W. Effects of AMPA and clomethiazole on spreading depression cycles in the rat neocortex in vivo. Eur. J. Pharmacol. 2011, 653, 41–46. [Google Scholar] [PubMed]
- Tang, Y.; Liu, S.; Shu, H.; Xing, Y.; Tao, F. AMPA receptor GluA1 Ser831 phosphorylation is critical for nitroglycerin-induced migraine-like pain. Neuropharmacology 2018, 133, 462–469. [Google Scholar] [PubMed]
- Tao, Y.X. AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization. Neurosci. Bull. 2012, 28, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.D.; Wilkinson, K.A.; Henley, J.M.; Mellor, J.R. Kainate receptors and synaptic plasticity. Neuropharmacology 2021, 196, 108540. [Google Scholar] [CrossRef]
- Park, S.A.; Yin, H.; Bhattarai, J.P.; Park, S.J.; Lee, J.C.; Kim, C.J.; Han, S.K. Postnatal change of GluR5 kainate receptor expression in the substantia gelatinosa neuron of the trigeminal subnucleus caudalis in mice. Brain Res. 2010, 1346, 52–61. [Google Scholar] [CrossRef]
- Jabłońska, B.; Smith, A.L.; Kossut, M.; Skangiel-Kramska, J. Development of laminar distributions of kainate receptors in the somatosensory cortex of mice. Brain Res. 1998, 791, 325–329. [Google Scholar]
- Andreou, A.P.; Holland, P.R.; Goadsby, P.J. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Br. J. Pharmacol. 2009, 157, 464–473. [Google Scholar]
- Radwani, H.; Roca-Lapirot, O.; Aby, F.; Lopez-Gonzalez, M.J.; Bouali-Benazzouz, R.; Favereaux, A.; Errami, M.; Landry, M.; Fossat, P. Group I metabotropic glutamate receptor plasticity after peripheral inflammation alters nociceptive transmission in the dorsal of the spinal cord in adult rats. Mol. Pain 2017, 13, 1744806917737934. [Google Scholar]
- Niu, Y.; Zeng, X.; Zhao, L.; Zhou, Y.; Qin, G.; Zhang, D.; Fu, Q.; Zhou, J.; Chen, L. Metabotropic glutamate receptor 5 regulates synaptic plasticity in a chronic migraine rat model through the PKC/NR2B signal. J. Headache Pain 2020, 21, 139. [Google Scholar]
- Niu, Y.; Zeng, X.; Qin, G.; Zhang, D.; Zhou, J.; Chen, L. Downregulation of metabotropic glutamate receptor 5 alleviates central sensitization by activating autophagy via inhibiting mTOR pathway in a rat model of chronic migraine. Neurosci. Lett. 2021, 743, 135552. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Palazzo, E.; Maione, S.; Neugebauer, V. Group II Metabotropic Glutamate Receptors: Role in Pain Mechanisms and Pain Modulation. Front. Mol. Neurosci. 2018, 11, 383. [Google Scholar]
- Palazzo, E.; Marabese, I.; Luongo, L.; Guida, F.; de Novellis, V.; Maione, S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J. Neurochem. 2017, 141, 507–519. [Google Scholar] [PubMed]
- Goudet, C.; Chapuy, E.; Alloui, A.; Acher, F.; Pin, J.P.; Eschalier, A. Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain 2008, 137, 112–124. [Google Scholar] [PubMed]
- Zhang, H.M.; Chen, S.R.; Pan, H.L. Effects of activation of group III metabotropic glutamate receptors on spinal synaptic transmission in a rat model of neuropathic pain. Neuroscience 2009, 158, 875–884. [Google Scholar]
- Chen, S.R.; Pan, H.L. Distinct roles of group III metabotropic glutamate receptors in control of nociception and dorsal horn neurons in normal and nerve-injured Rats. J. Pharmacol. Exp. Ther. 2005, 312, 120–126. [Google Scholar]
- Ferrari, M.D.; Odink, J.; Bos, K.D.; Malessy, M.J.; Bruyn, G.W. Neuroexcitatory plasma amino acids are elevated in migraine. Neurology 1990, 40, 1582–1586. [Google Scholar]
- Campos, F.; Sobrino, T.; Perez-Mato, M.; Rodriguez-Osorio, X.; Leira, R.; Blanco, M.; Mirelman, D.; Castillo, J. Glutamate oxaloacetate transaminase: A new key in the dysregulation of glutamate in migraine patients. Cephalalgia 2013, 33, 1148–1154. [Google Scholar]
- Martínez, F.; Castillo, J.; Rodríguez, J.R.; Leira, R.; Noya, M. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia 1993, 13, 89–93. [Google Scholar]
- Rajda, C.; Tajti, J.; Komoróczy, R.; Seres, E.; Klivényi, P.; Vécsei, L. Amino acids in the saliva of patients with migraine. Headache J. Head Face Pain 1999, 39, 644–649. [Google Scholar]
- Nam, J.H.; Lee, H.S.; Kim, J.; Kim, J.; Chu, M.K. Salivary glutamate is elevated in individuals with chronic migraine. Cephalalgia 2018, 38, 1485–1492. [Google Scholar]
- Peres, M.F.; Zukerman, E.; Senne Soares, C.A.; Alonso, E.O.; Santos, B.F.; Faulhaber, M.H. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia 2004, 24, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Vieira, D.S.; Naffah-Mazzacoratti Mda, G.; Zukerman, E.; Senne Soares, C.A.; Cavalheiro, E.A.; Peres, M.F. Glutamate levels in cerebrospinal fluid and triptans overuse in chronic migraine. Headache J. Head Face Pain 2007, 47, 842–847. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, R.M.; Zielman, R.; Noga, M.; Dekkers, O.M.; Hankemeier, T.; van den Maagdenberg, A.M.; Terwindt, G.M.; Ferrari, M.D. Migraine biomarkers in cerebrospinal fluid: A systematic review and meta-analysis. Cephalalgia 2017, 37, 49–63. [Google Scholar] [CrossRef]
- Ferrari, A.; Spaccapelo, L.; Pinetti, D.; Tacchi, R.; Bertolini, A. Effective prophylactic treatments of migraine lower plasma glutamate levels. Cephalalgia 2009, 29, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Zielman, R.; Wijnen, J.P.; Webb, A.; Onderwater, G.L.; Ronen, I.; Ferrari, M.D.; Kan, H.E.; Terwindt, G.M.; Kruit, M.C. Cortical glutamate in migraine. Brain A J. Neurol. 2017, 140, 1859–1871. [Google Scholar] [CrossRef]
- Peek, A.L.; Rebbeck, T.; Puts, N.A.; Watson, J.; Aguila, M.R.; Leaver, A.M. Brain GABA and glutamate levels across pain conditions: A systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage 2020, 210, 116532. [Google Scholar] [CrossRef]
- Puledda, F.; Dipasquale, O.; Gooddy, B.J.; Karsan, N.; Bose, R.; Mehta, M.A.; Williams, S.C.; Goadsby, P.J. Abnormal Glutamatergic and Serotonergic Connectivity in Visual Snow Syndrome and Migraine with Aura. Ann. Neurol. 2023, 94, 873–884. [Google Scholar] [CrossRef]
- Bell, T.; Stokoe, M.; Khaira, A.; Webb, M.; Noel, M.; Amoozegar, F.; Harris, A.D. GABA and glutamate in pediatric migraine. Pain 2021, 162, 300–308. [Google Scholar] [CrossRef]
- Cho, L.Y.; Bell, T.K.; Craddock, L.; Godfrey, K.J.; Hershey, A.D.; Kuziek, J.; Stokoe, M.; Millar, K.; Orr, S.L.; Harris, A.D. Region-specific changes in brain glutamate and gamma-aminobutyric acid across the migraine attack in children and adolescents. Pain 2024, 165, 2749–2761. [Google Scholar] [CrossRef]
- Onderwater, G.L.J.; Wijnen, J.P.; Najac, C.; van Dongen, R.M.; Ronen, I.; Webb, A.; Zielman, R.; van Zwet, E.W.; Ferrari, M.D.; Kan, H.E.; et al. Cortical glutamate and gamma-aminobutyric acid over the course of a provoked migraine attack, a 7 Tesla magnetic resonance spectroscopy study. NeuroImage Clin. 2021, 32, 102889. [Google Scholar] [CrossRef]
- Younis, S.; Christensen, C.E.; Vestergaard, M.B.; Lindberg, U.; Tolnai, D.; Paulson, O.B.; Larsson, H.B.; Hougaard, A.; Ashina, M. Glutamate levels and perfusion in pons during migraine attacks: A 3T MRI study using proton spectroscopy and arterial spin labeling. J. Cereb. Blood Flow Metab. 2021, 41, 604–616. [Google Scholar] [PubMed]
- Baad-Hansen, L.; Cairns, B.; Ernberg, M.; Svensson, P. Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity. Cephalalgia 2010, 30, 68–76. [Google Scholar] [PubMed]
- Yang, W.H.; Drouin, M.A.; Herbert, M.; Mao, Y.; Karsh, J. The monosodium glutamate symptom complex: Assessment in a double-blind, placebo-controlled, randomized study. J. Allergy Clin. Immunol. 1997, 99 Pt 1, 757–762. [Google Scholar] [PubMed]
- Benbow, T.; Ekbatan, M.R.; Wang, G.H.Y.; Teja, F.; Exposto, F.G.; Svensson, P.; Cairns, B.E. Systemic administration of monosodium glutamate induces sexually dimorphic headache- and nausea-like behaviours in rats. Pain 2022, 163, 1838–1853. [Google Scholar] [CrossRef]
- O’Brien, M.; Cairns, B.E. Monosodium glutamate alters the response properties of rat trigeminovascular neurons through activation of peripheral NMDA receptors. Neuroscience 2016, 334, 236–244. [Google Scholar]
- Tallaksen-Greene, S.J.; Young, A.B.; Penney, J.B.; Beitz, A.J. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci. Lett. 1992, 141, 79–83. [Google Scholar]
- Greenamyre, J.T.; Young, A.B.; Penney, J.B. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system. J. Neurosci. Off. J. Soc. Neurosci. 1984, 4, 2133–2144. [Google Scholar]
- Halpain, S.; Wieczorek, C.M.; Rainbow, T.C. Localization of L-glutamate receptors in rat brain by quantitative autoradiography. J. Neurosci. Off. J. Soc. Neurosci. 1984, 4, 2247–2258. [Google Scholar]
- Mehnert, J.; Tinnermann, A.; Basedau, H.; May, A. Functional representation of trigeminal nociceptive input in the human periaqueductal gray. Sci. Adv. 2024, 10, eadj8213. [Google Scholar] [CrossRef]
- Ma, Q.P. Co-localization of 5-HT(1B/1D/1F) receptors and glutamate in trigeminal ganglia in rats. Neuroreport 2001, 12, 1589–1591. [Google Scholar]
- Hoffmann, J.; Storer, R.J.; Park, J.W.; Goadsby, P.J. N-Methyl-d-aspartate receptor open-channel blockers memantine and magnesium modulate nociceptive trigeminovascular neurotransmission in rats. Eur. J. Neurosci. 2019, 50, 2847–2859. [Google Scholar] [PubMed]
- Crivellaro, G.; Tottene, A.; Vitale, M.; Melone, M.; Casari, G.; Conti, F.; Santello, M.; Pietrobon, D. Specific activation of GluN1-N2B NMDA receptors underlies facilitation of cortical spreading depression in a genetic mouse model of migraine with reduced astrocytic glutamate clearance. Neurobiol. Dis. 2021, 156, 105419. [Google Scholar]
- Riant, F.; Roze, E.; Barbance, C.; Meneret, A.; Guyant-Marechal, L.; Lucas, C.; Sabouraud, P.; Trebuchon, A.; Depienne, C.; Tournier-Lasserve, E. PRRT2 mutations cause hemiplegic migraine. Neurology 2012, 79, 2122–2124. [Google Scholar] [PubMed]
- Brennan, K.C.; Bates, E.A.; Shapiro, R.E.; Zyuzin, J.; Hallows, W.C.; Huang, Y.; Lee, H.Y.; Jones, C.R.; Fu, Y.H.; Charles, A.C.; et al. Casein kinase iδ mutations in familial migraine and advanced sleep phase. Sci. Transl. Med. 2013, 5, 183ra56. [Google Scholar]
- Davis, I.; Liu, A. What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert. Rev. Neurother. 2015, 15, 719–721. [Google Scholar]
- Spekker, E.; Nagy-Grócz, G.; Vécsei, L. Ion Channel Disturbances in Migraine Headache: Exploring the Potential Role of the Kynurenine System in the Context of the Trigeminovascular System. Int. J. Mol. Sci. 2023, 24, 16574. [Google Scholar] [CrossRef]
- Knyihar-Csillik, E.; Toldi, J.; Krisztin-Peva, B.; Chadaide, Z.; Nemeth, H.; Fenyo, R.; Vecsei, L. Prevention of electrical stimulation-induced increase of c-fos immunoreaction in the caudal trigeminal nucleus by kynurenine combined with probenecid. Neurosci. Lett. 2007, 418, 122–126. [Google Scholar]
- Tuka, B.; Nyari, A.; Cseh, E.K.; Kortesi, T.; Vereb, D.; Tomosi, F.; Kecskemeti, G.; Janaky, T.; Tajti, J.; Vecsei, L. Clinical relevance of depressed kynurenine pathway in episodic migraine patients: Potential prognostic markers in the peripheral plasma during the interictal period. J. Headache Pain 2021, 22, 60. [Google Scholar]
- Kortesi, T.; Tuka, B.; Tajti, J.; Bagoly, T.; Fulop, F.; Helyes, Z.; Vecsei, L. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the, T.N.C. Front. Neurol. 2017, 8, 745. [Google Scholar]
- Greco, R.; Demartini, C.; Zanaboni, A.M.; Redavide, E.; Pampalone, S.; Toldi, J.; Fulop, F.; Blandini, F.; Nappi, G.; Sandrini, G.; et al. Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: Targets and anti-migraine mechanisms. Cephalalgia 2017, 37, 1272–1284. [Google Scholar]
- Chauvel, V.; Vamos, E.; Pardutz, A.; Vecsei, L.; Schoenen, J.; Multon, S. Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp. Neurol. 2012, 236, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Körtési, T.; Nagy-Grócz, G.; Vécsei, L. The role of kynurenines in migraine-related neuroimmune pathways. J. Headache Pain 2024, 25, 129. [Google Scholar] [PubMed]
- Charles, A.C.; Baca, S.M. Cortical spreading depression and migraine. Nat. Rev. Neurol. 2013, 9, 637–644. [Google Scholar] [PubMed]
- Lauritzen, M. Pathophysiology of the migraine aura: The spreading depression theory. Brain A J. Neurol. 1994, 117, 199–210. [Google Scholar]
- Peeters, M.; Gunthorpe, M.J.; Strijbos, P.J.; Goldsmith, P.; Upton, N.; James, M.F. Effects of pan- and subtype-selective N-methyl-D-aspartate receptor antagonists on cortical spreading depression in the rat: Therapeutic potential for migraine. J. Pharmacol. Exp. Ther. 2007, 321, 564–572. [Google Scholar] [CrossRef]
- Sanchez-Porras, R.; Santos, E.; Scholl, M.; Stock, C.; Zheng, Z.; Schiebel, P.; Orakcioglu, B.; Unterberg, A.W.; Sakowitz, O.W. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex. Neuropharmacology 2014, 84, 52–61. [Google Scholar]
- Zhou, T.; Tang, Y.; Zhu, H. Effectiveness and Safety of Memantine for Headache: A Meta-analysis of Randomized Controlled Studies. Clin. Neuropharmacol. 2022, 45, 40–44. [Google Scholar] [CrossRef]
- Shanmugam, S.; Karunaikadal, K.; Varadarajan, S.; Krishnan, M. Memantine Ameliorates Migraine Headache. Ann. Indian Acad. Neurol. 2019, 22, 286–290. [Google Scholar]
- Kashipaza, D.; Emadi, S. The effect of memantine on prophylaxis of chronic migraine headache. ARC J. Neurosci. 2018, 3, 1–7. [Google Scholar]
- Noruzzadeh, R.; Modabbernia, A.; Aghamollaii, V.; Ghaffarpour, M.; Harirchian, M.H.; Salahi, S.; Nikbakht, N.; Noruzi, N.; Tafakhori, A. Memantine for Prophylactic Treatment of Migraine Without Aura: A Randomized Double-Blind Placebo-Controlled Study. Headache J. Head Face Pain 2016, 56, 95–103. [Google Scholar]
- Afridi, S.K.; Giffin, N.J.; Kaube, H.; Goadsby, P.J. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology 2013, 80, 642–647. [Google Scholar] [PubMed]
- Kaube, H.; Herzog, J.; Käufer, T.; Dichgans, M.; Diener, H.C. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology 2000, 55, 139–141. [Google Scholar] [PubMed]
- Kaube, H.; Goadsby, P.J. Anti-migraine compounds fail to modulate the propagation of cortical spreading depression in the cat. Eur. Neurol. 1994, 34, 30–35. [Google Scholar] [PubMed]
- Silva, E.; Quiñones, B.; Freund, N.; Gonzalez, L.E.; Hernandez, L. Extracellular glutamate, aspartate and arginine increase in the ventral posterolateral thalamic nucleus during nociceptive stimulation. Brain Res. 2001, 923, 45–49. [Google Scholar]
- Bereiter, D.A.; Benetti, A.P. Excitatory amino release within spinal trigeminal nucleus after mustard oil injection into the temporomandibular joint region of the rat. Pain 1996, 67, 451–459. [Google Scholar]
- Garthwaite, J.; Charles, S.L.; Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988, 336, 385–388. [Google Scholar]
- Christopherson, K.S.; Hillier, B.J.; Lim, W.A.; Bredt, D.S. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J. Biol. Chem. 1999, 274, 27467–27473. [Google Scholar]
- LeMaistre, J.L.; Sanders, S.A.; Stobart, M.J.; Lu, L.; Knox, J.D.; Anderson, H.D.; Anderson, C.M. Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J. Cereb. Blood Flow Metab. 2012, 32, 537–547. [Google Scholar]
- Karsan, N.; Gosalia, H.; Goadsby, P.J. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int. J. Mol. Sci. 2023, 24, 11993. [Google Scholar] [CrossRef]
- Bereiter, D.A.; Bereiter, D.F.; Hathaway, C.B. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity in central trigeminal neurons and blocks select endocrine and autonomic responses to corneal stimulation in the rat. Pain 1996, 64, 179–189. [Google Scholar]
- Hattori, Y.; Watanabe, M.; Iwabe, T.; Tanaka, E.; Nishi, M.; Aoyama, J.; Satoda, T.; Uchida, T.; Tanne, K. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars. Brain Res. 2004, 1021, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.L.; Graff, C.B.; Richardson, J.D.; Hargreaves, K.M. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. Eur. J. Pharmacol. 1995, 284, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Lawand, N.B.; Willis, W.D.; Westlund, K.N. Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats. Eur. J. Pharmacol. 1997, 324, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Landy, S.; Rice, K.; Lobo, B. Central sensitisation and cutaneous allodynia in migraine: Implications for treatment. CNS Drugs 2004, 18, 337–342. [Google Scholar] [CrossRef]
- Ashina, S.; Terwindt, G.M.; Steiner, T.J.; Lee, M.J.; Porreca, F.; Tassorelli, C.; Schwedt, T.J.; Jensen, R.H.; Diener, H.-C.; Lipton, R.B. Medication overuse headache. Nat. Rev. Dis. Primers 2023, 9, 5. [Google Scholar]
- Telles, J.P.M.; Welling, L.C.; Coelho, A.; Rabelo, N.N.; Teixeira, M.J.; Figueiredo, E.G. Cortical spreading depolarization and ketamine: A short systematic review. Neurophysiol. Clin. 2021, 51, 145–151. [Google Scholar]
- Etchison, A.R.; Bos, L.; Ray, M.; McAllister, K.B.; Mohammed, M.; Park, B.; Phan, A.V.; Heitz, C. Low-dose Ketamine Does Not Improve Migraine in the Emergency Department: A Randomized Placebo-controlled Trial. West. J. Emerg. Med. 2018, 19, 952–960. [Google Scholar]
- Benish, T.; Villalobos, D.; Love, S.; Casmaer, M.; Hunter, C.J.; Summers, S.M.; April, M.D. The THINK (Treatment of Headache with Intranasal Ketamine) Trial: A Randomized Controlled Trial Comparing Intranasal Ketamine with Intravenous Metoclopramide. J. Emerg. Med. 2019, 56, 248–257.e1. [Google Scholar]
- Yuan, H.; Natekar, A.; Park, J.; Lauritsen, C.G.; Viscusi, E.R.; Marmura, M.J. Real-world study of intranasal ketamine for use in patients with refractory chronic migraine: A retrospective analysis. Reg. Anesth. Pain Med. 2023, 48, 581–587. [Google Scholar]
- Turner, A.L.; Shandley, S.; Miller, E.; Perry, M.S.; Ryals, B. Intranasal Ketamine for Abortive Migraine Therapy in Pediatric Patients: A Single-Center Review. Pediatr. Neurol. 2020, 104, 46–53. [Google Scholar]
- Lauritsen, C.; Mazuera, S.; Lipton, R.B.; Ashina, S. Intravenous ketamine for subacute treatment of refractory chronic migraine: A case series. J. Headache Pain 2016, 17, 106. [Google Scholar] [PubMed]
- Ray, J.C.; Cheng, S.; Tsan, K.; Hussain, H.; Stark, R.J.; Matharu, M.S.; Hutton, E. Intravenous Lidocaine and Ketamine Infusions for Headache Disorders: A Retrospective Cohort Study. Front. Neurol. 2022, 13, 842082. [Google Scholar]
- Pomeroy, J.L.; Marmura, M.J.; Nahas, S.J.; Viscusi, E.R. Ketamine Infusions for Treatment Refractory Headache. Headache J. Head Face Pain 2017, 57, 276–282. [Google Scholar]
- Chah, N.; Jones, M.; Milord, S.; Al-Eryani, K.; Enciso, R. Efficacy of ketamine in the treatment of migraines and other unspecified primary headache disorders compared to placebo and other interventions: A systematic review. J. Dent. Anesth. Pain. Med. 2021, 21, 413–429. [Google Scholar]
- Hoydonckx, Y.; Singh, M.; Gilron, I.; Khan, J.; Narouze, S.; Dahan, A.; Curtis, K.; Cao, X.; Kara, J.; Bhatia, A. Trial protocol for a multicenter randomized controlled trial to assess the efficacy and safety of intravenous ketamine for chronic daily headaches: The “KetHead” trial. Trials 2023, 24, 155. [Google Scholar]
- Danysz, W.; Parsons, C.G.; Mobius, H.J.; Stoffler, A.; Quack, G. Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease—A unified glutamatergic hypothesis on the mechanism of action. Neurotox. Res. 2000, 2, 85–97. [Google Scholar]
- Zhang, Y.Q.; Ji, G.C.; Wu, G.C.; Zhao, Z.Q. Excitatory amino acid receptor antagonists and electroacupuncture synergetically inhibit carrageenan-induced behavioral hyperalgesia and spinal fos expression in rats. Pain 2002, 99, 525–535. [Google Scholar]
- Mitsikostas, D.D.; Sanchez del Rio, M.; Waeber, C.; Huang, Z.; Cutrer, F.M.; Moskowitz, M.A. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br. J. Pharmacol. 1999, 127, 623–630. [Google Scholar]
- Sang, C.N.; Ramadan, N.M.; Wallihan, R.G.; Chappell, A.S.; Freitag, F.G.; Smith, T.R.; Silberstein, S.D.; Johnson, K.W.; Phebus, L.A.; Bleakman, D.; et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia 2004, 24, 596–602. [Google Scholar]
- Gomez-Mancilla, B.; Brand, R.; Jurgens, T.P.; Gobel, H.; Sommer, C.; Straube, A.; Evers, S.; Sommer, M.; Campos, V.; Kalkman, H.O.; et al. Randomized, multicenter trial to assess the efficacy, safety and tolerability of a single dose of a novel AMPA receptor antagonist BGG492 for the treatment of acute migraine attacks. Cephalalgia 2014, 34, 103–113. [Google Scholar]
- Sahara, Y.; Noro, N.; Iida, Y.; Soma, K.; Nakamura, Y. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons. J. Neurosci. Off. J. Soc. Neurosci. 1997, 17, 6611–6620. [Google Scholar]
- Huettner, J.E. Kainate receptors and synaptic transmission. Prog. Neurobiol. 2003, 70, 387–407. [Google Scholar] [PubMed]
- Zhou, S.; Bonasera, L.; Carlton, S.M. Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats. Neuroreport 1996, 7, 895–900. [Google Scholar] [PubMed]
- Weiss, B.; Alt, A.; Ogden, A.M.; Gates, M.; Dieckman, D.K.; Clemens-Smith, A.; Ho, K.H.; Jarvie, K.; Rizkalla, G.; Wright, R.A.; et al. Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo. J. Pharmacol. Exp. Ther. 2006, 318, 772–781. [Google Scholar]
- Storey, J.R.; Calder, C.S.; Hart, D.E.; Potter, D.L. Topiramate in migraine prevention: A double-blind, placebo-controlled study. Headache 2001, 41, 968–975. [Google Scholar]
- Lipton, R.B.; Silberstein, S.; Dodick, D.; Cady, R.; Freitag, F.; Mathew, N.; Biondi, D.M.; Ascher, S.; Olson, W.H.; Hulihan, J. Topiramate intervention to prevent transformation of episodic migraine: The topiramate INTREPID study. Cephalalgia 2011, 31, 18–30. [Google Scholar]
- Brandes, J.L.; Saper, J.R.; Diamond, M.; Couch, J.R.; Lewis, D.W.; Schmitt, J.; Neto, W.; Schwabe, S.; Jacobs, D.; Group, M.-S. Topiramate for migraine prevention: A randomized controlled trial. JAMA 2004, 291, 965–973. [Google Scholar]
- Silberstein, S.D.; Neto, W.; Schmitt, J.; Jacobs, D. Topiramate in migraine prevention: Results of a large controlled trial. Arch. Neurol. 2004, 61, 490–495. [Google Scholar]
- Mei, D.; Capuano, A.; Vollono, C.; Evangelista, M.; Ferraro, D.; Tonali, P.; Di Trapani, G. Topiramate in migraine prophylaxis: A randomised double-blind versus placebo study. Neurol. Sci. 2004, 25, 245–250. [Google Scholar]
- Diener, H.C.; Bussone, G.; Van Oene, J.C.; Lahaye, M.; Schwalen, S.; Goadsby, P.J. Topiramate reduces headache days in chronic migraine: A randomized, double-blind, placebo-controlled study. Cephalalgia 2007, 27, 814–823. [Google Scholar]
- Silberstein, S.D.; Hulihan, J.; Karim, M.R.; Wu, S.C.; Jordan, D.; Karvois, D.; Kamin, M. Efficacy and tolerability of topiramate 200 mg/d in the prevention of migraine with/without aura in adults: A randomized, placebo-controlled, double-blind, 12-week pilot study. Clin. Ther. 2006, 28, 1002–1011. [Google Scholar] [PubMed]
- Andreou, A.P.; Goadsby, P.J. Topiramate in the treatment of migraine: A kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia 2011, 31, 1343–1358. [Google Scholar] [PubMed]
- Chan, K.Y.; Gupta, S.; de Vries, R.; Danser, A.H.; Villalon, C.M.; Munoz-Islas, E.; Maassenvandenbrink, A. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model. Br. J. Pharmacol. 2010, 160, 1316–1325. [Google Scholar] [PubMed]
- Gillard, S.E.; Tzaferis, J.; Tsui, H.C.; Kingston, A.E. Expression of metabotropic glutamate receptors in rat meningeal and brain microvasculature and choroid plexus. J. Comp. Neurol. 2003, 461, 317–332. [Google Scholar]
- Muñoz, A.; Liu, X.B.; Jones, E.G. Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse. J. Comp. Neurol. 1999, 409, 549–566. [Google Scholar]
- Tashiro, A.; Nishida, Y.; Bereiter, D.A. Local group I mGluR antagonists reduce TMJ-evoked activity of trigeminal subnucleus caudalis neurons in female rats. Neuroscience 2015, 299, 125–133. [Google Scholar]
- Walker, K.; Bowes, M.; Panesar, M.; Davis, A.; Gentry, C.; Kesingland, A.; Gasparini, F.; Spooren, W.; Stoehr, N.; Pagano, A.; et al. Metabotropic glutamate receptor subtype 5, (mGlu5) and nociceptive function, I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology 2001, 40, 1–9. [Google Scholar]
- Manengu, C.; Zhu, C.H.; Zhang, G.D.; Tian, M.M.; Lan, X.B.; Tao, L.J.; Ma, L.; Liu, Y.; Yu, J.Q.; Liu, N. Metabotropic Glutamate Receptor 5: A Potential Target for Neuropathic Pain Treatment. Curr. Neuropharmacol. 2024, 23, 276–294. [Google Scholar]
- Schroder, H.; Wu, D.F.; Seifert, A.; Rankovic, M.; Schulz, S.; Hollt, V.; Koch, T. Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the micro-opioid receptor. Neuropharmacology 2009, 56, 768–778. [Google Scholar]
- Moye, L.S.; Tipton, A.F.; Dripps, I.; Sheets, Z.; Crombie, A.; Violin, J.D.; Pradhan, A.A. Delta opioid receptor agonists are effective for multiple types of headache disorders. Neuropharmacology 2019, 148, 77–86. [Google Scholar]
- Porter, R.H.; Jaeschke, G.; Spooren, W.; Ballard, T.M.; Büttelmann, B.; Kolczewski, S.; Peters, J.-U.; Prinssen, E.; Wichmann, J.; Vieira, E. Fenobam: A clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J. Pharmacol. Exp. Ther. 2005, 315, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Cavallone, L.F.; Montana, M.C.; Frey, K.; Kallogjeri, D.; Wages, J.M.; Rodebaugh, T.L.; Doshi, T.; Kharasch, E.D.; Gereau, R.W.t. The metabotropic glutamate receptor 5 negative allosteric modulator fenobam: Pharmacokinetics, side effects, and analgesic effects in healthy human subjects. Pain 2020, 161, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Montana, M.C.; Conrardy, B.A.; Cavallone, L.F.; Kolber, B.J.; Rao, L.K.; Greco, S.C.; Gereau, R.W.t. Metabotropic glutamate receptor 5 antagonism with fenobam: Examination of analgesic tolerance and side effect profile in mice. Anesthesiology 2011, 115, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Marin, J.C.; Goadsby, P.J. Glutamatergic fine tuning with ADX-10059: A novel therapeutic approach for migraine? Expert. Opin. Investig. Drugs 2010, 19, 555–561. [Google Scholar] [CrossRef]
- Zerbib, F.; Bruley des Varannes, S.; Roman, S.; Tutuian, R.; Galmiche, J.P.; Mion, F.; Tack, J.; Malfertheiner, P.; Keywood, C. Randomised clinical trial: Effects of monotherapy with ADX10059, a mGluR5 inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 2011, 33, 911–921. [Google Scholar] [CrossRef]
- Rascol, O.; Fox, S.; Gasparini, F.; Kenney, C.; Di Paolo, T.; Gomez-Mancilla, B. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Park. Relat. Disord. 2014, 20, 947–956. [Google Scholar] [CrossRef]
- Salt, T.E.; Eaton, S.A.; Turner, J.P. Characterization of the metabotropic glutamate receptors (mGluRs) which modulate GABA-mediated inhibition in the ventrobasal thalamus. Neurochem. Int. 1996, 29, 317–322. [Google Scholar] [CrossRef]
- Imre, G. The preclinical properties of a novel group II metabotropic glutamate receptor agonist LY379268. CNS Drug Rev. 2007, 13, 444–464. [Google Scholar] [CrossRef]
- Robertson-Plouch, C.; Silberstein, S.; Birch, C.; Ardayfio, P.; Brittain, C. A randomized, double-blind, placebo-controlled, proof-of-concept study of LY2300559 for migraine prophylaxis in patients wth migraine. Cephalalgia 2013, 33, 969. [Google Scholar]
- Martami, F.; Holton, K.F. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023, 15, 3952. [Google Scholar] [CrossRef]
- Riedel, G.; Platt, B.; Micheau, J. Glutamate receptor function in learning and memory. Behav. Brain Res. 2003, 140, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Peikert, A.; Wilimzig, C.; Köhne-Volland, R. Prophylaxis of migraine with oral magnesium: Results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalalgia 1996, 16, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Bigal, M.E.; Bordini, C.A.; Tepper, S.J.; Speciali, J.G. Intravenous magnesium sulphate in the acute treatment of migraine without aura and migraine with aura. A randomized, double-blind, placebo-controlled study. Cephalalgia 2002, 22, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Karimi, N.; Razian, A.; Heidari, M. The efficacy of magnesium oxide and sodium valproate in prevention of migraine headache: A randomized, controlled, double-blind, crossover study. Acta Neurol. Belg. 2021, 121, 167–173. [Google Scholar] [CrossRef]
- Khani, S.; Hejazi, S.A.; Yaghoubi, M.; Sharifipour, E. Comparative study of magnesium, sodium valproate, and concurrent magnesium-sodium valproate therapy in the prevention of migraine headaches: A randomized controlled double-blind trial. J. Headache Pain 2021, 22, 21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsan, N.; Luiza Bastos, A.; Goadsby, P.J. Glutamate as a Therapeutic Substrate in Migraine. Int. J. Mol. Sci. 2025, 26, 3023. https://doi.org/10.3390/ijms26073023
Karsan N, Luiza Bastos A, Goadsby PJ. Glutamate as a Therapeutic Substrate in Migraine. International Journal of Molecular Sciences. 2025; 26(7):3023. https://doi.org/10.3390/ijms26073023
Chicago/Turabian StyleKarsan, Nazia, Alves Luiza Bastos, and Peter J. Goadsby. 2025. "Glutamate as a Therapeutic Substrate in Migraine" International Journal of Molecular Sciences 26, no. 7: 3023. https://doi.org/10.3390/ijms26073023
APA StyleKarsan, N., Luiza Bastos, A., & Goadsby, P. J. (2025). Glutamate as a Therapeutic Substrate in Migraine. International Journal of Molecular Sciences, 26(7), 3023. https://doi.org/10.3390/ijms26073023