Dual Biopolymer Layer Using Nanoparticles with Active Substance Enclosed in Microcapsules: Innovative Solution for Slow Release of Ginkgo biloba L. Extract for Potential Therapies
Abstract
:1. Introduction
2. Results
2.1. Characterization of Ethylcellulose Microcapsules Et[Ch(GB)NP] and Et(GB)
2.2. GBE Release Rate from Et(GB) and Et[Ch(GB)NP]
2.2.1. GBE Release Rate from Et(GB)
2.2.2. GBE Release Rate from Et[Ch(GB)NP]
2.3. Mathematical Models and Regression Coefficient Values of GBE Release from Nanoparticles Encapsulated in Cellulose Microcapsules
2.4. The HPLC-ESI-QTOF-MS/MS Fingerprinting of GBE
2.5. Microbiological Tests (Determination of the Minimal Concentration Inhibiting the Growth of Microorganisms—Bacteria and Fungi)
3. Discussion
- -
- From 71.7% of ibuprofen content for nanoparticles in the 15th minute of incubation in the medium to 27.7% of ibuprofen content in ethylcellulose microcapsules with enclosed PCL nanoparticles (medium—phosphate buffer, pH 7.4);
- -
- From 78.3% ibuprofen content for nanoparticles in 24 h of incubation in the medium to 57.3% ibuprofen content in ethylcellulose microcapsules with enclosed PCL nanoparticles (medium—phosphate buffer, pH 7.4);
- -
- From 71.0% triptorelin acetate content for nanoparticles in the 15th minute of incubation in the medium to 5.4% triptorelin acetate content in ethylcellulose microcapsules with enclosed PCL nanoparticles (to 0.1 M NaCl medium); from 73.5% of triptorelin acetate content for nanoparticles in 24 h of incubation in the medium to 31.5% of triptorelin acetate content in ethylcellulose microcapsules with enclosed PCL nanoparticles (into 0.1 M NaCl medium) [37].
4. Materials and Methods
4.1. Materials
4.2. Preparation of Chitosan Nanoparticles with GBE and Their Characteristics
4.3. The Fingerprinting Studies of GBE by HPLC-ESI-QTOF-MS/MS Approach
4.4. Determination of the Minimal Inhibitory Concentration of Microorganisms—Bacteria and Fungi
4.5. Preparation of Ethylcellulose Microcapsules {Et[Ch(GB)NP] and Et(GB)}
4.6. The Morphology of Et(GB) and Et[Ch(GB)NP]
4.7. GBE Release Kinetics from Nanoparticles—Ch(GB)NP and Microcapsules—Et(GB) and Et[Ch(GB)NP]
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A Revolution in Modern Industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef] [PubMed]
- Saritha, G.N.G.; Anju, T.; Kumar, A. Nanotechnology–Big impact: How nanotechnology is changing the future of agriculture? J. Agric. Food Res. 2022, 10, 100457. [Google Scholar]
- Malik, S.; Muhammad, K.; Waheed, Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules 2023, 28, 6624. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langeret, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar]
- Kim, M.; Shin, M.; Zhao, Y.; Ghosh, M.; Son, Y.O. Transformative Impact of Nanocarrier-Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons. Small Sci. 2024, 4, 2400280. [Google Scholar]
- Bhardwaj, H.; Jangde, R.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnol. 2023, 2, 100013. [Google Scholar]
- Kumar, B.; Jalodia, K.; Kumar, P.; Gautam, H.K. Recent advances in nanoparticle-mediated drug delivery. J. Drug Deliv. Technol. 2017, 41, 260–268. [Google Scholar]
- Cheng, X.; Xie, Q.; Sun, Y. Advances in nanomaterial–based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023, 11, 1177151. [Google Scholar]
- Kazemi, S.; Hosseingholian, A.; Gohari, S.D.; Feirahi, F.; Moammeri, F.; Mesbahian, G.; Moghaddam, Z.S.; Ren, Q. Recent advances in green synthesized nanoparticles: From production to application. Mater. Today Sustain. 2023, 24, 100500. [Google Scholar]
- Yanat, M.; Schroën, K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React. Funct. Polym. 2021, 161, 104849. [Google Scholar]
- Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. [Google Scholar] [CrossRef] [PubMed]
- Jafernik, K.; Ładniak, A.; Blicharska, E.; Czarnek, K.; Ekiert, H.; Wiącek, A.E.; Szopa, A. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review. Molecules 2023, 28, 1963. [Google Scholar] [CrossRef]
- Picos-Corrales, L.A.; Morales-Burgos, A.M.; Ruelas-Leyva, J.P.; Crini, G.; García-Armenta, E.; Jimenez-Lam, S.; Ayón-Reyna, L.E.; Rocha-Alonzo, F.; Calderón-Zamora, L.; Osuna-Martínez, U.; et al. Chitosan as an Outstanding Polysaccharide Improving Health–Commodities of Humans and Environmental Protection. Polymers 2023, 15, 526. [Google Scholar] [CrossRef]
- Hoang, N.H.; Le Thanh, T.; Sangpueak, R.; Treekoon, J.; Saengchan, C.; Thepbandit, W.; Papathoti, N.K.; Kamkaew, A.; Buensanteai, N. Chitosan Nanoparticles-Based Ionic Gelation Method: A Promising Candidate for Plant Disease Management. Polymers 2022, 14, 662. [Google Scholar] [CrossRef] [PubMed]
- Hassani, S.; Laouini, A.; Fessi, H.; Charcosset, C. Preparation of chitosan–TPP nanoparticles using microengineered membranes—Effect of parameters and encapsulation of tacrine. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 34–43. [Google Scholar]
- Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine 2014, 9, 1–15. [Google Scholar]
- Oselusi, S.O.; Sibuyi, N.R.S.; Meyer, M.; Madiehe, A.M. Phytonanotherapeutic Applications of Plant Extract-Synthesized Silver Nanoparticles in Wound Healing—A Prospective Overview. BioNanoSci 2024, 14, 3455–3475. [Google Scholar]
- Hohmann, N.; Wolf, E.M.; Rigault, P.; Zhou, W.; Kiefer, M.; Zhao, Y.; Fu, C.X.; Koch, M.A. Ginkgo biloba’s footprint of dynamic Pleistocene history dates back only 390,000 years ago. BMC Genom. 2018, 19, 299. [Google Scholar]
- Akaberi, M.; Baharara, H.; Amiri, M.S.; Moghadam, A.T.; Sahebkar, A.; Emami, S.A. Ginkgo biloba: An updated review on pharmacological, ethnobotanical, and phytochemical studies. Pharmacol. Res.–Mod. Chin. Med. 2023, 23, 100331. [Google Scholar]
- Mohanta, T.K.; Tamboli, Y.; Zubaidha, P.K. Phytochemical and medicinal importance of Ginkgo biloba L. Nat. Prod. Res. 2014, 28, 746–752. [Google Scholar] [PubMed]
- Owczarek, M.; Herczyńska, L.; Sitarek, P.; Kowalczyk, T.; Synowiec, E.; Śliwiński, T.; Krucińska, I. Chitosan Nanoparticles-Preparation, Characterization and Their Combination with Ginkgo biloba Extract in Preliminary In Vitro Studies. Molecules 2023, 28, 4950. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.N.; Hemant, K.S.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci. 2010, 5, 65–77. [Google Scholar] [PubMed]
- Lobel, B.T.; Baiocco, D.; Al-Sharabi, M.; Routh, A.F.; Zhang, Z.; Cayre, O.J. Current Challenges in Microcapsule Designs and Microencapsulation Processes: A Review. ACS Appl. Mater. Interfaces 2024, 16, 40326–40355. [Google Scholar]
- Duran, M.; Serrano, A.; Nikulin, A.; Dauvergne, J.L.; Derzsi, L.; Palomo del Barrio, E. Microcapsule production by droplet microfluidics: A review from the material science approach. Mater. Des. 2022, 223, 111230. [Google Scholar]
- Camelo-Silva, C.; Verruck, S.; Ambrosi, A.; Luccio, M.D. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. Food Eng. Rev. 2022, 14, 462–490. [Google Scholar]
- Adeleke, O.A. Premium ethylcellulose polymer based architectures at work in drug delivery. Int. J. Pharm. X 2019, 8, 100023. [Google Scholar]
- Barman, A.; Das, M. Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. In Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series; Mondal, M., Ed.; Springer: Cham, Germany, 2018; pp. 1–28. [Google Scholar]
- Zuppolini, S.; Salama, A.; Cruz-Maya, I.; Guarino, V.; Borriello, A. Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics 2022, 14, 386. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, S.; Zhu, B.; Wang, R.; Cheng, Y.A. Strategy for identifying effective and risk compounds of botanical drugs with LC-QTOF-MS and network analysis: A case study of Ginkgo biloba preparation. J. Pharm. Biomed. Anal. 2021, 193, 113759. [Google Scholar]
- Pan, Q.; Xie, L.; Zhu, H.; Zong, Z.; Wu, D.; Liu, R.; He, B.; Pu, Y. Curcumin-incorporated EGCG-based nano-antioxidants alleviate colon and kidney inflammation via antioxidant and anti-inflammatory therapy. Regen. Biomater. 2024, 11, rbae122. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Xie, L.; Liu, R.; Pu, Y.; Wu, D.; Gao, W.; Luo, K.; He, B. Two birds with one stone: Copper metal-organic framework as a carrier of disulfiram prodrug for cancer therapy. Int. J. Pharm. 2022, 612, 121351. [Google Scholar] [CrossRef]
- Prasertmanakit, S.; Praphairaksit, N.; Chiangthong, W.; Muangsin, N. Ethyl Cellulose Microcapsules for Protecting and Controlled Release of Folic Acid. AAPS PharmSciTech 2009, 10, 1104–1112. [Google Scholar] [CrossRef]
- Yadav, A.V.; Shete, A.S.; Dabke, A.P.; Shinde, V.R. Formulation and In-vitro Evaluation of Aceclofenac Microcapsules. Int. J. PharmTech Res. 2009, 1, 135–138. [Google Scholar]
- Murtaza, G.; Ahmad, M.; Shahnaz, G. Microencapsulation of Diclofenac Sodium by Nonsolvent Addition Technique. Trop. J. Pharm. Res. 2010, 9, 187–195. [Google Scholar] [CrossRef]
- Hasan, A.S.; Socha, M.; Lamprecht, A.; Ghazouani, F.E.; Sapin, A.; Hoffman, M.; Maincent, P.; Ubrich, N. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int. J. Pharm. 2007, 344, 53–61. [Google Scholar] [CrossRef]
- Fleczkó, T.; Kokol, V.; Voncina, B. Preparation and characterization of ethylcellulose-based microcapsules for sustaining release of a model fragrance. Macromol. Res. 2010, 18, 636–640. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Delivery Systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Giotopoulou, I.; Stamatis, H.; Barkoula, N.M. Encapsulation of Thymol in Ethyl Cellulose-Based Microspheres and Evaluation of Its Sustained Release for Food Applications. Polymers 2024, 16, 3396. [Google Scholar] [CrossRef]
- Laracuente, M.L.; Yu, M.H.; McHugh, K.J. Zero-Order Drug Delivery: State of the Art and Future Prospects. J. Control. Release 2020, 327, 834–856. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Zhao, C. Zero-Order Controlled Release of Water-Soluble Drugs Using a Marker Pen Platform. ACS Omega 2021, 6, 13774–13778. [Google Scholar] [PubMed]
- Bruschi, M.L. Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, L.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–86. [Google Scholar]
- Mocanu, A.; Frangopol, P.T.; Balint, R.; Cadar, D.; Vancea, J.M.; Mintău, R.; Horovitz, O.A.; Tomoaia-Cotisel, M. Higuchi model applied to ions release from hydroxyapatites. Stud. UBB Chem. 2021, 66, 195–207. [Google Scholar]
- Jonassen, H.; Kjøniksen, A.L.; Hiorth, M. Effects of ionic strength on the size and compactness of chitosan nanoparticles. Colloid Polym. Sci. 2012, 290, 919–929. [Google Scholar]
- Van Beek, T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A 2002, 967, 21–55. [Google Scholar] [PubMed]
- Collins, B.J.; Kerns, S.P.; Aillon, K.; Mueller, G.; Rider, C.V.; DeRose, E.F.; London, R.E.; Harnly, J.M.; Waidyanatha, S. Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches. Anal. Bioanal. Chem. 2020, 412, 6789–6809. [Google Scholar] [PubMed]
- Noor-E-Tabassum; Das, R.; Lami, M.S.; Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Idroes, R.; Mohamed, A.A.; Hossain, M.J.; Dhama, K.; et al. Ginkgo biloba: A Treasure of Functional Phytochemicals with Multimedicinal Applications. Evid.-Based Complement. Alternat. Med. 2022, 28, 8288818. [Google Scholar]
- Sánchez–Hernández, E.; González–García, V.; Palacio–Bielsa, A.; Lorenzo–Vidal, B.; Buzón–Durán, L.; Martín–Gil, J.; Martín–Ramos, P. Antibacterial Activity of Ginkgo biloba Extracts against Clavibacter michiganensis subsp. michiganensis, Pseudomonas spp., and Xanthomonas vesicatoria. Horticulturae 2023, 9, 461. [Google Scholar] [CrossRef]
- Hua, Z.; Wu, C.; Fan, G.; Tang, Z.; Cao, F. The antibacterial activity and mechanism of ginkgolic acid C15:1. BMC Biotechnol. 2017, 17, 5. [Google Scholar]
- Available online: https://bio.libretexts.org/Bookshelves/Microbiology (accessed on 27 December 2024).
- Ibrahim, M.P.; Nuhu, A.A. Phytochemical Screening and Antibacterial/Antifungal Activities of Ginkgo biloba Extract EGb 761. IOSR–J. Pharm. Biol. Sci. 2016, 11, 43–49. [Google Scholar]
- Karakaya, F.; Şahin, B.; Bülbül, A.S.; Ceylan, Y.; Kurt, E.; Tarakçı, M.F. Investigation of antimicrobial and antibiofilm effects of Ginkgo biloba L. Res. J. Biol. Sci. 2020, 13, 28–36. [Google Scholar]
- Chandrasekaran, M.; Kim, K.D.; Chun, S.C. Antibacterial Activity of Chitosan Nanoparticles: A Review. Processes 2020, 8, 1173. [Google Scholar] [CrossRef]
- Katas, H.; Lim, C.S.; Azlan, A.Y.H.N.; Buang, F.; Busra, M.F.M. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J. 2018, 27, 283–292. [Google Scholar]
- Venkatesham, M.; Ayodhya, D.; Madhusudhan, A.; Babu, N.V.; Veerabhadram, G. A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies. Appl. Nanosci. 2012, 4, 113–119. [Google Scholar]
- Ibrahim, H.M.; El-Bisi, M.K.; Taha, G.M.; El–Alfy, E.A. Preparation of biocompatible chitosan nanoparticles loaded by tetracycline, gentamycin and ciprofloxacin as novel drug delivery system for improvement the antibacterial properties of cellulose based fabrics. Int. J. Biol. Macromol. 2020, 161, 1247–1260. [Google Scholar]
- Sotelo-Boyás, M.E.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Corona-Rangel, M.L. Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT 2017, 77, 15–20. [Google Scholar]
- Mofazzal Jahromi, M.A.; Al–Musawi, S.; Pirestani, M.; Ramandi, M.F.; Ahmadi, K.; Rajayi, H.; Hassan, Z.M.; Kamali, M.; Mirnejad, R. Curcumin-loaded Chitosan Tripolyphosphate Nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran. J. Biotechnol. 2014, 12, e1012. [Google Scholar]
- Kowalska–Krochmal, B.; Dudek–Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
Drug Release Model | Medium–Water (Sample A) | Medium–Saline (Sample B) |
---|---|---|
Zero-order | 0.9450 | 0.9939 |
First-order | 0.9472 | 0.9913 |
Higuchi | 0.9738 | 0.9796 |
Korsmeyer–Peppas | 0.7315 | 0.9538 |
Drug Release Model | Medium–Water (Sample A) | Medium–Saline (Sample B) |
---|---|---|
Zero order | 0.7939 | 0.9945 |
First order | 0.8012 | 0.9874 |
Higuchi | 0.8865 | 0.9411 |
Korsmeyer–Peppas | 0.9048 | 0.8169 |
No | Ion | Rt [min] | Name of Compound | Neutral Molecular Formula | Theoretical Mass | Experimental Mass | MS/MS Fragments | Error of Measurement [ppm] | DBE |
---|---|---|---|---|---|---|---|---|---|
1 | [M-H]- | 1.9 | Quinic acid | C7H12O6 | 191.0588 | 191.0579 | 173.0462 127.0410 111.0461 | 4.64 | 6.5 |
2 | [M-H]- | 3.005 | Citric acid | C6H8O7 | 191.0197 | 191.0195 | 173.0108 129.0187 111.0079 87.0078 | 1.18 | 3 |
3 | [M-H]- | 7.841 | Shikimic acid | C7H10O5 | 173.0455 | 173.0453 | 155.0357 130.9666 111.0460 | 1.42 | 3 |
4 | [M-H]- | 12.093 | Protoca-techuic acid | C7H6O4 | 153.0193 | 153.0187 | 109.0288 | 4.1 | 5 |
5 | [M-H]- | 14.978 | Coumaric acid glucoside | C22H14O3 | 325.0870 | 325.0857 | 163.0325 119.0434 | 4.04 | 16 |
6 | [M-H]- | 15.593 | Acetylsy-ringic acid | C11H12O6 | 239.0561 | 239.0553 | 195.0649 179.0339 149.0598 133.0648 | 3.38 | 6 |
7 | [M-H]- | 17.014 | Quercetin 3-O-α-L-rhamno-pyranosyl (1-2)[α-L-rhamno-pyranosyl(1-6)]-β-D-glucopyra-noside | C33H40O20 | 755.2040 | 755.2044 | 300.0262 | −0.51 | 14 |
8 | [M-H]- | 17.347 | Myricetin-3-O-rutinoside | C27H30O17 | 625.1410 | 625.1398 | 316.0207 271.0223 | 1.95 | 13 |
9 | [M-H]- | 17.597 | Clitorin | C33H40O19 | 739.2091 | 739.2083 | 284.0312 | 1.08 | 14 |
10 | [M-H]- | 18.164 | Rutoside | C27H30O16 | 609.1461 | 609.1467 | 564.4123 300.0282 271.0247 | −0.97 | 13 |
11 | [M-H]- | 18.264/19.182/19.924/21.1 | Ginkgolide isomers | C20H24O10 | 423.1297 | 423.1308 | - | −2.66 | 9 |
12 | [M-H]- | 18.765 | Kaempferol-3-O-β-D-rutinoside | C27H30O15 | 593.1512 | 593.1477 | 285.0348 255.0254 | 5.88 | 13 |
13 | [M-H]- | 19.349 | Ginkgolide C or isomer | C20H24O11 | 439.1246 | 439.1221 | 383.1311 365.1197 321.1304 259.1307 | 5.65 | 9 |
14 | [M-H]- | 19.432 | Ginkgolide Q or isomer | C20H24O11 | 439.1243 | 439.1209 | 411.1253 383.1311 321.1304 277.1403 | 8.37 | 9 |
15 | [M-H]- | 19.932 | Bilobalide | C15H18O8 | 325.0929 | 325.0919 | 251.0869 237.1077 193.1179 163.1068 | 3.04 | 7 |
16 | [M-H]- | 21.5 | Unknown | C16H32O4 | 287.2228 | 287.2222 | 287.2214 | 2.02 | 1 |
17 | [M-H]- | 21.633 | Amento-flavone | C30H18O10 | 537.0827 | 537.0281 | 443.0403 413.0644 375.0495 | 1.15 | 22 |
18 | [M-H]- | 22.267 | Bilobetin | C31H20O10 | 551.0984 | 551.0992 | 10 eV 387.0867 20 eV 519.0705 457.0552 413.0658 389.0665 323.0537 | −1.5 | 22 |
19 | [M-H]- | 22.884 | Ginkgetin | C32H22O10 | 565.1140 | 565.1136 | 533.0867 500.2757 389.0660 303.2317 151.0019 | 0.74 | 22 |
20 | [M-H]- | 23.435 | Dirhamnosyl linolenic acid isomer | C28H48O11 | 559.3124 | 559.3113 | 513.3056 277.2157 253.0911 | 1.94 | 5 |
21 | [M-H]- | 24.102 | Ginkgolic acid C17:2 | C24H36O3 | 371.2439 | 371.2456 | - | −4.53 | 3 |
22 | [M-H]- | 24.219 | Sciado-pitysin | C33H24O10 | 579.1297 | 579.1324 | 547.1023 232.0829 503.0738 403.0802 165.0167 | −4.7 | 22 |
23 | [M-H]- | 24.269 | Ginkgolic acid C13:0 | C20H32O3 | 319.2279 | 319.2287 | - | −2.6 | 5 |
24 | [M-H]- | 26.604 | Unknown | C22H34O4 | 361.2384 | 361.2370 | 317.2490 299.2383 287.2385 245.1906 231.1759 | 3.96 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitarek, P.; Owczarek, M.; Kowalczyk, T.; Kukula-Koch, W.; Lasoń-Rydel, M.; Herczyńska, L. Dual Biopolymer Layer Using Nanoparticles with Active Substance Enclosed in Microcapsules: Innovative Solution for Slow Release of Ginkgo biloba L. Extract for Potential Therapies. Int. J. Mol. Sci. 2025, 26, 3066. https://doi.org/10.3390/ijms26073066
Sitarek P, Owczarek M, Kowalczyk T, Kukula-Koch W, Lasoń-Rydel M, Herczyńska L. Dual Biopolymer Layer Using Nanoparticles with Active Substance Enclosed in Microcapsules: Innovative Solution for Slow Release of Ginkgo biloba L. Extract for Potential Therapies. International Journal of Molecular Sciences. 2025; 26(7):3066. https://doi.org/10.3390/ijms26073066
Chicago/Turabian StyleSitarek, Przemysław, Monika Owczarek, Tomasz Kowalczyk, Wirginia Kukula-Koch, Magdalena Lasoń-Rydel, and Lucyna Herczyńska. 2025. "Dual Biopolymer Layer Using Nanoparticles with Active Substance Enclosed in Microcapsules: Innovative Solution for Slow Release of Ginkgo biloba L. Extract for Potential Therapies" International Journal of Molecular Sciences 26, no. 7: 3066. https://doi.org/10.3390/ijms26073066
APA StyleSitarek, P., Owczarek, M., Kowalczyk, T., Kukula-Koch, W., Lasoń-Rydel, M., & Herczyńska, L. (2025). Dual Biopolymer Layer Using Nanoparticles with Active Substance Enclosed in Microcapsules: Innovative Solution for Slow Release of Ginkgo biloba L. Extract for Potential Therapies. International Journal of Molecular Sciences, 26(7), 3066. https://doi.org/10.3390/ijms26073066