Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Expression Pattern Analysis Under Salt Stress in Winter Rapeseed (Brassica rapa L.)
Abstract
:1. Introduction
2. Results
2.1. Analysis of Na+ and K+ Flow Rate Among Different Tissues Under Salt Treatment
2.2. Identification of CPA Family Members in B. rapa
2.3. Phylogenetic Tree and Chromosome Localization Analysis
2.4. Characterization of Cis-Acting Elements in the BrCPA Gene Promoter
2.5. Motif Composition and Gene Structure of the BrCPA Gene Family
2.6. Analysis of Intra and Inter-Species Covariance in BrCPA Genes
2.7. Transcriptional Profiling of BrCPA Family Members in Response to Salt Stress
2.8. Expression Analysis of BrCPA Family Members Under Salt Stress
3. Discussion
4. Materials and Methods
4.1. Experimental Materials and Salt Stress Treatments
4.2. Na+ and K+ Flow Rate Analysis
4.3. Genome-Wide Identification and Evolutionary Analysis of the CPA Gene Family in B. rapa
4.4. Sequence Composition, Physicochemical Characteristics of Proteins, Chromosomal Distribution, Cis-Regulatory Elements, and Evolutionary Collinearity Analysis of CPA Gene Family Members
4.5. Expression Analysis of BrCPA Family Members
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience 2024, 27, 108830. [Google Scholar] [PubMed]
- Sun, T.J.; Fan, L.; Yang, J.; Cao, R.Z.; Yang, C.Y.; Zhang, J.; Wang, D.M. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na(+) efflux rate and K(+)/Na(+) ratio in Arabidopsis. BMC Plant Biol. 2019, 19, 469. [Google Scholar]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS). Remote Sens. 2014, 6, 10813–10834. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, K.; Li, B.; Zhou, L.; Luo, Y.; Zhu, J. Spatial distribution pattern of soil salinity and saline soil in Yinchuan plain of China. Chin. Soc. Agric. Eng. 2009, 25, 19–24. [Google Scholar]
- Wen, W.; Timmermans, J.; Chen, Q.; van Bodegom, P.M. A Review of Remote Sensing Challenges for Food Security with Respect to Salinity and Drought Threats. Remote Sens. 2021, 13, 6. [Google Scholar]
- Wancang, S.; Junyan, W.; Yan, F.; Qin, L.; Renyi, Y.; Weiguo, M.; Xuecai, L.; Junjie, Z.; Pengfei, Z.; Jianming, L.; et al. Growth and development characteristics of winter rapeseed northern-extended from the cold and arid regions in China. Acta Agron. Sin. 2011, 36, 2124–2134. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar]
- Shi, H.; Quintero, F.J.; Pardo, J.M.; Zhu, J.K. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 2002, 14, 465–477. [Google Scholar]
- Chakraborty, K.; Bose, J.; Shabala, L.; Eyles, A.; Shabala, S. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species. Physiol. Plant 2016, 158, 135–151. [Google Scholar]
- Tang, X.; Zhang, H.; Shabala, S.; Li, H.; Yang, X.; Zhang, H. Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall. Tree Physiol. 2021, 41, 1264–1277. [Google Scholar] [PubMed]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.Y.; Li, J.; Wang, P.Y.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [PubMed]
- Sze, H.; Chanroj, S. Plant Endomembrane Dynamics: Studies of K(+)/H(+) Antiporters Provide Insights on the Effects of pH and Ion Homeostasis. Plant Physiol. 2018, 177, 875–895. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, D.; Wang, J.; Wang, Q.; Guo, X.; Fu, Q.; Kear, P.; Zhu, G.; Yang, X. Genome-wide characterization of the CPA gene family in potato and a preliminary functional analysis of its role in NaCl tolerance. BMC Genom. 2024, 25, 144. [Google Scholar]
- Qiu, Q.S.; Guo, Y.; Dietrich, M.A.; Schumaker, K.S.; Zhu, J.K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 2002, 99, 8436–8441. [Google Scholar]
- Cellier, F.; Conéjéro, G.; Ricaud, L.; Luu, D.T.; Lepetit, M.; Gosti, F.; Casse, F. Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J. 2004, 39, 834–846. [Google Scholar]
- Jia, Q.; Song, J.; Zheng, C.; Fu, J.; Qin, B.; Zhang, Y.; Liu, Z.; Jia, K.; Liang, K.; Lin, W.; et al. Genome-Wide Analysis of Cation/Proton Antiporter Family in Soybean (Glycine max) and Functional Analysis of GmCHX20a on Salt Response. Int. J. Mol. Sci. 2023, 24, 16560. [Google Scholar] [CrossRef]
- Brett, C.L.; Donowitz, M.; Rao, R. Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol. Cell Physiol. 2005, 288, C223–C239. [Google Scholar]
- Karim, R.; Bouchra, B.; Fatima, G.; Abdelkarim, F.M.; Laila, S. Plant NHX Antiporters: From Function to Biotechnological Application, with Case Study. Curr. Protein Pept. Sci. 2021, 22, 60–73. [Google Scholar]
- Tian, F.; Chang, E.; Li, Y.; Sun, P.; Hu, J.; Zhang, J. Expression and integrated network analyses revealed functional divergence of NHX-type Na(+)/H(+) exchanger genes in poplar. Sci. Rep. 2017, 7, 2607. [Google Scholar]
- Fukuda, A.; Nakamura, A.; Hara, N.; Toki, S.; Tanaka, Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 2011, 233, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, M.; Ben Ayed, R.; Mzid, R.; Aifa, S.; Hanana, M. Computational Approach for Structural Feature Determination of Grapevine NHX Antiporters. Biomed. Res. Int. 2019, 2019, 1031839. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Pan, T.; Zhang, X.; Fan, L.; Quintero, F.J.; Zhao, H.; Su, X.; Li, X.; Villalta, I.; Mendoza, I.; et al. K(+) Efflux Antiporters 4, 5, and 6 Mediate pH and K(+) Homeostasis in Endomembrane Compartments. Plant Physiol. 2018, 178, 1657–1678. [Google Scholar] [CrossRef] [PubMed]
- Aranda Sicilia, M.N.; Sánchez Romero, M.E.; Rodríguez Rosales, M.P.; Venema, K. Plastidial transporters KEA1 and KEA2 at the inner envelope membrane adjust stromal pH in the dark. New Phytol. 2021, 229, 2080–2090. [Google Scholar] [CrossRef]
- Chanroj, S.; Lu, Y.; Padmanaban, S.; Nanatani, K.; Uozumi, N.; Rao, R.; Sze, H. Plant-Specific Cation/H+ Exchanger 17 and Its Homologs Are Endomembrane K+ Transporters with Roles in Protein Sorting. J. Biol. Chem. 2011, 286, 33931–33941. [Google Scholar] [CrossRef]
- Jia, B.; Sun, M.; DuanMu, H.; Ding, X.; Liu, B.; Zhu, Y.; Sun, X. GsCHX19.3, a member of cation/H(+) exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. Sci. Rep. 2017, 7, 9423. [Google Scholar] [CrossRef]
- Colin, L.; Ruhnow, F.; Zhu, J.K.; Zhao, C.; Zhao, Y.; Persson, S. The cell biology of primary cell walls during salt stress. Plant Cell 2023, 35, 201–217. [Google Scholar] [CrossRef]
- Shabala, S.; Shabala, L. Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts 2011, 2, 407–419. [Google Scholar] [CrossRef]
- Yue, C.P.; Han, L.; Sun, S.S.; Chen, J.F.; Feng, Y.N.; Huang, J.Y.; Zhou, T.; Hua, Y.P. Genome-wide identification of the cation/proton antiporter (CPA) gene family and functional characterization of the key member BnaA05.NHX2 in allotetraploid rapeseed. Gene 2024, 894, 148025. [Google Scholar] [CrossRef]
- Cao, X.; Sun, L.; Wang, W.; Zhang, F. Exogenous calcium application mediates K+ and Na+ homeostasis of different salt-tolerant rapeseed varieties under NaHCO3 stress. Plant Growth Regul. 2024, 102, 367–378. [Google Scholar] [CrossRef]
- Dong, H.; Xie, C.; Hou, P.; Li, A.; Wang, X. Dynamic of ionic absorption and salt tolerance screening in wheat seedling under salt stress. Chin. J. Eco-Agric. 2021, 29, 762–770. [Google Scholar]
- Kong, M.; Luo, M.; Li, J.; Feng, Z.; Zhang, Y.; Song, W.; Zhang, R.; Wang, R.; Wang, Y.; Zhao, J.; et al. Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics 2021, 113, 1940–1951. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; An, Z.; Li, Y.; Yang, R.; Lai, Z. Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Functional Analysis of AtrNHX8 under Salt Stress. Plants 2024, 13, 1701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ying, J.; Zhang, Y.; Xu, L.; Zhang, W.; Ni, M.; Zhu, Y.; Liu, L. Genome-Wide Identification and Functional Characterization of the Cation Proton Antiporter (CPA) Family Related to Salt Stress Response in Radish (Raphanus sativus L.). Int. J. Mol. Sci. 2020, 21, 8262. [Google Scholar] [CrossRef]
- Perez, M.; Guerringue, Y.; Ranty, B.; Pouzet, C.; Jauneau, A.; Robe, E.; Mazars, C.; Galaud, J.P.; Aldon, D. Specific TCP transcription factors interact with and stabilize PRR2 within different nuclear sub-domains. Plant Sci. 2019, 287, 110197. [Google Scholar]
- Zhang, Y.; Feng, X.; Wang, L.; Su, Y.; Chu, Z.; Sun, Y. The structure, functional evolution, and evolutionary trajectories of the H(+)-PPase gene family in plants. BMC Genom. 2020, 21, 195. [Google Scholar]
- Ren, Z.; Yu, D.; Yang, Z.; Li, C.; Qanmber, G.; Li, Y.; Li, J.; Liu, Z.; Lu, L.; Wang, L.; et al. Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in Gossypium hirsutum L. Unravels Their Roles in Flowering. Front. Plant Sci. 2017, 8, 384. [Google Scholar]
- Wang, M.; Manzoor, M.A.; Wang, X.; Feng, X.; Zhao, Y.; He, J.; Cai, Y. Comparative Genomic Analysis of SAUR Gene Family, Cloning and Functional Characterization of Two Genes (PbrSAUR13 and PbrSAUR52) in Pyrus bretschneideri. Int. J. Mol. Sci. 2022, 23, 7054. [Google Scholar] [CrossRef]
- Hu, H.; Dai, M.; Yao, J.; Xiao, B.; Li, X.; Zhang, Q.; Xiong, L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 2006, 103, 12987–12992. [Google Scholar]
- Parenicová, L.; de Folter, S.; Kieffer, M.; Horner, D.S.; Favalli, C.; Busscher, J.; Cook, H.E.; Ingram, R.M.; Kater, M.M.; Davies, B.; et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell 2003, 15, 1538–1551. [Google Scholar]
- Sharma, H.; Taneja, M.; Upadhyay, S.K. Identification, characterization and expression profiling of cation-proton antiporter superfamily in Triticum aestivum L. and functional analysis of TaNHX4-B. Genomics 2020, 112, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Huatao, C.; Xin, C.; Wu, B.; Xingxing, Y.; Hongmei, Z.; Xiaoyan, C.; Xiaoqing, L. Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean. J. Integr. Agric. 2015, 14, 1171–1183. [Google Scholar]
- Jha, A.; Joshi, M.; Yadav, N.S.; Agarwal, P.K.; Jha, B. Cloning and characterization of the Salicornia brachiata Na(+)/H(+) antiporter gene SbNHX1 and its expression by abiotic stress. Mol. Biol. Rep. 2011, 38, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Adabnejad, H.; Kavousi, H.R.; Hamidi, H.; Tavassolian, I. Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses. Mol. Biol. Res. Commun. 2015, 4, 133–142. [Google Scholar]
- Nie, W.X.; Xu, L.; Yu, B.J. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. Protoplasma 2015, 252, 127–134. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.; Liu, Y.; Qiu, Q.S. AtNHX5 and AtNHX6 Control Cellular K+ and pH Homeostasis in Arabidopsis: Three Conserved Acidic Residues Are Essential for K+ Transport. PLoS ONE 2015, 10, e0144716. [Google Scholar] [CrossRef]
- Padmanaban, S.; Chanroj, S.; Kwak, J.M.; Li, X.; Ward, J.M.; Sze, H. Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol. 2007, 144, 82–93. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Pan, Z.; Wang, R.; Wang, X.; Zhao, P.; Liu, M.; Zhu, Y.; Liu, C.; Wang, W.; et al. Calcium-Mobilizing Properties of Salvia miltiorrhiza-Derived Carbon Dots Confer Enhanced Environmental Adaptability in Plants. ACS Nano 2022, 16, 4357–4370. [Google Scholar] [CrossRef]
- Ma, L.; Xu, J.; Tao, X.; Wu, J.; Wang, W.; Pu, Y.; Yang, G.; Fang, Y.; Liu, L.; Li, X.; et al. Genome-Wide Identification of C2H2 ZFPs and Functional Analysis of BRZAT12 under Low-Temperature Stress in Winter Rapeseed (Brassica rapa). Int. J. Mol. Sci. 2022, 23, 12218. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [PubMed]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar] [PubMed]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar]
Breed Name | Treatment Concentration (mmol/L) | Analysis Name |
---|---|---|
197-2018 QIN 10-45 | 0 | A4 |
197-2018 QIN 10-45 | 194 | A3 |
197-2018 QIN 10-45 | 388 | A2 |
197-2018 QIN 10-45 | 582 | A1 |
SCKY-6-27 | 0 | B4 |
SCKY-6-27 | 194 | B3 |
SCKY-6-27 | 388 | B2 |
SCKY-6-27 | 582 | B1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Ma, L.; Tao, X.; Lian, Y.; Wu, J.; Fahim, A.M.; Xu, Y.; Zhang, X.; Liu, L.; Yang, G.; et al. Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Expression Pattern Analysis Under Salt Stress in Winter Rapeseed (Brassica rapa L.). Int. J. Mol. Sci. 2025, 26, 3099. https://doi.org/10.3390/ijms26073099
Han C, Ma L, Tao X, Lian Y, Wu J, Fahim AM, Xu Y, Zhang X, Liu L, Yang G, et al. Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Expression Pattern Analysis Under Salt Stress in Winter Rapeseed (Brassica rapa L.). International Journal of Molecular Sciences. 2025; 26(7):3099. https://doi.org/10.3390/ijms26073099
Chicago/Turabian StyleHan, Chunyang, Li Ma, Xiaolei Tao, Yintao Lian, Junyan Wu, Abbas Muhammad Fahim, Yanxia Xu, Xianliang Zhang, Lijun Liu, Gang Yang, and et al. 2025. "Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Expression Pattern Analysis Under Salt Stress in Winter Rapeseed (Brassica rapa L.)" International Journal of Molecular Sciences 26, no. 7: 3099. https://doi.org/10.3390/ijms26073099
APA StyleHan, C., Ma, L., Tao, X., Lian, Y., Wu, J., Fahim, A. M., Xu, Y., Zhang, X., Liu, L., Yang, G., Pu, Y., Fan, T., Wang, W., & Sun, W. (2025). Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Expression Pattern Analysis Under Salt Stress in Winter Rapeseed (Brassica rapa L.). International Journal of Molecular Sciences, 26(7), 3099. https://doi.org/10.3390/ijms26073099