Neurotransmitter 5-HT Further Promotes LL-37-Induced Rosacea-like Inflammation Through HTR3A
Abstract
:1. Introduction
2. Results
2.1. Effects of 5-HT and LL-37 on Inflammatory Cytokines and Phenotypes of Macrophages
2.2. Effects of 5-HT and LL-37 on HTR mRNA Expressions and Localizations of HTR3A/5-HT
2.3. Roles of HTR3A in L5-Induced THP-1-Derived Macrophages
2.4. Effects of 5-HT on LL-37-Induced Rosacea-like Mice
2.5. Effects of HTR3A Antagonist TPS on L5-Induced Rosacea-like Mice
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Treatments
4.2. Animal Experiments
4.3. Histological Analysis
4.4. Immunofluorescence Analysis
4.5. Quantitative Real-Time PCR (qPCR) Analysis
4.6. Flow Cytometry Detection
4.7. Western Blot Analysis
4.8. Enzyme-Linked Immunosorbent Assay (ELISA)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HT | 5-Hydroxytryptamine |
HTR2 | 5-Hydroxytryptamine receptor 2 |
HTR3A | 5-Hydroxytryptamine receptor 3A |
HTR7 | 5-Hydroxytryptamine receptor 7 |
PMA | Phorbol-12-myristate-13-acetate |
L5 | LL-37 and 5-hydroxytryptamine |
SGR | Sarpogrelate, |
TPS | Tropisetron |
IL-1β | Interleukin-1β |
IL-8 | Interleukin-8 |
TNF-α | Tumor necrosis factor α |
VEGF | Vascular endothelial growth factor |
NF-κB | Nuclear factor-kappa B |
References
- Van, E.J.; Arents, B.W.; Van, M.M.; Vermeulen, S.; Fedorowicz, Z.; Tan, J. Rosacea: New concepts in classification and treatment. Am. J. Clin. Dermatol. 2021, 22, 457–465. [Google Scholar] [CrossRef]
- Gether, L.; Overgaard, L.; Egeberg, A.; Thyssen, J. Incidence and prevalence of rosacea: A systematic review and meta-analysis. Br. J. Dermatol. 2018, 179, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, J.; Dahl, M.; Detmar, M.; Drake, L.; Feinstein, A.; Odom, R.; Powell, F. Standard classification of rosacea: Report of the national rosacea society expert committee on the classification and staging of rosacea. J. Am. Acad. Dermatol. 2002, 46, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Ivanic, M.G.; Oulee, A.; Norden, A.; Javadi, S.S.; Gold, M.H.; Wu, J.J. Neurogenic rosacea treatment: A literature review. J. Drugs Dermatol. 2023, 22, 566–575. [Google Scholar] [CrossRef]
- Griffiths, C.E.; Barker, J.N. Pathogenesis and clinical features of psoriasis. Lancet 2007, 370, 263–271. [Google Scholar] [CrossRef]
- Sroka-Tomaszewska, J.; Trzeciak, M. Molecular mechanisms of atopic dermatitis pathogenesis. Int. J. Mol. Sci. 2021, 22, 4130. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Zhao, H.; Xiao, X.; Hu, X.; Wang, B.; Huang, Y.; Yin, Z.; Zhong, Y.; Li, J. High-sensitive sensory neurons exacerbate rosacea-like dermatitis in mice by activating γδ T cells directly. Nat. Commun. 2024, 15, 7265. [Google Scholar] [CrossRef]
- Wu, H.; Denna, T.H.; Storkersen, J.N.; Gerriets, V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res. 2019, 140, 100–114. [Google Scholar] [CrossRef]
- Baganz, N.L.; Blakely, R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 2013, 4, 48–63. [Google Scholar] [CrossRef]
- Nordlind, K.; Azmitia, E.C.; Slominski, A. The skin as a mirror of the soul: Exploring the possible roles of serotonin. Exp. Dermatol. 2008, 17, 301–311. [Google Scholar] [CrossRef]
- Shajib, M.; Khan, W. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015, 213, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Ahn, S.; Lee, H.; Hahm, D.H.; Kim, K.; Yeom, M. Acupuncture ameliorates not only atopic dermatitis-like skin inflammation but also acute and chronic serotonergic itch possibly through blockade of 5-ht2 and 5-ht7 receptors in mice. Brain Behav. Immun. 2021, 93, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Younes, S.F.; Bakry, O.A. Immunohistochemical evaluation of role of serotonin in pathogenesis of psoriasis. J. Clin. Diagn. Res. 2016, 10, ec05–ec09. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Chu, C.; Jiang, X. The role of macrophages in rosacea: Implications for targeted therapies. Front. Immunol. 2023, 14, 1211953. [Google Scholar] [CrossRef]
- Dürk, T.; Panther, E.; Müller, T.; Sorichter, S.; Ferrari, D.; Pizzirani, C.; Di Virgilio, F.; Myrtek, D.; Norgauer, J.; Idzko, M. 5-Hydroxytryptamine modulates cytokine and chemokine production in lps-primed human monocytes via stimulation of different 5-htr subtypes. Int. Immun. 2005, 17, 599–606. [Google Scholar] [CrossRef]
- De Las Casas-Engel, M.; Corbí, A.L. Serotonin modulation of macrophage polarization: Inflammation and beyond. Adv. Exp. Med. Biol. 2014, 824, 89–115. [Google Scholar] [CrossRef]
- Li, T.; Fu, B.; Zhang, X.; Zhou, Y.; Yang, M.; Cao, M.; Chen, Y.; Tan, Y.; Hu, R. Overproduction of gastrointestinal 5-ht promotes colitis-associated colorectal cancer progression via enhancing nlrp3 inflammasome activation. Cancer Immunol. Res. 2021, 9, 1008–1023. [Google Scholar] [CrossRef]
- Zhang, L.J.; Sen, G.L.; Ward, N.L.; Johnston, A.; Chun, K.; Chen, Y.; Adase, C.; Sanford, J.A.; Gao, N.; Chensee, M.; et al. Antimicrobial peptide LL37 and mavs signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity 2016, 45, 119–130. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, H.; Zhao, H.; Meng, X.; Zhao, Z.; Xie, H.; Li, J.; Tang, Y.; Zhang, Y. Gbp5 exacerbates rosacea-like skin inflammation by skewing macrophage polarization towards m1 phenotype through the NF-κB signalling pathway. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 796–809. [Google Scholar] [CrossRef]
- Heath, W.R.; Carbone, F.R. The skin-resident and migratory immune system in steady state and memory: Innate lymphocytes, dendritic cells and T cells. Nat. Immunol. 2013, 14, 978–985. [Google Scholar] [CrossRef]
- Mössner, R.; Lesch, K.P. Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav. Immun. 1998, 12, 249–271. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.S.; et al. Synergism of tnf-α and ifn-γ triggers inflammatory cell death, tissue damage, and mortality in sars-cov-2 infection and cytokine shock syndromes. Cell 2021, 184, 149–168. [Google Scholar] [CrossRef]
- Yamasaki, K.; Di Nardo, A.; Bardan, A.; Murakami, M.; Ohtake, T.; Coda, A.; Dorschner, R.A.; Bonnart, C.; Descargues, P.; Hovnanian, A.; et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat. Med. 2007, 13, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Hwang, I.; Lee, E.; Cho, H.J.; Ryu, J.H.; Kim, T.G.; Yu, J.W. Antimicrobial peptide LL-37 drives rosacea-like skin inflammation in an NLRP3-dependent manner. J. Investig. Dermatol. 2021, 141, 2885–2894. [Google Scholar] [CrossRef]
- Kan, H.; Wang, C.; Cheng, Y.; Yang, C.; Chang, H.; Chen, I.; Lin, Y. Cinnamtannin b1 attenuates rosacea-like signs via inhibition of pro-inflammatory cytokine production and down-regulation of the mapk pathway. PeerJ 2020, 8, e10548. [Google Scholar] [CrossRef]
- Reynoso-Roldán, A.; Roldán, M.L.; Cancino-Diaz, J.C.; Rodríguez-Martínez, S.; Cancino-Diaz, M.E. Vascular endothelial growth factor production is induced by histone deacetylase 1 and suppressed by von hippel-lindau protein in hacat cells. Clin. Investig. Med. 2012, 35, e340–e350. [Google Scholar] [CrossRef]
- Peters, M.A.; Walenkamp, A.M.; Kema, I.P.; Meijer, C.; De Vries, E.G.; Oosting, S.F. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist. Updates 2014, 17, 96–104. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, W.Q.; Zhang, S.Q.; Bai, J.X.; Lau, C.L.; Sze, S.C.; Yung, K.K.; Ko, J.K. The human cathelicidin peptide LL-37 inhibits pancreatic cancer growth by suppressing autophagy and reprogramming of the tumor immune microenvironment. Front. Pharmacol. 2022, 13, 906625. [Google Scholar] [CrossRef]
- Quintero-Villegas, A.; Valdés-Ferrer, S.I. Role of 5-ht 7 receptors in the immune system in health and disease. Mol. Med. 2020, 26, 2. [Google Scholar] [CrossRef]
- Idzko, M.; Panther, E.; Stratz, C.; Muller, T.; Bayer, H.; Zissel, G.; Durk, T.; Sorichter, S.; Di Virgilio, F.; Geissler, M.; et al. The serotoninergic receptors of human dendritic cells: Identification and coupling to cytokine release. J. Immunol. 2004, 172, 6011–6019. [Google Scholar] [CrossRef]
- Cíz, M.; Komrsková, D.; Prachařová, L.; Okénková, K.; Cízová, H.; Moravcová, A.; Jančinová, V.; Petríková, M.; Lojek, A.; Nosáľ, R. Serotonin modulates the oxidative burst of human phagocytes via various mechanisms. Platelets 2007, 18, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [PubMed]
- Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol. 2021, 12, 716469. [Google Scholar] [CrossRef]
- Mohamed, R.A.; Galal, O.; Mohammed, A.R.; El-Abhar, H.S. Tropisetron modulates peripheral and central serotonin/insulin levels via insulin and nuclear factor kappa b/receptor for advanced glycation end products signalling to regulate type-2 diabetes in rats. RSC Adv. 2018, 8, 11908–11920. [Google Scholar] [CrossRef]
- Mammadova-Bach, E.; Nagy, M.; Heemskerk, J.W.; Nieswandt, B.; Braun, A. Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium 2019, 77, 39–48. [Google Scholar] [CrossRef]
- Sekiguchi, F.; Tsubota, M.; Kawabata, A. Involvement of voltage-gated calcium channels in inflammation and inflammatory pain. Biol. Pharm. Bull. 2018, 41, 1127–1134. [Google Scholar] [CrossRef]
- Furuichi, T.; Kohda, K.; Miyawaki, A.; Mikoshiba, K. Intracellular channels. Curr. Opin. Neurobiol. 1994, 4, 294–303. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Wang, B.; Shi, W.; Hu, X.; Wang, Y.; Guo, Y.; Xie, H.; Xiao, W.; Li, J. Integrated omics reveal the molecular characterization and pathogenic mechanism of rosacea. J. Investig. Dermatol. 2024, 144, 33–42. [Google Scholar] [CrossRef]
- De Giovanni, M.; Tam, H.; Valet, C.; Xu, Y.; Looney, M.R.; Cyster, J.G. Gpr35 promotes neutrophil recruitment in response to serotonin metabolite 5-hiaa. Cell 2022, 185, 815–830. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, T.; Liang, Y.; Cui, W.; Li, D.; Zhang, G.; Deng, Z.; Chen, M.; Sha, K.; Xiao, W.; et al. N2-polarized neutrophils reduce inflammation in rosacea by regulating vascular factors and proliferation of CD4+ T cells. J. Investig. Dermatol. 2022, 142, 1835–1844. [Google Scholar] [CrossRef]
- Woo, S.; Kim, Y.R.; Bak, M.S.; Chung, G.; Kim, S.J.; Kim, S.K. Multiplexed representation of itch and pain and their interaction in the primary somatosensory cortex. Exp. Neurobiol. 2022, 31, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zeng, Z.; Wu, C.; Liu, H. Tropisetron inhibits sepsis by repressing hyper-inflammation and regulating the cardiac action potential in rat models. Biomed. Pharmacother. 2019, 110, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Weibel, S.; Rücker, G.; Eberhart, L.H.; Pace, N.L.; Hartl, H.M.; Jordan, O.L.; Mayer, D.; Riemer, M.; Schaefer, M.S.; Raj, D.; et al. Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: A network meta-analysis. Cochrane Database Syst. Rev. 2020, 10, CD012859. [Google Scholar] [CrossRef] [PubMed]
- Della Faille, L.; Claesen, E.; Cappelle, S.; Lemmens, R. Reversible cerebral vasoconstriction syndrome triggered by ondansetron. Acta Neurol. Belg. 2021, 121, 1061–1063. [Google Scholar] [CrossRef]
- Mohd Yasin, Z.M.; Mohd Idrus, F.N.; Hoe, C.H.; Yvonne-Tee, G.B. Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation 2022, 128, 67–82. [Google Scholar] [CrossRef]
- Afrooghe, A.; Ahmadi, E.; Babaei, M.; Soltani, Z.E.; Elahi, M.; Shayan, M.; Jafari, R.M.; Dehpour, A.R. Lasmiditan ameliorates serotonergic itch in mice: Possible involvement of 5-ht1f receptors. Naunyn Schmiedeberg’s Arch. Pharmacol. 2025, 398, 1535–1543. [Google Scholar] [CrossRef]
- Haj-Mirzaian, A.; Kordjazy, N.; Amiri, S.; Haj-Mirzaian, A.; Amini-Khoei, H.; Ostadhadi, S.; Dehpour, A. Involvement of nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tropisetron and ondansetron in mice forced swimming test and tail suspension test. Eur. J. Pharmacol. 2016, 780, 71–81. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Wang, F.; Li, T.; Wang, B.; Wang, Q.; Long, J.; Xie, H.; Zhang, Y.; Li, J. Quercetin attenuates inflammation in rosacea by directly targeting p65 and icam-1. Life Sci. 2024, 347, 122675. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Liu, J.; Chen, F.; Zhou, Y.; Yang, C.; Zhao, B. Neurotransmitter 5-HT Further Promotes LL-37-Induced Rosacea-like Inflammation Through HTR3A. Int. J. Mol. Sci. 2025, 26, 3156. https://doi.org/10.3390/ijms26073156
Ma H, Liu J, Chen F, Zhou Y, Yang C, Zhao B. Neurotransmitter 5-HT Further Promotes LL-37-Induced Rosacea-like Inflammation Through HTR3A. International Journal of Molecular Sciences. 2025; 26(7):3156. https://doi.org/10.3390/ijms26073156
Chicago/Turabian StyleMa, Haojie, Jing Liu, Fengfeng Chen, Yonghua Zhou, Cheng Yang, and Bingtian Zhao. 2025. "Neurotransmitter 5-HT Further Promotes LL-37-Induced Rosacea-like Inflammation Through HTR3A" International Journal of Molecular Sciences 26, no. 7: 3156. https://doi.org/10.3390/ijms26073156
APA StyleMa, H., Liu, J., Chen, F., Zhou, Y., Yang, C., & Zhao, B. (2025). Neurotransmitter 5-HT Further Promotes LL-37-Induced Rosacea-like Inflammation Through HTR3A. International Journal of Molecular Sciences, 26(7), 3156. https://doi.org/10.3390/ijms26073156